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Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of
data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have
not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not
suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their
temporal and their spectral profile. We show that the VAMPIRE �very advanced method of phase and intensity
retrieval of E-fields� method performs reliably. With VAMPIRE the phase profile of soliton molecules has been
measured, and further insight into the mechanism is obtained.
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INTRODUCTION

Today’s advanced fiber-optic transmission lines make in-
creasing use of so-called dispersion-managed fibers, i.e., fi-
bers in which segments of positive and negative group ve-
locity dispersion alternate periodically. Typically, data are
coded in a return to zero �RZ� format in which a short light
pulse sits in a time slot several times wider than its width so
that neighboring pulse interaction is avoided. Soliton pulses
are particularly interesting because they are robust in the
presence of perturbations by exploiting the Kerr nonlinearity
to balance the fiber’s group velocity dispersion. We demon-
strated recently both numerically and experimentally that at a
certain close spacing two such soliton pulses can form a
stable bound state provided they are in antiphase. This com-
pound has been called a soliton molecule �1�. Soliton mol-
ecules hold potential for further increasing the data-carrying
capacity of fibers by either allowing a much denser packing
of signal pulses down to the equilibrium distance of the mol-
ecule, or by using nonbinary coding �no pulse=0, single
soliton=1, molecule=2, etc.�. Note that soliton molecules,
being nonlinear entities which have inherited stability from
standard solitons, hold the promise to be more robust in the
presence of perturbations than other nonbinary but basically
linear schemes like quaternary phase shift keying which are
currently hotly debated. The potential usefulness of soliton
molecules warrants a more detailed study of their properties
in general, and their binding mechanism in particular.

As we conducted systematic experiments to further char-
acterize the range of existence and the stability properties of
these soliton molecules, it became evident that the core rea-
son for the binding mechanism resides in the phase dynamics
inside the pulse. Relative phase is well known to mediate
attractive or repulsive interaction between solitons �2,3�. In-
spired by the discovery of soliton molecules in �1�, Mol-
lenauer and Gordon formulated an analytical model �4� in
which the pulse’s chirp plays the central role and which con-
firms the prediction of a stable bond at a particular distance.

To get experimental access to phase information, we ven-
tured to measure the full profile �amplitude and phase� of

these compounds. In previous art no direct phase information
was accessible. Established techniques for amplitude and
phase characterization like FROG �5� and its numerous
variations �6,7� turn out to be inadequate for assessment of
these relatively weak pulses with complex shapes: They not
only suffer from ambiguities; the algorithms often tend to
stagnate if the temporal and spectral power profiles are
highly structured as in this case. The power profile of soliton
molecules has a central � phase jump and therefore a central
zero; by necessity, the power spectrum then also has zeros.

Interferometric methods like spectral phase interferometry
for direct electric-field reconstruction �SPIDER� �8� do not
present a viable alternative here because the spectral zeros in
the power profile of the soliton molecules are an impediment
for this technique, too. SPIDER’s phase reconstruction pro-
cedure involves a step referred to as “concatenation” �8,9�,
basically a numerical integration of the derivative of the
spectral phase. Since the spectral phase is not defined at zero
spectral power points, SPIDER is prone to suffer from unde-
termined spectral phase jumps, and hence ambiguous tempo-
ral profiles. Note that the numerical integration step also
used in techniques like measurement of electric field by in-
terferometric spectral trace observation �MEFISTO� �10� and
blind MEFISTO �11� causes the same problems.

We present a successful experimental characterization of
amplitude and phase profiles of a soliton molecule in an
optical fiber by application of the VAMPIRE method �very
advanced method of phase and intensity retrieval of E fields�
invented by Seifert et al. �12�. More detail about this method
is given below, but first we describe the experimental setup.

SOLITON MOLECULE: EXPERIMENTAL SETUP

As a light source we use an optical parametric oscillator
�Mira OPO advanced linear CTA, APE GmbH, Berlin�,
pumped by a mode-locked Ti:sapphire laser �Mira 900-F,
Coherent Inc., Santa Clara�. This system was modified for an
increased temporal pulse width. The pulse shape is nearly
Gaussian with a mild linear chirp, as in exp�−�1+ iC�t2 /T0

2�.
The temporal width is �FWHM�1.763 T0=250 fs, and
C�0.41. The center wavelength is 1595 nm, and the repeti-
tion rate is 56 MHz.
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The light pulses are sent through a variable attenuator
consisting of a half wave plate and polarizing beam splitter
to set the desired power level. By way of a Mach-Zehnder
interferometer the pulses are split, delayed, and then recom-
bined to form a pulse pair of adjustable temporal separation
�in �see Fig. 1�. �in is precisely known from the path length
difference which is a better criterion than distance between
maxima, in particular for small distances. A piezoceramic
transducer allows us to fine tune the path length difference,
and thus both �in and the relative phase of the pulse pairs.
The double pulses taken from one of the interferometer out-
puts are launched into the dispersion-managed fiber line.
�The other output remains unused at this point, but becomes
important below.�

In the fiber line segments of normally and anomalously
dispersive fiber alternate; the segment lengths are L+ and
L−, and the line begins and ends with a half-segment of
anomalously dispersive fiber. Second order dispersion is not
fully compensated so as to give a negative path average dis-
persion of �2=−2.3 ps2 /km to support soliton formation.
Third order dispersion is nearly compensated by appropriate
choice of fiber. The map strength is S=3.8 based on the
definition

S =
��2

+ − �2�L+ + ��2
− − �2�L−

�FWHM
2 . �1�

Here �2
+ and �2

− are the second order dispersion parameters
for normally and anomalously dispersive fiber, respectively.

Since the fibers in the line with different dispersion also
have different modal area, there are splice losses which limit
the useful number of dispersion periods. While in Ref. �1�
just three periods were used, we now double this number by
using the fiber in a double-pass configuration: At the end of
the fiber line, the pulses are reflected back by a mirror so as
to pass through it once again in reverse direction. A Faraday
rotator before the fiber line rotates the plane of polarization

by � /4, and once again after the second pass. Thus the coun-
terpropagating pulses are orthogonally polarized with respect
to the launched pulses and can be coupled out by a polarizing
beam splitter.

Six dispersion periods per double-pass correspond to
4.2LD, where LD=T0

2 / ��2� is the characteristic dispersion
length. This is not a very high value but an improvement
over the first demonstration in �1�.

Data acquisition involves a spectrometer �not shown in
Fig. 1� which provides measurement of spectral power pro-
files, and a replacement of the autocorrelator used in the first
experiment �1�, configured in order to allow phase retrieval
as described below.

PHASE RETRIEVAL: CHOICES

A variety of techniques exist for full assessment of pulse
profiles. FROG is possibly the best-known representative �5�,
and there are different variations of FROG �6�. The central
idea is to measure temporal and spectral information simul-
taneously in some combined fashion, and then reconstruct
the amplitude and phase profiles from the raw data by way of
a suitable algorithm. Quite generally all existing techniques
show the best results by analysis of more or less simple pulse
shapes, such as the output pulses from lasers. More complex
amplitude profiles remain problematic for all variations of
FROG, in particular when there are zeros or well separated
parts in the temporal or spectral domain �7�. In such cases,
iterative FROG algorithms �6,13� often do not converge and
give meaningless and simply wrong output. Therefore, a re-
liable full field reconstruction of arbitrary pulse shapes could
not be guaranteed by conventional FROG methods.

Of all FROG methods, SHG FROG seems to be the most
widely used. Its name is derived from the fact that it uses
autocorrelation involving second harmonic generation, its
popularity seems to stem from its relative simplicity.

FIG. 1. Experimental setup. BS: beam splitter; PBS: polarizing beam splitter; BBO: nonlinear crystal; GM: galvanometer scanner. The
initial pulse is split, delayed, and recombined in the interferometer to generate the double pulse with the desired relative phase and
separation. The probe pulse propagates through the dispersion-managed fiber, while the gate pulse propagates through the reference fiber.
The BBO crystal generates the cross-correlation signal, and a diffraction grating spectrally disperses it. The spectra are focused on an
electronic camera �CCD�. The delay axis is swept by a mirror mounted on a galvanometer scanner actuated synchronously with the variable
delay of the probe pulse.
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Initially we attempted to measure the phase profiles of
soliton molecules with SHG FROG. With some minor modi-
fications or extra steps, ambiguities regarding time direction
could be avoided, but serious problems arose from the zeros
in the spectral profile �7� of the soliton molecules and the
concomitant stagnation behavior of the used standard com-
mercial algorithm �14�. A typical reconstruction result from
SHG FROG is shown in Fig. 2.

In principle, these problems might be overcome by using
a FROG variety based on cross-correlation, known as
XFROG �6,15�. However, XFROG requires full and detailed
knowledge of the reference pulse. Any errors in the assess-
ment of the reference will propagate into the final result. It is
not obvious how one would obtain, and how one could
verify, such a reference pulse. Therefore, the use of XFROG
is not practical here. Moreover, there is no guarantee that this
technique solves the stagnation problem of the reconstruction
algorithm.

Then there is blind FROG �6,13�. This is another cross-
correlation technique which—as the name suggests—does
not require any advance knowledge of the shape of either the
pulse to be measured or the reference pulse. It can operate
with arbitrary fields E1�t� and E2�t�. In practical terms, blind
FROG has a huge advantage over XFROG in that no exact
knowledge of the reference pulse shape is necessary. Never-
theless, there is no general guarantee that a unique field re-
construction is possible. This remains true even when one

employs the additional information about the spectral inten-

sities of both pulses, �E˜1����2 and �E˜2����2, obtained from
independent measurements �12�.

We therefore turned to a technique based on �12� called
VAMPIRE. VAMPIRE is derived from blind FROG and is
based on cross-correlation of the signal under study with
some well chosen but not completely characterized reference
pulse. This absence of full specification of the reference
pulse is one of the differences between VAMPIRE and tech-
niques like XFROG.

We turn to a brief description of the VAMPIRE technique.
The two signals to be cross-correlated, i.e., signal and refer-
ence, are also known as probe pulse and gate pulse. The
measured VAMPIRE spectrogram �somewhat of a misnomer,
perhaps, since not just a spectrum is plotted, but the term is
commonly used nevertheless �7,16�� can be expressed as

I��,�� � ��
−�

�

Egate�t�Eprobe�t − ��ei�t dt�2

� ��
−�

�

E˜probe���E˜gate�� − ��ei�� d��2

, �2�

where E and E˜ denote the complex temporal and spectral
field, respectively. � defines the spectral axis and � is the
delay.

The reason why VAMPIRE can guarantee the uniqueness
of full field reconstruction is that Egate�t� can be chosen such
that I�� ,�� does not suffer from nontrivial ambiguities. Ide-
ally, this would be achieved by a well-separated double pulse
structure with an asymmetry in duration, peak power, and
chirp of the individual pulses �12�. A sufficient asymmetry is
required, but detailed knowledge of the structure is definitely
not. For example, a suitable gate pulse could easily be gen-
erated by splitting a laser pulse into a pair by means of a
Mach-Zehnder interferometer with a dispersive element in
one of its arms. This way the VAMPIRE spectrogram would
contain two spectrally dispersed signals from the cross-
correlations of the probe pulse with the two different com-
ponents of the gate pulse so that the required noncentrosym-
metric spectrogram is obtained �12�. In comparison to other
pulse retrieval techniques, the asymmetry thus provided in
the cross-correlation contains just that extra amount of infor-
mation which guarantees a unique relation between the
cross-correlated pulses and the spectrogram.

Beyond this procedure to enhance the information content
of the spectrogram, there is a different reconstruction algo-
rithm for VAMPIRE which exploits this information to ob-
tain a unique reconstruction. Stagnation is a persisting prob-
lem of conventional iterative FROG algorithms �6,13� but is
avoided by VAMPIRE �12� in a special way.

The evaluation of the spectrogram begins with a single
row of the spectrogram. For a fixed parameter � this row can
be expressed by

I���� � �F�→��G����exp	i	����
��2, �3�

where

FIG. 2. Reconstructed power profiles and spectra �solid lines�,
temporal, and spectral phase functions �dashed lines� of an an-
tiphase double pulse. All panels refer to the same experimental
conditions. �a� Temporal profile obtained from SHG FROG with
conventional reconstruction algorithm. Note that this fails to show a
phase jump of �. �b� The complex spectrum retrieved as in �a�. This
erroneously suggests an in-phase double pulse. �c� Temporal profile
obtained from VAMPIRE. This yields the correct pulse shape and
temporal phase function. �d� The complex spectrum corresponding
to �c�, phase retrieved from VAMPIRE, and power profile as mea-
sured directly.
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G���� = �E˜probe�����E˜gate�� − ��� �4�

and

	���� = 	probe��� + 	gate�� − �� . �5�

The choice of this first row is arbitrary; one can therefore
pick the one with the best signal-to-noise ratio and asymme-
try to minimize the risk of stagnation. From this row one
finds its spectral phase function 	���� with an additional
constant C� by using a Gerchberg-Saxton algorithm �17� or

equivalent method. The power spectra �E˜gate����2 and

�E˜probe����2 are easily obtained by an independent measure-
ment.

Next, one proceeds with a neighboring row and repeats
the Gerchberg-Saxton iteration, this time using the phase
function from the first row as an initial guess. Then one
continues until all rows are covered. This procedure is dif-
ferent from commonly used iterative algorithms in that
VAMPIRE treats the spectrogram locally, not globally. This
provides the means to check every single row for stagnating
behavior: In every Gerchberg-Saxton loop, the error between
the intermediate result and the measured data is calculated.
After several iterations, rows with a low error are kept, while
those with a higher error may be discarded. Discarding ques-
tionable data is no big loss since spectrograms are overdeter-
mined. By this procedure, VAMPIRE is not only guaranteed
to converge, but the convergence time is reduced drastically
with respect to the commonly used PCGP algorithm �6,13�.
At this point one arrives at an array of complex values
G�� ,��exp	i�	�� ,��+C����
. In a second step one can re-
trieve the spectral phase functions 	gate��� and 	probe���
from this array. This step has been proven to yield unam-
biguous, unique results �12�. The arbitrary phases C��� can
be eliminated in this step; only constant and linear phase
terms �corresponding to absolute phase and time� trivially
remain undetermined. Finally, the complex temporal struc-
ture is obtained in a straightforward fashion by Fourier trans-
form.

The key feature of VAMPIRE is that it is not thwarted by
zeros in the temporal or spectral power profile. This sets it
apart from previous art and makes it the natural choice for
situations as described here.

PHASE RETRIEVAL: IMPLEMENTATION

We successfully use a gate pulse which is derived from
the unused output of the Mach-Zehnder pulse-splitting inter-
ferometer mentioned above. At this secondary output we
have a double pulse, and whenever the first output provides
antiphase pulse pairs, the secondary output gives in-phase
pulse pairs. We send the signal from the secondary output
through an auxiliary fiber which serves the double purpose of
conditioning filter and delay line. As a delay line, the auxil-
iary fiber ensures that the signals to be cross-correlated arrive
simultaneously. For pulse shaping, it is composed of one
segment of fiber with positive �2 followed by one segment of
fiber with negative �2. A full compensation of dispersion to
zero is not desired; rather, a well-chosen undercompensation

imparts a particular amplitude and phase profile character-
ized by a weakly chirped central main peak and strongly
chirped adjacent peaks. This power profile serves the pur-
pose of generating a noncentrosymmetric VAMPIRE spec-
trogram as required.

Both gate and probe pulses are noncollinearly focused
into a nonlinear crystal �beta-barium borate, �BBO��, which
is part of the cross-correlator setup. There is a variable tem-
poral delay, provided by a retroreflector mounted on the pe-
riodically moving membrane of a loudspeaker. The cross-
correlation signal is spectrally dispersed with a blazed
grating �1200 lines/mm� and focused onto the light-sensitive
element of an Apogee AP7 camera. This camera has a cooled
CCD chip of 512
512 square pixels of 24 �m pitch. We
adjust so that the spectral direction of the VAMPIRE spec-
trogram is imaged along pixel rows. We then disperse the
temporal direction along pixel columns by deflecting the
beam with a mirror mounted on a galvanometer scanner
�G115, General Scanning, Inc.� which is driven in synchro-
nism with the loudspeaker. It turned out to be difficult to
have the images from forward and backward scanning fall
onto each other with precision, so we blocked the beam dur-
ing the backward scan with a mechanical shutter �not shown
in Fig. 1�.

Different delays between the gate and probe pulses pro-
duce characteristic spectra on different rows of the CCD. In
the interest of scan linearity, we overdrive the scan range so
as to overfill the CCD; this way only the central portion of
the sinusoidal motion is used. A complete scan �of which
�30 are taken in a second� maps out a complete 2D image,
the VAMPIRE spectrogram as discussed above. The com-
plete information about the complex structure of both probe
and gate pulses �signal and reference� is contained in the
VAMPIRE spectrogram, waiting to be properly decoded.

For the sake of fair comparison we also recorded conven-
tional SHG FROG signals with the same setup after convert-
ing from cross-correlation as described here to autocorrela-
tion, basically by flipping a beam-steering mirror �see Fig.
1�.

Projecting all image data onto the temporal axis or fre-
quency axis produces the time or spectral marginal, respec-
tively; these can be useful for calibration and checks. It is
necessary to conduct a precise calibration of the spectro-
gram. A calibration of the spectral axis was done by record-
ing a double pulse SHG FROG spectrogram and adjusting
the positional offset and scale factor of its frequency mar-
ginal to that of the self-convolution of the independently
measured probe pulse spectrum. �If the two do not compare
well, the particular data set is discarded�. For a calibration of
the delay axis a stack of thin glass plates is used, mounted
together like a stair so as to provide a stepped thickness.
Upon its insertion, a series of equidistant replicas of some
test pulse is produced on the camera. This series allows an
assessment of scale and nonlinearity of the axis, and based
on this information, remaining temporal nonlinearity is re-
moved. Finally, the calibrated image needs to be clipped to
512
512 pixels again so that the digitization steps in tem-
poral and spectral domain ��� and ��, respectively� fulfill
the constraint of ��=2� / �512���.
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COMPARISON OF SHG-FROG AND VAMPIRE

We recorded a number of spectrograms for each SHG
FROG and VAMPIRE. SHG FROG spectrograms were
evaluated with a standard commercial reconstruction algo-
rithm �14� and VAMPIRE spectrograms as described above.

SHG FROG was less than successful: The algorithm
tended to stagnate due to inherent nontrivial ambiguities
�12�. When SHG FROG provided a reconstruction, it was
often demonstrably misleading. A typical example is shown
in Figs. 2�a� and 2�b�. From the independently recorded
spectrum we know that there ought to be a central zero,
whereas SHG FROG in this case provides a central maxi-
mum. Similarly, the temporal profile is just wrong because it
does not at all show the central phase jump.

In contrast, phase retrieval using VAMPIRE consistently
produced the correct result. Figures 2�c� and 2�d� show the
result for the same experimental situation as in Figs. 2�a� and
2�b�. It is evident that both the phase jump and the correct
position of zeros are reproduced well. Also, the parabolic
phase around the power maxima comes out much clearer.

INFORMATION OBTAINED ON SOLITON
MOLECULES

In Fig. 3, a measured VAMPIRE spectrogram is shown
together with the temporal power and phase profile recon-
structed from it. The initial pulse parameters have been cho-
sen so that soliton molecule formation is possible: An an-
tiphase double pulse �initial separation �in=530 fs, pulse pair
energy 142 pJ� was launched into the fiber line. The data
shown represent an average over 10 s exposure time in order
to ensure a good signal-to-noise ratio. Care was taken to
ensure that parameters were held constant during measure-
ment.

In order to investigate the molecule’s stability with re-
spect to parameter variations, and to obtain further insight
into the binding mechanism, we varied the initial launch
separation �in from 0.5 ps to 1.5 ps corresponding to 2–6
pulse widths. Phase and power profiles were extracted for
each case. Selected results are shown in Fig. 4.

Two vertical dashed lines in the figure denote the soliton
molecule’s equilibrium separation �out=0.55 ps. This separa-

tion is found after propagation if �in is within a certain range,
as exemplified by the traces for �in=0.53 ps and �in
=0.77 ps. This is indicative of the stability of the equilibrium
separation in the molecule. A pulse pair with a significantly
larger initial separation of �in=1.20 ps, however, falls out-
side the capture range for soliton molecule formation. Note
that in this case �solid trace� secondary peaks, or at least
shoulders, appear at the point of the soliton molecule’s equi-
librium distance; these have not been predicted or reported
before. We will argue that they are indeed to be expected,
and that they provide direct insight into the phase structure
of the soliton molecules.

CHIRP PRODUCES SECONDARY PEAKS

Chirp is easy to describe in very simple cases: In
constant-dispersion fiber, solitons are unchirped. In
dispersion-managed fiber, their chirp oscillates periodically
around zero, with a chirp-free point located at every half-
segment �18�. A similar statement holds for soliton mol-
ecules. Here, however, we do not restrict ourselves to such
simple cases. Rather, propagation of solitons and soliton
molecules is subject to splice loss, deviation in pulse shape,
mild initial chirp, and different peak powers. At the end of
the fiber line we therefore consistently find a considerable
chirp in the pulses.

It is a very good approximation to consider dispersion-
managed solitons as linearly chirped Gaussian pulses
�19,20�. Indeed, we confirmed, in independent measurements
not described in detail here but following the same proce-
dures as spelled out above, that individual pulses both from
the laser and after fiber propagation are well described by a
linearly chirped Gaussian pulse. It is therefore appropriate to
treat our double pulses as a superposition of two such Gauss-
ian pulses as shown in Fig. 5. The situation of unchirped

FIG. 3. Example of a characterization of soliton molecules using
VAMPIRE. �a� Measured VAMPIRE spectrogram after calibration
and linearization as described in the text. �b� Power and phase pro-
file reconstructed from �a�. The double-peaked structure with a
phase jump of � at the central zero power point, characteristic for a
soliton molecule, is clearly evident.

FIG. 4. Typical pulse shapes as reconstructed with VAMPIRE at
the end of the fiber line. For values of �in in the range of 0.53 ps
and 0.77 ps, the pulse shapes at the end of the fiber are nearly the
same; �out�0.55 ps �dashed vertical lines�. If �in is larger
�1.20 ps�, the main peaks remain at a larger spacing. Note, however,
that secondary peaks appear at �out�0.55 ps instead.
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pulses �Fig. 5�a�� is particularly easy to understand, but Fig.
5�b� shows that for linearly chirped pulses one expects addi-
tional structure in the region of overlap: Constructive inter-
ference leads to a local increase of power which takes the
form of secondary maxima.

This is exactly what we find in our measurements: Figure
5�c� shows another pulse shape reconstructed with VAM-
PIRE where the launch separation was several times larger
than the equilibrium distance ��in�4�FWHM�. Both the posi-
tion and the height of the secondary peaks agree with the
prediction from this model. This strongly suggests that the
concept shown in Fig. 5�b� is adequate.

INTERPRETATION

Since the prediction �2� and first observation �3� of inter-
action forces between solitons, the case of unchirped pulses
in fibers with constant dispersion is well understood. The
interactive force depends on the relative phase because con-
structive �destructive� interference produces an intensity en-
hancement �reduction� which implies an increase �decrease�
in local index perturbation by the Kerr effect. Weighting by
power at each location in the interaction regime, one obtains
as a result that in-phase structures attract, and out-of-phase
structures repel, while the overall magnitude of the effect
decays with separation of the pulses exponentially, like the
power decay in the pulse tails.

We can now apply the same concept to chirped pulses by
looking at the phase relation locally. For each position within
the pulse pair one gets an interacting force; the overall net
effect is found by integration over the whole structure. The
net effect can be expected to depend on the pulse pair sepa-
ration, the pulse width, and the actual chirp. Mollenauer and
Gordon have performed this calculation �4� and find that
there is net repulsion �attraction� for separations smaller

�larger� than a certain equilibrium distance. This implies a
stable equilibrium value. Of course, both the values of all
forces and the position of this equilibrium oscillate during
propagation in the dispersion map, but another integration
provides the path average. Indeed they find a path average
pulse separation at which there is a stable equilibrium. This
corroborates our numerical and experimental results in �1�.
Obviously, this simple model has all necessary ingredients to
explain the existence of an equilibrium separation, and thus a
stable bond between solitons.

However, in our present context the situation is more in-
volved. In the presence of losses, the oscillation of pulse
shapes �width, chirp� is not necessarily periodic with the map
period. We numerically find situations in which the position
of the chirp-free point is not fixed at midsegment, but gradu-
ally walks through the map period. Obviously, the configu-
ration of the best stability of the soliton molecule would be
obtained when this does not happen; in other words, when
the molecule is stroboscopically invariant.

We also know from numerical studies that the chirp in the
stroboscopically invariant case is not sufficient to produce
the secondary maxima described above. We therefore con-
clude that longer fiber lines �with loss compensation� would
be required to truly differentiate between the fully stable case
and the nearly stable situations which appear to be stable in
the relatively short fiber line used here.

CONCLUSIONS

It is highly nontrivial to measure the full amplitude and
phase profile of complex pulse shapes, in particular when
they contain zeros in either temporal or spectral profile,
or—as in our case—both. We have shown that conventional
SHG FROG does not provide a correct reconstruction; at the
same time we could demonstrate that the technique called
VAMPIRE is successful.

FIG. 5. Comparison of schematic representation and measurement for double pulses generated from superposition of two equal Gaussian
pulses. Shown are power �solid� and phase �dashed� profiles. �a� Sketch for the case of two unchirped pulses. Thin lines represent pulses
individually; heavy lines represent superposition. Note the constant phases and their resultant �shifted away vertically for clarity�. This gives
a power profile featuring a central zero with a phase jump of �. �b� Sketch as in �a� but now the pulses are linearly chirped. The phase
profiles are parabolic as indicated. Since phase is determined only modulo 2�, one of the parabolas is repeated with a shift of 2�.
Constructive interference occurs where parabolas intersect; destructive interference occurs halfway between. Secondary peaks form in the
power profile at the locations of constructive interference. �c� Actual measurement, reconstructed with VAMPIRE and to be compared with
�b�. Quadratic phase functions have been fitted �thin dashed lines� to the reconstructed phase function �heavy dashed line�; one of the fits was
duplicated with a shift of 2�. The fit is very satisfactory. Secondary peaks appear at the points of constructive interference as described
in �b�.
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With VAMPIRE the phase profiles of double peaked pulse
shapes were consistently retrieved with success, and gave us
useful, previously inaccessible phase information about soli-
ton molecules. At the same time, soliton molecules present a
challenge to reconstruction techniques, and VAMPIRE was
shown to be successful. Very recently, a mathematical theory
was put forward from which the power and phase profiles of
soliton molecules can be calculated �21�. This model predicts
the existence of a second stable position. We suspect that this

finding may be related to the secondary maxima we find in
the power profiles. Further research along this line is under
way.
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