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We demonstrate, both theoretically and experimentally, how to acquire nonlinear control over the angular
momentum of a cluster of solitary waves. Our results, stemming from a universal theoretical model, show that
the angular momentum can be adjusted by acting on the global energy input in the system. The phenomenon
is experimentally ascertained in nematic liquid crystals by observing a power-dependent rotation of a two-
soliton ensemble.
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I. INTRODUCTION

Angular momentum �AM� is a fundamental quantity, the
importance of which has been highlighted in almost all areas
of the physical sciences. Evidence of its role is found at the
inception of the Universe: although the distribution of galax-
ies, stars, and planets is still a puzzle in astrophysics, it ap-
pears that an initial angular momentum in the early Universe
prevented cluster-sized clouds from collapsing into a series
of black holes—i.e., with no planets to support life �1–7�. In
both classical and quantum mechanics, angular momentum is
at the basis of rotational dynamics; hence, AM governs the
behavior of important processes such those arising from fluid
motion �e.g., initiation of cyclones �8� and fluctuations in the
length of a day �9,10��, statistical complexes of rotating mol-
ecules �11�, quantum optics �12�, and quantized particle en-
sembles. In the latter area, research has been mostly con-
ducted in two major directions of investigation: �i� the
revolution of trapped particles by their interaction with clas-
sical fields carrying angular momentum, fostering nanotech-
nological applications such as rotors or more complex ma-
chines powered by light �13–17�, and �ii� the preparation of
energy packets in well-defined AM states, with implications
for both fundamental physics �18,19� and quantum informa-
tion systems �20,21�.

However, despite the importance of AM in physics and
the vast literature on the subject, neither methods to nonlin-
early control AM been proposed nor thorough studies been
carried out on the effect of nonlinearity on the angular mo-
mentum of a specific system. Conversely, great attention has
been devoted in the past few years to solitons and solitary
waves. Such waves are ubiquitous and rely on the balance
between wave-packet dispersion �spreading� and nonlinearity
�22�. Following the pioneering numerical experiments by
Fermi, Pasta, and Ulam �23,24�, the universal concept of
solitons has acquired importance in several sciences, includ-
ing biology �25�, hydrodynamics �22�, plasma physics �26�,
ultracold atoms �27,28�, optics �29–31�, gravitation �31�, and
beyond �32�. By virtue of their robustness, solitons have po-
tentials in applications—from optical telecommunications to

atomic interferometry in Bose-Einstein condensates
�BECs�—and are the subject of vigorous theoretical studies
�33–35�. Recently, the interactions between two-dimensional
deterministic soliton clusters have attracted interest, encom-
passing a wealth of dynamics ranging from wave filamenta-
tion �36,37�, to spinning �38� and spiraling �39–43�. Up to
date, however, studies have focused on either specific non-
linear models or particular input wave forms �36,39,42,43�,
or on one-dimensional �1D� stochastic dynamics �44�; none
of them discussed the role of excitation on the dynamics of a
two-dimensional multisoliton ensemble.

In this paper, by employing a rather universal model for
the theory and a nonlocal dielectric for the experiments, we
investigate the behavior of a cluster of �2+1�D optical soli-
tons, demonstrating a nonlinear approach for the control of
its angular momentum. For the sake of simplicity but with no
prejudice as to its general validity, we develop the analysis in
the simplest case of a two-soliton cluster, starting from first
principles and employing the language of symmetries �45�.
The results of our approach are twofold.

�i� We demonstrate that the angular momentum of a soli-
ton cluster exhibits a linear dependence on the nonlinear re-
sponse; hence, it can be precisely managed by varying the
input power.

�ii� The AM can be measured from the global revolution
of the cluster which, for a fixed propagation distance,
evolves linearly with excitation.

We check the theoretical results both numerically, by per-
forming a series of �2+1�D simulations in nonlinear nonlo-
cal media, and experimentally, by employing nematic liquid
crystals �NLCs�, nonlocal material known to support stable
�2+1�D soliton waves �46–50�. The article is organized as
follows: Section II collects our theoretical activity, including
our symmetry-based analysis �Sec. II A�, analytic results
�Sec. II B� and numerical simulations �Sec. II C�, whereas
Sec. III illustrates our experiments in NLCs.

II. MODEL

A. Symmetry-based analysis

We build a general model of nonlinear wave propagation,
stemming from conservation laws and variational symme-
tries �as there is a one-to-one correspondence between them
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�45�� and considering a generic isolated medium with trans-
lational and rotational invariance. The medium exhibits an
optical response nonlinear with the wave intensity; hence, it
enforces the conservation laws of momentum �M�, angular
momentum �A�, Hamiltonian �H�, and energy flux �W�, re-
spectively. Such a nonlinear model is derived by defining a
suitable action integral I=�d2rdzL, the Lagrangian of which
supports the variational symmetries originated by the basis
of Lie generators �we adopt Einstein’s summation over re-
peated indices�:

v1 = �/�x ,

v2 = �/�y ,

v3 = �/�z ,

v4 = x�/�y − y�/�x ,

v5 = i���/��� + c.c., �1�

with r= �x ,y�, z being dimensionless coordinates and �� the
dimensionless wave function of the �th wave packet ��
� �1,2� in this work�. A general form for the Lagrangian L is
as follows:

L =
1

2
�i��

* ���

�z
+ c.c.� −

1

2
� ���

* � �� +
1

2
����2���

� ����2, �2�

��� being a Hermitian tensor, � ,�� �1,2�,
�= �� /�x ,� /�y�, and � a convolution operator defined as

f � g =	 	 d2r�f�r� − r�g�r�� . �3�

The general character of the Lagrangian �2� can be proven
from the Euler-Lagrange equations of motion, which read

i
���

�z
+

1

2
�2�� + ����� � ����2 = 0. �4�

The linear portion of Eq. �4� is Schrödinger like and de-
scribes the universal wave propagation in dispersive media
�51�; the nonlinear portion ���� � ����2� can model both
local—i.e., for ����r�=c����r�—�29� and nonlocal
�27,48,52� nonlinear responses. By construction, the La-
grangian �2� admits the symmetries generated by vi �i
=1, . . . ,5�; hence, Eq. �4� possesses the following integrals
of motion:

M =	 	 d2r�i��
* � �� + c.c.� , �5�

H =
1

2
	 	 d2r�����2��� � ����2 − ���

* � ��� , �6�

A =	 	 d2r�r � �i��
* � �� + c.c.�� , �7�

W =	 	 d2r����2. �8�

The conserved quantities �5�–�8�, together with the diver-
gence form of Eq. �8�,

�

�z
�����2� = ��i��

* � �� + c.c.� , �9�

allow us to generalize the Ehrenfest theorem. With reference
to Eq. �4�, it can be cast in the form

�

�z

���r���� = 
���p���� ,

�

�z

���p���� = 
���������� , �10�

with p=−i� being the momentum operator, ��=���

� ����2 and 
f� �a��=��d2rf�
*g� the inner product defining

the space metric. Equations �10� are a generalization of mod-
els either obtained in local media �39,43,53� or derived in
one dimension �44�. Out of the whole spectrum of solutions
to Eq. �4�, we are interested in the evolution of a nonlinear
cluster, the solitary “particles” �solitons� of which are found
as invariant solutions of Eq. �4� �written for �=�� with re-
spect to the global symmetry group generated by

v = v3 + v4 − x�v1 + y�v2 + �v5. �11�

Then the method of characteristics �45� yields the functional
form of each solitary wave:

���r;z� = ���r − r���exp�i�z� , �12�

with ���r−r� � � being a complex envelope and �x� ,y��=r�

= 
���r���� /��d2r����2 the soliton “center of mass.” It is
worth remarking that the term “particle” is correct as long as
the solitons do not overlap: the intrinsic nonintegrable nature
of Eq. �4�, in fact, does not assure the isospectrality �54� of
the cluster evolution—i.e., the fact that after collision�s� the
soliton ensemble evolves with a constant number of wave
packets. However, if solitons do not overlap, it is possible to
assume that the effects of the interaction terms ���� � ����2
for ���� do not affect their functional form but only their
phase � or their center of mass r�. Otherwise stated, we
assume an “adiabatic” regime of interaction, using the term
adiabatic as in the context of soliton perturbation theory:
when the perturbation terms are small and out of resonance;
hence, the deformation of the soliton may appear only
through the soliton parameters such as the amplitude and
velocity, and the balance between nonlinearity and dispersion
is given by an adiabatic relation �see �55� Chap. 5, p. 75�.
Such a hypothesis allows us to cast Eq. �10� in a potential
form. By substituting Eq. �12� into Eq. �10�, after some
straightforward algebra, we obtain
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m
�2q

�z2 + �qU�q� = 0 , �13�

with q=r1−r2= �qx ,qy�, m=��d2r����2 the soliton “mass,”
�q= �� /�qx ,� /�qy�, U�q�=−�U12�q�+U21�q��, and the pair-
interaction potential

U�� =	 	 d2r�����r� + q���2����r���, � � � . �14�

It is worth remarking that the only hypotheses in deriving
Eqs. �13� and �14� is an adiabatic regime of soliton interac-
tions. Equations �5�–�12�, in fact, are rigorous.

B. Theoretical results and discussion

Equation �13� defines the motion of a classical mass point
�of mass m� subject to the nonlinear pairwise potential �14�.
The Lagrangian density of Eq. �13� is

L = q̇q̇/2 − U�q� �15�

and admits variational symmetries generated by the basis

v1 = �/�z ,

v2 = qx�/�qy − qy�/�qx, �16�

the latter originating — through Noether’s theorem — the
conservation laws of energy E and angular momentum L,
respectively:

E = m
q̇q̇

2
+ U�q� , �17�

L = mq � q̇ . �18�

Noticeably, Eq. �18� states that �i� the angular momentum is
conserved, and hence it is controlled by the input conditions,
and �ii� the angular momentum depends linearly on the soli-
ton “mass” m.

As a result, a change in the soliton global power
��d2r���2=��d2r���1�2+ ��2�2� leads to a linear variation of
AM, provided the adiabatic condition �i.e. Eqs. �12�–�17�� is
fulfilled. To measure the AM observable, hereby we develop
an original method by exploiting soliton spiraling. Such dy-
namics occurs when the initial momentum q̇�0�= ṙ1�0�
− ṙ2�0� balances the attractive force provided by the bound
potential U�q� �39�, resulting in a rigid rotation of the
�two-� soliton ensemble with constant separation d and in-
variant angular velocity 	=L /M=�� /�z, � being the angle
spanned by q and M the “momentum of inertia” of the
classical system �13� �39,43�. Following a straightforward
integration of L /M=�� /�z, the soliton cluster revolves with
an angle � which, for a given z, evolves linearly with angular
momentum L. As a result, provided the adiabatic condition
remains valid, the revolution angle � of the soliton ensemble
is expected to increase linearly with soliton input power
Pin=��d2r���2.

FIG. 1. �Color online� Summary of numerical simulations: �a�
isosurface plot showing soliton spiraling for P=8, �b�–�d� soliton
output positions at different powers, and �e� output revolution angle
� versus power P. All simulations are performed for k0=2.75, y0

=4, and 
=14.

FIG. 2. �Color online� Sketch of the planar cell with nematic
liquid crystals: �a� front view, �b� top view, �c� side view, and �d�
perspective view. The ellipses indicate the molecular orientation
�optic axis� in the plane �y ,z�.
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C. Numerical simulations in nonlocal media

We numerically verify our analytical results by perform-
ing a series of �2+1�D nonlinear simulations from Eqs. �4�
in the general case of a material with a nonlocal response.
The latter is defined by employing a Gaussian kernel for the
Hermitian tensor ���:

��� =
1

�
2 exp�− r2/
2� , �19�

with 
 being the degree of nonlocality in the medium. Figure
1 summarizes our numerical results, obtained for 
=14 and
an input consisting of two Gaussian beams �± carrying op-
posite momenta along x:

�± =
�P

��	
exp�−

x2 + �y ± y0�2

	2 ± ik0x� , �20�

with global power P=��d2r��+�2+ ��−�2� �8,60�, 	=2, y0

=4, and initial momentum k0=2.75. The latter value was
chosen in order to observe soliton spiraling �Fig. 1�a��. As

expected, when the power P increases, the soliton particles
rotate �Figs. 1�b�–1�d�� with a revolution angle � linearly
depending on the excitation �Fig. 1�e��, in perfect agreement
with theory �Secs. II A and II B�.

III. EXPERIMENTS IN NEMATIC LIQUID CRYSTALS

We carry out experiments in a planar glass cell with a
100-�m-thick layer of planarly anchored liquid crystals E7
�Fig. 2�. The sample is similar to those previously employed
for the investigation of accessible solitons in highly nonlocal
media �48�, but with a preorientation �0
� /6 with respect
to z in the �y ,z� plane to make the voltage bias unnecessary
�56�. We perform the experiments with a near-infrared �

=1.064 �m� cw source and high-resolution silicon charge-
coupled-device cameras for imaging both the soliton propa-
gation in �y ,z� and their output transverse positions or pro-
files. We launch two extraordinary-wave Gaussian beams to
generate solitons with opposite momenta along x, compen-
sating for the walk-off in �y ,z� by input wave-front tilts. The
input momenta are chosen in order to achieve soliton spiral-
ing within the bulk of the sample.

Our experimental results are illustrated in Fig. 3, showing
images of light propagating in �y ,z� �Figs. 3�a�–3�d�� and
output intensity profiles in �x ,y� �Figs. 3�a�, 3�b�, 3�e�, and
3�f�� as the excitation Pin increases. In agreement with both
analytical and numerical predictions, as the power changes
from 2.1 �Figs. 3�a� and 3�e�� to 3.9 mW �Figs. 3�c�, 3�d�,
3�g�, and 3�h��, the AM of the soliton cluster changes as
well, as demonstrated by the rotation of 
180° in the output
plane �Figs. 3�e� and 3�h��. Remarkably enough, each soliton
profile evolves nearly unmodified �Figs. 4�a�4�b�� and the
rotation angle � is linear with power �Fig. 4�c��, demonstrat-
ing the nonlinear control over the overall angular momen-
tum. Owing to the giant nonlinear response of NLC, the
resulting sensitivity �� /�Pin=0.5� �rad� /mW is quite large.

IV. CONCLUSIONS

Stemming from first principles and with no specific as-
sumptions on the dielectric response, we theoretically dis-
closed an original method to gain nonlinear control over the
angular momentum of a cluster of �two� spatial solitons.
Such nonlinear management of the soliton-interaction poten-
tial is a remarkable example of all-optical control over light-

FIG. 4. �Color online� �a�,�b� Output spot size w of the two
solitons normalized to w0=w�2.1 mW� and �c� revolution angle �
versus input power Pin.

FIG. 3. �Color online� Experi-
mental results: �a�,�b�,�e�,�f� evo-
lution in the plane �y ,z� and
�c�,�d�,�g�,�h� output intensity pro-
files of the two-soliton cluster for
increasing input powers Pin

=2.1, 2.7, 3.3, and 3.9 mW. The
borders of the NLC cell are indi-
cated with by solid lines in
�c�,�d�,�g�,�h�.
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induced guided-wave interconnect. The theoretical findings
were verified against both numerical and actual experiments
in a nonlocal dielectric—namely, nematic liquid crystals—
using a cluster of two nonlocal spatial solitons with unprec-
edented power-dependent revolutions as large as 500� /W.
Due to the general character of the model we derived, our
findings might allow some progress in other areas where
solitons are actively investigated, such as plasma physics and
Bose-Einstein condensates. We also envision the possibility

of novel applications in soliton-based nonlinear optics.
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