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Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and
numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law �Lévy�
distributed fluctuations depending on external control parameters. In the Lévy regime, the output pulse is
highly irregular leading to huge deviations from a mean-field description. Monte Carlo simulations of a
simplified model which includes the population of the medium demonstrate the two statistical regimes and
provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain
recent experimental observations reported in the literature.
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I. INTRODUCTION

Optical transport in disordered dielectric materials can be
described as a multiple scattering process in which light
waves are randomly scattered by a large number of separate
elements. To first approximation this gives rise to a diffusion
process. The propagation of light waves inside disordered
dielectric systems shows several analogies with electron
transport in conducting solids �1� and the transport of cold
atom gases �2�. A particularly interesting situation arises
when optical gain is added to a random material. In such
materials light is multiply scattered and also amplified. They
can be realized, for instance, in the form of a suspension of
microparticles with added laser dye or by grinding a laser
crystal. Optical transport in such systems is described by a
multiple scattering process with amplification.

If the total gain becomes larger than the losses, fluctua-
tions grow and these systems exhibit a lasing threshold. The
simplest form of lasing in random systems is based on dif-
fusive feedback �3� where a diffusion process traps the light
long enough inside the sample to reach an overall gain larger
then the losses. Interference effects do not play a role in this
form of random lasing. Diffusive random lasing has been
observed in various random systems with gain, including
powders, laser dye suspensions, and organic systems �4–8�.
The behavior of such a system shows several analogies with
a regular laser, including gain narrowing, laser spiking, and
relaxation oscillations �5,9�. Reports in literature of complex
emission spectra from random lasers containing a collection
of spectrally narrow structures �10–12� have triggered a de-
bate about the possibility of lasing of Anderson localized
modes in random systems �10�. Although Anderson localized
modes can, in principle, form very interesting laser resona-
tors in a gain medium �13,14�, there has been no experimen-
tal evidence to date of random lasing and localization in the
same three-dimensional �3D� random sample. In general, the

observed spectra can be understood via a multiple scattering
description based on the amplification of statistically rare
long light paths that does not require localization or even
interference �15�. These emission spectra exhibit a strongly
chaotic behavior, related to the statistical properties of the
intensity above and around the laser threshold.

Theoretical descriptions of light transport in amplifying
disordered media and random lasing have been based so far
on a diffusive mechanism �9,16,17�, using, for instance, a
master-equation approach �18�. To accommodate the exis-
tence of localization related effects in the diffusion regime,
“anomalously localized states” have been proposed �19–24�.
Other attempts to describe random lasing include Monte
Carlo simulations �25,26�, finite difference time domain cal-
culations �27�, and an approach using random matrix theory
�28�. A common feature of these studies is that the statistical
properties of a disordered optical system change with the
addition of optical gain. Random lasers were found to ex-
hibit, for instance, strong fluctuations of their laser threshold
�29,30�. It was also proposed that such systems can exhibit
Lévy type statistics in the distribution of intensities �31�.

In this paper we report on a detailed study of the statisti-
cal fluctuations of the emitted light from random amplifying
media, using both general theoretical arguments and results
from numerical studies. We find that the characteristic scales
of the diffusive motion of photons lead to Gaussian or
power-law �Lévy� distributed fluctuations depending on ex-
ternal parameters. The Lévy regime is limited to a specific
range of the gain length, and Gaussian statistics is recovered
in the limit of both low and high gain. Monte Carlo simula-
tions of a simplified model which includes the medium’s
population, and parallel processing of a large number of ran-
dom walkers, demonstrate the two statistical regimes and
provide a comparison with dynamical rate equations.

In Sec. II we present some general arguments to explain
the origin of the Lévy statistics in random amplifying media.
In addition, we discuss the possibility of observing different
statistical regimes. To check the validity of the proposed gen-
eral scenario, we define a simple stochastic model that is
suitable for numerical simulations �Sec. III�. The rate equa-*Electronic address: stefano.lepri@isc.cnr.it
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tion corresponding to its mean-field limit are introduced in
Sec. IV. The results of Monte Carlo simulations are presented
in Sec. V and discussed in the context of experimental results
in the concluding section.

II. STATISTICS OF THE EMITTED LIGHT

Let us consider a sample of optically active material
where photons can propagate and diffuse. Our description is
valid in the diffusive regime, hence we assume here that � is
smaller than the mean-free path � �����. The origin of the
Lévy statistics can be understood by means of the following
reasoning. Spontaneously emitted photons are amplified
within the active medium due to stimulated emission. Their
emission energy is exponentially large in the path length l,
i.e.,

I�l� = I0 exp�l/�G� , �1�

where we have introduced the gain length �G. On the other
hand, the path length in a diffusing medium is a random
variable with exponential probability distribution

p�l� =
exp�− l/�l��

�l�
, �2�

where �l� is the average length of the photon path within the
sample. The path length depends on both the geometry of the
sample and the diffusion constant D. A simple estimate of �l�
can be provided by noting that for a diffusive process with
diffusion coefficient D, �l� is proportional to the mean first-
passage time yielding �32�

�l� =
v

D�
, �3�

where v is the speed of light in the medium and � is the
smallest eigenvalue of the Laplacian in the active domain
�with absorbing boundary conditions�. For instance, �=q2

with q=� /L for an infinite slab or a sphere with L being the
thickness or the radius, respectively �3�.

The combination of Eqs. �1� and �2� immediately provides
that the probability distribution of the emitted intensity fol-
lows a power law

p�I� =
�G

�l�
I−�1+��, � =

�G

�l�
. �4�

Obviously the heavy tail in Eq. �4� holds asymptotically and
the distribution should be cut off below some value Ic. The
properties of the Lévy distribution �more properly termed
Lévy stable� are well-known �33�. The most striking one is
that for 0���2 the average �I� exists but the variance �and
all higher-order moments� diverges. This has important con-
sequences on the statistics of experimental measurements,
yielding highly irreproducible data with lack of self-
averaging of sample-to-sample fluctuations. On the contrary,
for ��2 the standard central-limit theorem holds, and fluc-
tuations are Gaussian.

The gain length �G is basically controlled by population
inversion of the active medium. Increasing the latter, �G and

the exponent � �see Eq. �4�� decrease thus enhancing the
fluctuations. At first glance, one may thus infer that the larger
the pumping, the stronger the effect. On the other hand, �G is
a time-dependent quantity that should be determined self-
consistently from the dynamics. Indeed, above threshold the
release of a huge number of photons may lead to such a
sizable depletion of the population inversion to force �G to
increase. It can then be argued that when the depletion is
large enough, the Lévy fluctuations may hardly be detect-
able.

To put the above statements on a more quantitative
ground we need to estimate the lifetime of the population as
created by the pumping process. Following Ref. �3�, we
write the threshold condition as

r = v/�G − D� � 0, �5�

which is interpreted as “gain larger than losses,” the latter
being caused by the diffusive escape of light from the
sample. Note that the condition r=0 along with Eqs. �3� and
�4� implies �=1 at the laser threshold.

For short pump pulses, the time necessary for the intensity
to become large is of the order of the inverse of the growth
rate r. When this time is smaller than the average residence
time within the sample �l� /v, a sizable amplification occurs
on average for each spontaneously emitted photon, leading to
a strong depletion of the population inversion. In this case
we expect a Gaussian regime where a mean-field description
is valid. The conditions for the Lévy regime are therefore
1/r� �l� /v and ��2 and can be written as

1

2

v
D�

� �G � 2
v

D�
. �6�

Note that the lower bound of the above inequalities corre-
sponds to �=1/2.

Without losing generality and for later convenience, let us
focus on the case of a two-dimensional infinite slab of thick-
ness L. In Fig. 1 we graphically summarize Eq. �6� by draw-
ing a diagram in the �L ,�G� plane. This representation allows
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FIG. 1. �Color online� Different statistical regimes of fluctua-
tions of a random laser with a two-dimensional slab geometry of
thickness L. For comparison with the simulations reported below,
all quantities are expressed in dimensionless units �=1, v=1. The
symbols correspond to the parameters of Fig. 2.
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one to locate three different regions corresponding to differ-
ent statistics. For convenience, the line corresponding to the
threshold �=1 is also drawn. The three regions of statistical
interest displayed in Fig. 1 are

�1� subthreshold Lévy: weak emission with Lévy statistics
with 1���2 �shaded region in Fig. 1 above the laser
threshold line�;

�2� suprathreshold Lévy: strong emission with Lévy sta-
tistics with 1/2���1 �shaded region in Fig. 1 below the
laser threshold line�; and

�3� Gaussian: ��1/2 strong emission with Gaussian sta-
tistics, ��2 weak emission with Gaussian fluctuations.

Note that the first region corresponding to a nonlasing
state should display anomalous fluctuations as “precursors”
of the transition. It should be also emphasized that the
boundary between Lévy and Gaussian statistics is not ex-
pected to correspond to a sharp transition �as displayed in
Fig. 1� but rather to a crossover region.

III. NUMERICAL MODEL

In order to provide evidence of the theoretical consider-
ations presented in Sec. II, we introduce a general, yet easy
to simulate, model of random lasing. We consider a sample
partitioned in cells of linear size �. Specifically, we deal with
a portion of a two-dimensional square lattice. Thus the center
of each cell is identified by the vector index r= �x ,y�, with
x ,y integers. In the following we will deal with a sample
with a slab geometry, i.e., 1�x�L, 1�y�RL. The total
number of lattice sites is thus RL2 where R defines the slab
aspect ratio. Periodic boundary conditions in the y direction
are assumed.

Within each cell we have the population N�r , t� of excita-
tions. We consider a hypothetical three-level system with fast
decay from the lowest laser level. If the population in the
latter can be neglected we can identify N as the number of
atoms in the excited state of the lasing transition.

Isotropic diffusion of light is modeled as a standard ran-
dom walk along the lattice sites. The natural time unit of the
dynamics is thus given by 	t=� /v. We choose to describe
the diffusion dynamics in terms of a set of M walkers each
carrying a given number of photons n1 , . . .nM. This may be
visualized as an ensemble of “beams” propagating indepen-
dently throughout the sample. Each of their intensities
changes in time due to processes of stimulated and sponta-
neous emission. A basic description of those phenomena can
be given in terms of a suitable master equation �18,34� that
would require one to take into account the discrete nature of
the variables. To further simplify the model we consider that
the population and number of photons within each cell are
large enough for the evolution to be well-approximated by
the deterministic equations for their averages. In other
words, the rate of radiative processes is much larger than that
of the diffusive ones and a huge number of emissions occurs
within the time scale 	t �35�. With these simplifications N
and n can be treated as continuous variables. Altogether
the model is formulated by the following discrete-time
dynamics:

Step 0: pumping. The active medium is excited homoge-
neously at the initial time, i.e., N�r ,0�=N0. The value N0

represents the pumping level due to some external source.
The initial number of walkers is set to M =0.

Step 1: spontaneous emission. At each time step and for
every lattice site a spontaneous emission event randomly oc-
curs with probability 
N	t, where 
 denotes the spontaneous
emission rate of the single atom. The local population is
decreased by one:

N → N − 1, �7�

and a new walker is started from the corresponding site with
an initial photon number n=1. The number of walkers M is
increased by one accordingly.

Step 2: diffusion. Parallel and asynchronous update of the
photons’ positions is performed. Each walker moves with
equal probability to one of its four nearest neighbors. If the
boundaries x=1, L of the system are reached, the walker is
emitted and its photon number nout recorded in the output.
The walker is then removed from the simulation and M is
diminished by one.

Step 3: stimulated emission. At each step, the photon
numbers ni of each walker and the population are updated
deterministically according to the following rules:

ni → �1 + 
	tN�ni,

N → �1 − 
	tni�N , �8�

where N is the population at the lattice site on which the ith
walker resides.

Stochasticity is thus introduced in the model by both the
randomness of spontaneous emission events �step 1� and the
diffusive process �step 2�. Note that the model in the above
formulation does not include nonradiative decay mechanisms
of the population. Furthermore, no dependence on the wave-
length is, at present, accounted for; in general 
=
���.

The initialization described in step 0 is a crude modeling
of the pulsed pumping employed experimentally. It amounts
to considering an infinitely short excitation during which the
sample absorbs N0 photons per cell from the pump beam. As
a further simplification we also assumed that the excitation is
homogeneous throughout the whole sample. More realistic
pumping mechanisms can be easily included in this type of
modeling. More importantly, as we are going to study the
time dependence of the emission, this type of scheme applies
to the case in which the time separation between subsequent
pump pulses is much larger than the duration of the emitted
pulse �i.e., no repumping effects are present�.

Steps 1–3 are repeated up to a preassigned maximum
number of iterations. The sum of all the photon numbers of
walkers flowing out of the medium at each time step is re-
corded. The resulting time series is binned on a time window
of duration TW to reconstruct the output pulse as it would be
measured by an external photon counter. This means that
each point is a sum over a large number of events. The com-
parison with ensemble-averaged results of the preceding sec-
tion is sensible under a suitable ergodicity assumption, i.e.,
that the statistics of a single pulse are the same as an en-
semble of independent realizations of the process.
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It should be emphasized that, although each walker
evolves independently from all the others, they all interact
with the same population distribution, which, in turn, deter-
mines the photon number distributions. In spite of its sim-
plicity, the model therefore describes these two quantities in
a self-consistent way.

For convenience, we chose to work henceforth in dimen-
sionless units such that v=1, �=1 �and thus 	t=1�. The only
independent parameters are then 
, the initial population N0
�i.e., the pumping level�, and the slab sizes L and RL.

IV. MEAN-FIELD EQUATIONS

Before discussing the simulation of the stochastic model it
is convenient to present some results on its mean-field limit.
When both the population and photon number are large we
expect the dynamics to be described by the rate equations for
the macroscopic averages. This means that, up to relatively
small fluctuations, the individual realization of the stochastic
process should follow the solution of �3,18�

Ṅ = − 
N�I + 1� , �9�

İ = D	I + 
N�I + 1� , �10�

where I�r , t� is the number of photons in each cell, 	 denotes
the two-dimensional discrete Laplacian, and D=1/4 in our
case.

For simplicity, let us consider the case of a laterally infi-
nite slab �R→�� in which both N and I depend on the x
coordinate only. Absorbing boundary conditions are im-
posed, I�0, t�= I�L+1, t�=0. The integration is started from
the same initial conditions of the stochastic simulations,
namely N�x ,0�=N0, I�x ,0�=0.

As a first remark, we note that the threshold condition �5�
applies to Eq. �10� upon identifying


N0 =
1

�G
, q =

�

L + 1
. �11�

We can thus define a critical value of the initial population
Nc=Dq2 /
. For N0�Nc the total emission is very low being
due to spontaneous processes that are only weakly amplified.
On the contrary, for N0�Nc strong amplification occurs: the
number of photons within the sample increases exponentially
in time at a rate given by Eq. �5�, r=
N0−Dq2=
�N0−Nc�.
After the pulse has reached a maximum and the population is
depleted, the emission decreases strongly. An estimate of the
decay time of the pulse is given by solving the linearized
equations around the stationary state N=0, I=0. A straight-
forward calculation yields that the long-time evolution is ap-
proximated by N�x , t�=Nq�t�sin�qx�, I�x , t�= Iq�t�sin�qx�
where

Nq�t� = A exp�− 
t� ,

Iq�t� = A



Dq2 − 

exp�− 
t� + B exp�− Dq2t� , �12�

with A and B being suitable time-independent amplitudes.

The above results have been checked by comparing them
with the numerical solution of Eqs. �9� and �10� obtained by
simple integration methods of ordinary differential equa-
tions. In particular, we checked that both the rise and fall
rates of the emission pulses �see the figures in the next sec-
tion� are consistent with the expected values of r and Eq.
�12�, respectively.

V. MONTE CARLO SIMULATIONS

In this section we report the results of the simulation of
the stochastic model. Preliminary runs were performed to
check that lasing thresholds exist upon increasing of either
the pumping parameter N0 and the slab width L. The values
are in agreement with the theoretical analysis presented
above. In addition, checks of relations �2� and �3� have been
performed.

As explained in Sec. III, we monitored the outcoming flux
�per unit length� � as a function of time. The results are
compared with the corresponding quantity evaluated from
Eqs. �10�. In this case, � is defined from the discrete conti-
nuity equation to be

� =
D

2
�I�1,t� + I�L,t�� . �13�

The factor 2 comes from taking into account the contribution
from the two boundaries x=0,L of the lattice.

The results of Monte Carlo simulation for a lattice with
L=30, R=20 �18 000 sites�, and 
=10−12 �yielding Nc
=2.5673
109� are reported in Fig. 2. The three chosen val-
ues of N0 are representative of the three relevant statistical
regions depicted in Fig. 1: they correspond to �G=500 �sub-
threshold Lévy�, �G=200 �suprathreshold Lévy�, and �G
=20 �Gaussian�, respectively �see the triangles in Fig. 1�. In
the first two cases, the total emission is highly irregular with
huge deviations from the expected mean-field behavior.
Above the lasing threshold �Fig. 1�b�� single events �“lucky
photons”� may carry values of ni up to 1010. The resulting
time series are quite sensitive to initialization of the random
number generator used in the simulation. On the contrary, in
the Gaussian case �Fig. 2�c�� the pulse is pretty smooth and
reproducible, except perhaps for its tails that, however, have
a much smaller relative intensity.

The evolution of the population N displays similar fea-
tures. We have chosen to monitor the volume-averaged popu-
lation

1

RL2�
r

N�r,t� �14�

normalized to its initial value for a better comparison. Figure
3 shows the corresponding time series for the same runs of
Fig. 2. Again, large deviations from mean field appear for the
first two values of N0. The inset shows that in correspon-
dence with large-amplitude events the population abruptly
decreases yielding a distinctive stepwise decay.

The nonsmooth time decay is accompanied by irregular
evolution in space. Indeed, a snapshot of N�r , t� reveals a
highly inhomogeneous profile �see Fig. 4�. Light regions are
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traces of high-energy events that locally deplete the popula-
tion before exiting the sample.

For the Gaussian case, Fig. 2�c�, similar considerations as
those made for the corresponding pulse apply. Note that now
the population level decays extremely fast. It reaches 10% of

its initial value at t�600 which is only twice the average
residence time within the sample. This means that photons
emitted after a few hundred time steps have hardly any
chance to be significantly amplified �i.e., �G has become too
large�.

To check directly the validity of the power-law distribu-
tion �4� we computed the histograms of the photon number
nout for each and every collected event during the whole
simulation run �i.e., the same time range as in Fig. 2�. The
result are given in Fig. 5 for three values of N0 for which the
Lévy distribution �4� is expected to occur. A clear power-law
tail extending over several decades is observed. Note that the
middle curve corresponds to the threshold value N0=Nc for
which we expect �=1. Remarkably, the values of the expo-
nents measured by fitting the data are in excellent agreement
with the definition of � �see inset of Fig. 5�. As predicted, no
meaningful value smaller than �=1/2 is obtained from the
data. It should be noted that we are dealing with a nonsta-
tionary process and the results may thus, in principle, depend
on the observation time. To check for a possible time-
dependence of the statistics, we considered a four-times
longer simulation for the case of Fig. 2�b� and divide the
resulting time series in four consecutive parts. Each of the
resulting histograms are almost indistinguishable confirming
that the underlying process is almost stationary at least on
this time scale.

Finally, to further elucidate the differences between the
two types of statistical regimes, we performed a series of
simulations increasing the number of lattice sites. For com-
parison, we kept L=30 fixed and increased the aspect ratio R
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FIG. 2. �Color online� The photon flux �per unit length� as a
function of time for a single shot, for N0=2
109 �a�; N0=5
109

�b�, and N0=50
109 �c�. Smooth red lines are the mean-field re-
sults, evaluated inserting the solutions of Eqs. �10� into Eq. �13�.
For both curves, data have been binned over consecutive time win-
dows of duration TW=10. Note the difference in the vertical-axis
scales.
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FIG. 3. �Color online� The normalized volume-averaged atomic
population as a function of time for a single shot and for the same
values of N0 as in Figs. 2�a�–2�c� �upper to lower curves, respec-
tively�. Solid lines are the mean-field results evaluated inserting the
solutions of Eqs. �10� into Eq. �14�. The inset shows a magnification
of the middle curves �case N0=5
109 of Fig. 2�b��.

FIG. 4. A grayscale plot of the atomic population distribution
along a portion of the lattice for t=105, N0=5
109. White regions
correspond to small values of N.
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up to a factor of 4. In this way, we increased the number of
walkers accordingly. For the Gaussian case, we did observe
the expected reduction of fluctuations around the mean-field
solution. On the contrary, the wild fluctuations of the Lèvy
case were hardly affected. This is a further confirmation of
the scenario discussed in Sec. II.

VI. DISCUSSION

Based on heuristic arguments, we have shown in Sec. II
that, depending on the value of the dimensionless parameter
D��G /v, the fluctuations in the emission of a random laser
subject to short pump pulses can be drastically different. In a
parameter region extending both above and below threshold,
the intensity fluctuations follow a Lévy distribution thus dis-
playing wild fluctuations and huge differences in the emis-
sion from pulse to pulse. In the suprathreshold case, such
features have been indeed observed in experiments �31�.
Some highly irreproducible emission with lack of self-
averaging and very irregular behavior has been also detected
�36�.

The exponent � of the Lévy distribution can be tuned
upon changing the pumping level but it must be somehow

bounded from below ���1/2� as a further crossover to a
Gaussian statistics is attained. Indeed, far above threshold,
when the gain length is very small, a large and fast depletion
of population occurs �saturation�. This hinders the possibility
of huge amplification of individual events. In this case all
photons behave in a statistically similar way. As a conse-
quence, the statistics are Gaussian and a mean-field descrip-
tion applies again.

The above considerations have been substantiated by
comparison with a simple stochastic model. It includes popu-
lation dynamics in a self-consistent manner. In the Lévy re-
gions, the simulation data strongly depart from the predic-
tions of the mean-field approximation due to the
overwhelming role of individual rare events. As a conse-
quence, the evolution of the population displays abrupt
changes in time and is highly inhomogeneous in space.

To conclude this general discussion we remark that the
width of the Lévy region as defined by inequalities �6� and
depicted in Fig. 1 is of order L2. Since in our simple model
�G is inversely proportional to the pump parameter �see Eq.
�11��, the interval of N0 values for which the Lévy fluctua-
tions occur shrinks as 1/L2. Therefore the larger the lattice,
the closer to threshold one must be to observe them.

The existence of different statistical regimes, their cross-
overs, and their dependence on various external parameters
enriches the possible experimental scenarios. The emission
statistics of random amplifying media has diverging mo-
ments in a finite region of parameters extending across the
threshold curve. Our theoretical work has shown that, de-
pending on size, geometry, pumping protocols, etc., the
emission of random lasers may change considerably. This
general conclusion should be a useful guidance in under-
standing past and future experiments on random amplifying
media.
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