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We construct a model for the atomic detection in the context of cavity quantum electrodynamics �QED� used
to study coherence properties of superpositions of states of an electromagnetic mode. Analytic expressions for
the atomic ionization are obtained, considering the imperfections of the measurement process due to the
probabilistic nature of the interactions between the ionization field and the atoms. We provide for a dynamical
content for the available expressions for the counting rates considering limited efficiency of detectors. More-
over, we include false countings. The influence of these imperfections on the information about the state of the
cavity mode is obtained. In order to test the adequacy of our approach, we investigate a recent experiment
reported by Maître �X. Maître et al., Phys. Rev. Lett. 79, 769 �1997�� and we obtain excellent agreement with
the experimental results.
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I. INTRODUCTION

The quantum interaction between two level Rydberg at-
oms and one microwave mode inside a high quality factor
�Q� cavity has been crucial for our understanding of dissipa-
tion and decoherence in quantum mechanics �1,2�. Usually,
in cavity quantum electrodynamics �QED� experiments,
Rydberg atoms cross an experimental array constituted by
two Ramsey zones and a high-Q cavity. Thereafter, their final
states are detected in one of two ionization zones. In the first
zone is built an electrical field with amplitude sufficient to
ionize the atom in the highest state. The second detection
zone is designed to detect the lower atomic level.

Most of the work available in literature about the detec-
tion process is based on statistical assumptions. The pumped
atoms are statistically independent, so that their arrival times
are subject to a Poissonian or other statistics �3–5�. The basic
idea is that atoms arrive at random and they are recorded at
equally random times, so the only reproducible data are sta-
tistical. In this context one is lead to study the statistic of
detector clicks. There are numerical studies �6,7� and also
analytical results by Rempe and Walther �8� and by Paul and
Richter �9�.

Extensions of the method presented in Ref. �8� provide a
deep analysis of the one-atom maser experiments. In Ref.
�10�, counting, waiting times and sequence statistics of de-
tector clicks are obtained. Limits of a large number of detec-
tions have been considered and analytically soluble master
equations have been derived in Ref. �11�. The results ob-
tained within these statistical approaches lead to rather
simple and physically appealing expressions for the detection
probabilities in terms of the essential measurement ingredi-
ents such as the efficiency of the detectors and so on. These
ingredients are treated as empirical parameters. The purpose
of the present contribution is twofold: to furnish the dynami-
cal elements leading to empirical parameters, in the context

of a simple model, and to include the possibility of false
detections. The idea is to unveil the physical process behind
the empirical rates. A different and much more involved task
would be, e.g., to obtain microscopic expressions for such
quantities. We believe, however, that given the number of
publications in the area and the lack of dynamical content for
the derived parameters, an approach based on a simple dy-
namical model is an important first step in the direction of a
qualitative understanding of this rather intricate process, both
from the conceptual and the calculation sides. On the other
hand, to our knowledge, the consideration of false counting
has been given here for the first time.

In the present contribution we propose a dynamical model
for the detection process. We assume that the atom undergoes
the influence of a classical electrical field when it traverses
the detection zones. The net effect of this field is to couple
one �in the case of intrinsically inefficient detectors� or two
�in the case of detectors that register false countings� discrete
atomic levels to the continuum. If the atom is ionized, a
transition to the continuum has occurred and a classical
signal—a “click”—is generated in the correspondent detec-
tor. However, if the atom remains in one of the two discrete
levels, no click is registered by the detector.

Since the atom works as a probe to the field stored in a
high-Q cavity, the click or no-click registered by the detec-
tors represents a gain of information about the state of the
compound system formed by the atom and by the high-Q
cavity field. Hence, the process of detection can be divided
in two parts. First, the state of the compound system atom–
high-Q cavity field undergoes an unitary evolution during the
passage of the atom through each detection zone. Next, the
resultant state is projected into a proper subspace defined as
follows: if a click is registered, this subspace is formed by
the set of the states that form the continuum; otherwise, this
subspace corresponds to the states associated to the two dis-
crete levels.
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As an example of the applicability of the results obtained
here we study a recently reported experiment �12� were the
imperfections are clearly stated. Our results are in excellent
agreement with the experimental findings.

This paper is organized in the following way. In Sec. II,
we treat a model for intrinsically inefficient detectors. The
analytical form of our results are exactly the same as those in
Ref. �13�, whose derivation is based on statistical and physi-
cally plausible arguments. In Sec. III, we study the possibil-
ity of the detectors perform false countings. In this case, we
found that the probability of a click depends on the “nondi-
agonal” terms of the state of the system atom–high-Q cavity
field. We calculate the fidelity of the field states in high-Q
cavity after the measurement process considering the two
kinds of imperfections, limited efficiency and false detec-
tions. We also apply the present model in a recently reported
experiment. Section IV contains a summary of the results
and conclusions.

II. MODEL FOR INEFFICIENT DETECTOR

The ionization process of an atom due to its interaction
with an electromagnetic field is considered in a quantum
context. Therefore a finite probability of nonexcitation will
exist. That is what we call an intrinsic �i.e., quantum me-
chanical� inefficiency.

The Hamiltonian which describes the interaction between
two level atoms and ionization field on the first detection
zone, and takes into account only the intrinsic inefficiency of
the process, is given by �the Hamiltonian for the second de-
tection zone can been obtained replacing the index e by g�:

H1e = �e�e��e� + �g�g��g� +� dk�k�k��k�

+ ve� dk��e��k� + �k��e�� . �1�

The first and second terms in the Hamiltonian stand for the
two discrete atomic levels �e� and �g�, excited and ground
states, respectively, with energies �e and �g. The third term
represents its continuum spectrum. The last term accounts
for the coupling between the highest discrete level and the
continuum. The strength of this interaction is given by the
parameter ve, assumed state independent for simplicity. This
term is responsible for the ionization of the atom. Since we
are dealing with a quantum mechanical process, which is
intrinsically probabilistic, we will also have to consider the
possibility of nonionization of the atom.

Following Cohen-Tannoudji �14�, the evolution of the dis-
crete state �e� according to Eq. �1� is given by

���t�� = e−iH1et/��e� =� d�����
e �e�e−i��

e t/����� , �2�

where 	���
e �
 and 	��

e 
 correspond to the set of eigenvectors
and eigenvalues of H1e, respectively. The coefficients ���

e �e�
and ���

e �k� may be written as

����
e �e� =

1

�1 +� dk�� v

��
e − �k�

2�1/2
, �3a�

����
e �k� =

v/���
e − �k�

�1 +� dk�� v

��
e − �k�

2�1/2
. �3b�

Accordingly, the ionization probability can be obtained as
follows:

pe =� dk���k���t���2 =� dk�� d�����
e �e���k���

e �e−i��
e t/��2

.

�4�

This probability defines the detector’s efficiency. Therefore
the nondetection probability is given by 1− pe

= ��d�e−i��
e t/� � ���

e �e��2�2. After some simplifications �see Ref.
�14�� the nondetection probability can be written as

1 − pe = e−��t�, �5�

where � is the transition rate from discrete to the continuum
level, calculated from Fermi’s “golden rule.” � is given by

� =
2���E�

�
, �6�

where ��E� is the level density per unity energy. In the limit
where the atom ionization time can be considered to be infi-
nite �in some experimental context� we will have a perfect
detector.

Following the same procedure for H1g we find pg

=�dk � �d����
g �g��k ���

g �e−i��
g t/��2, where 	���

g �
 and 	��
g 
 cor-

respond to the set of eigenvectors and eigenvalues of H1g,
respectively.

As an example of applicability of the model, let us study
the interactions between two level atoms and their detection
through ionization fields in cavity QED experiments. The
state of the system atom–high-Q cavity field can be written
as

�AC�0� = �ee�e��e� + �eg�e��g� + �ge�g��e� + �gg�g��g� . �7�

This state represents the most general state �in the system
atom-cavity field� immediately before the interaction be-
tween the atom and the detectors. The symbols �ee, �eg, �ge,
and �gg are operators in the cavity field subsystem.

The interaction between the atom and the first detection
zone �De� can be separated in two steps. First, a quantum
unitary evolution governed by the Hamiltonian H1e given by
Eq. �1� during the time interval t1. The atom-cavity field
state, after this process, is given by

�AC�t1� = e−iH1et1/��AC�0�eiH1et1/�. �8�

Now, in the second step, at the time t1, a classical signal is
generated. If the detector clicks, we will know that the atom
was ionized, so �AC�t1� must be projected into the subspace
	�k�
. Although, if De does not click we know that the atomic
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state must be projected into subspace spanned by the discrete
levels 	�e� , �g�
. The maximum value that t1 can assume is t1�
which is the time taken by the atom to cross De completely.
So, up to t1�, we will certainly acquire information about the
system. This revealed information plays an essential role into
�AC’s evolution. So we are aware that before the interaction
with Dg, the state �AC�t1� must be projected properly into
subspace.

We can calculate the probability of a click in De

pclickDe
=� dk Tr��k��k��AC�t1��

=� dk Tr��k��k��eee
−iH1et1/��e��e�eiH1et1/�� . �9�

Then, using Eq. �4�, we may write

pclickDe
= pe TrC��ee� , �10�

where TrC is the partial trace on the cavity-field subspace.
This product can be interpreted as the efficiency of De�pe�
times the probability of click on a perfect detector after the
interaction with the state �AC�0� �TrC��ee��.

The nonclick probability is

pnonclickDe
= Tr���e��e� + �g��g���AC�t1��

= TrC��ee� + TrC��gg� − pe TrC��ee� . �11�

From the normalization of �AC�0�, TrC��ee�+TrC��gg�=1, we
can write

pnonclickDe
= 1 − pe TrC��ee� . �12�

After the nonclick stage the system is in the state

�nonclick�t1� =
��e��e� + �g��g���AC�t1���e��e� + �g��g��

N

=

�gg�g��g� + �ee�1 − pe��e��e� + ��egei�gt1/�� d�e−i��t1/�������e��2�e��g� + H.c.�

N
, �13�

where N=1− pe Trc �ee. Note that if the efficiency is equal to
unity �pe=1�, the reduced state operator on atomic subspace
can be written as �gg �g��g�. This result was expected, as we
know, since for perfect detectors a nonclick in De would lead
to the projection �g��g ��AC�0� �g��g�.

When the atom is not ionized on De, it continues the
journey and passes through the second detection zone �Dg�.
Let us set the interaction time between atom and the electro-
magnetic field inside Dg by t2. The temporal evolution that
models this interaction is again unitary:

�AC�t2� = e−iH1g�t2−t1���nonclick�t1�eiH1g�t2−t1��. �14�

So, the probability of click in Dg is

pclick Dg
=

pg TrC��gg�
1 − pe TrC��ee�

. �15�

Note that this probability depends on the efficiency of the
first detector pe. Now let us examine some limits. For pe
=0, this is equivalent to the situation where the first detector
is absent, so the atom interacts just with the second ioniza-
tion zone Dg and the probability of click is pg TrC��gg�, as
expected. If pe=1, the first detector is perfect, therefore, as
discussed before, the atom goes to the state �g� when it
crosses De without have been detected, and the probability of
click is the efficiency of Dg, pg. If both detectors are perfect
�pe= pg=1�, pclick Dg

=1 because the second detector will not
miss any atom prepared in �g�.

A more complete analysis of pclick Dg
for different values

of Tr�gg�0� is shown in Fig. 1. The behavior of the curves
associate to TrC��gg�=0.5 and TrC��gg�=0.01 reflects the fact
that a nonclick on a very efficient De �pe�1� raises the prob-
ability pclick Dg

, even if the atom is practically prepared in the
state �e��e� �TrC��gg�=0.01�. On the other hand, if the atom is
practically prepared in the state �g��g� �TrC��gg�=0.99�, pe

does not affect pclickDg
.

The probability of nonclick in Dg is

1 − pclick Dg
=

1 − pe TrC �ee − pg TrC �gg

1 − pe TrC �ee
. �16�

When the atom crosses both detectors without being de-
tected, it reduces the field state inside the cavity to

�C� =
TrA���e��e� + �g��g���AC�t2 − t1���e��e� + �g��g���
Tr���e��e� + �g��g���AC�t2 − t1���e��e� + �g��g���

.

�17�

Here, TrA stands for the trace in the atomic variables. Now,
using the definition �4� we may write

�C� =
�1 − pe��ee + �1 − pg��gg

1 − pe TrC��ee� − pg TrC��gg�
. �18�

The form of this result is in complete agreement with the one
in �13�, where the authors used statistics arguments to derive
the expression �18�.
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III. MODEL FOR FALSE DETECTIONS

In addition to the previous intrinsically inefficient detector
we extend the model to include false detections. The Hamil-
tonian for the first detection zone De is given by �the Hamil-
tonian for the second detection zone can be obtained replac-
ing the index e by g�

H2e = �e�e��e� + �g�g��g� +� dk�k�k��k�

+ we� dk��e��k� + �k��e�� + wg� dk��g��k� + �k��g�� ,

�19�

where we and wg are real coupling constants. The second
interaction term �the last one in the equation above� repre-
sents the coupling between �g� and the continuum, so it is
responsible for wrong detections. On the other hand, the pre-
vious one is responsible for the correct ones.

For simplicity we are going to define the complex coeffi-
cient

qa,b
e =� d�e−i��

e t/���	�
e �a���b�	�

e � , �20�

where 	�	�
e �
 and 	��

e 
 are the set of eigenvectors and eigen-
values of H2e, respectively. a and b are indexes that may
represent continuum and discrete eigenvectors. The explicit
form of the coefficients inside the integral and relative dis-
cussions are in the Appendix. The notation is as follows: the
upper index indicates which detection zone the atom is pass-
ing through. The two lower indexes, a and b, represent its
initial incoming state and its final state after traversing the
detector, respectively. One can notice that �dk �qe,k

e �2 is the
probability of an atom prepared in �e� to be ionized inside
De, this can be understood as the efficiency of De. �dk �qg,k

e �2
is the probability of an atom prepared in �g� to be ionized
inside De, i.e., the probability of a wrong detection.

We can see, from Eq. �19�, that the unitary evolution of
this system allows for an indirect coupling between the two
discrete levels. So we can take into account �qe,g

e �2, which is
the probability of a transition between the two discrete lev-
els. �qe,e

e �2 ��qg,g
e �2� is the probability of an atom prepared in

�e� ��g�� to interact with the electromagnetic field inside De

and does not change level. We can also notice that �dk �qe,k
g �2

��dk �qg,k
g �2� is the probability that an atom prepared in �e�

��g�� to be ionized inside Dg.

A. An example: cavity QED

As we did for the intrinsically inefficient detectors, the
interaction between atoms and false counting detectors can
be separated in two processes: first, an unitary evolution of
the initial state operator, generated by H2e �H2g� where H2e

�H2g� have the form shown in Eq. �19�, and then a projection
in a proper subspace, which represents the classical informa-
tion, click or nonclick, of the detector.

Starting from the initial state given by Eq. �7�, and using
the definitions in Eq. �20�, the probability of click in De can
be written as

pclick De
=� dk�qe,k

e �2 TrC��ee� +� dk�qg,k
e �2 TrC��gg�

+ �� dkqe,k
e* qg,k

e TrC��eg� + H.c. . �21�

This expression shows us that pclick De
is sensitive to interfer-

ence terms �eg and �ge. If we calculate the value of pclick De
for the initial state �AC�0�=�ee �e��e � +�gg �g��g�, the answer
would be different from Eq. �21�. However, if we do the
same, but replace the false counting detectors by inefficient
or perfect detectors, the calculated probability would be the
same for the two different initial states. That is due to the fact
that this case is insensitive to interference terms.

In order to compare the modifications on the cavity field
due to atomic interaction with inefficient detectors and false
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FIG. 1. Influence of the efficiency of the de-
tector De �pe� on the “normalized” probability of
click in the detector Dg �pclickDg

/ pg�, for different
values of TrC��gg�. The efficiency of the detector
Dg �pg� just limits the maximum value reached
by pclickDg

and does not modify its qualitative be-
havior as function of pe.
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counting detectors, we calculate the fidelity of the different
state operators. Fidelity between the states �A and �B mea-
sures the overlap between them and is given by

F��A,�B� = �Tr��A
1/2�B�A

1/2�2
. �22�

First, let us calculate the fidelity between state operators
�A

e �which describe the system after the atomic ionization
inside the first detection zone of inefficient detectors�, and �B

e

�which describe the system after the atomic ionization inside
the first detection zone of false counting detectors�. For sim-

plicity, assume that the system atom–high-Q cavity field is
found in the following entangled state just before the atom
reaches the detection zones:

�AC�0� =
1

2
��e,0��e,0� + �e,0��g,1� + �g,1��e,0� + �g,1��g,1�� .

�23�

After an unitary evolution and the projection on the con-
tinuum subspace, �A

e and �B
e can be written as

�A
e = �0��0� , �24a�

�B
e =

� dk��qe,k
e �2�0��0� + �qg,k

e �2�1��1� + qg,k
e* qe,k

e �1��0� + qe,k
e* qg,k

e �0��1��

� dk��qe,k
e �2 + �qg,k

e �2�
, �24b�

and the fidelity

F��A
e ,�B

e � =
� dk�qe,k

e �2

� dk��qe,k
e �2 + �qg,k

e �2�
. �25�

Notice that if the wrong detection probability goes to zero
��dk �qg,k

e �2→0�, the fidelity goes to one, F��A
e ,�B

e �→1, so �A
e

and �B
e are identical.

Now, we are going to calculate the fidelity between state
operators �A

g , which describes the system after the atomic
ionization inside the second detection zone of inefficient de-
tectors, and �B

g , which describes the system the atomic ion-
ization inside the second detection zone of false counting
detectors. The calculation is as follows: interaction of an
atom with the first detection zone De, modeled by unitary
evolution of the state given by Eq. �23� and projection on the
discrete subspace. Then, the interaction with the second de-
tection zone Dg, modeled again by unitary evolution of the
resultant state and projection, but now on the continuum sub-
space. After this, we can write the fidelity as

F��A
g ,�B

g� =
1

A
� dk��qg,g

e* �2�qg,k
g* �2 + qg,g

e* qg,e
e qg,k

g* qe,k
g

+ qg,g
e qg,e

e* qg,k
g qe,k

g* + �qg,e
e �2�qe,k

g �2� , �26�

where

A =� dk��qg,e
e �2�qg,k

g �2 + qg,e
e* qe,e

e qg,k
g* qe,k

g + qg,e
e qe,e

e* qg,k
g qe,k

g*

+ �qe,e
e �2�qe,k

g �2� +� dk��qg,g
e �2�qg,k

g �2 + qg,g
e* qg,e

e qg,k
g* qe,k

g

+ qg,g
e qg,e

e* qg,k
g qe,k

g* + �qg,e
e �2�qe,k

g �2� . �27�

As we are considering that any transition from a discrete
state to the continuum generates a classical signal, we must
not admit the possibility of indirect coupling between �e� and
�g� mediated by the continuum. Therefore, we must assume
that �qg,e

e �2=0 and we may write

F��A
g ,�B

g� =
� dk�qg,g

e �2�qg,k
g �2

� dk��qg,g
e �2�qg,k

g �2 + �qe,e
e �2�qe,k

g �2�
. �28�

If the wrong detections probability in Dg goes to zero
��dk �qe,k

g �2→0� the fidelity goes to one �F��A
g ,�B

g�→1�.

B. An application to a recent experiment

As an example of applicability of this model, let us study
an experiment reported in �12�, where the time decay of a
single photon Fock state prepared in a microwave cavity was
measured. In this experiment, a pair of atoms interacts, sepa-
rately, with an electromagnetic field mode stored in the high-
Q cavity. The first atom is prepared in e state and undergoes
a � pulse transferring the excitation to the field mode. After
some time delay T, the second atom prepared in g state un-
dergoes a � pulse and absorbs the photon left inside the
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cavity by the first atom. Both atoms have their final state
detected in ionization zones, the results are recorded for sev-
eral realizations of this procedure in order to measure, as a
function of the delay T, the conditional probability 
ge
= Pge / �Pge+ Pgg� of the second atom to be in the e state pro-
vided the first one was detected in the g state. Here, Pge is
the probability to detect the first atom in Dg and the second
in De and Pgg is the probability to detect both atoms in Dg.
Ideally, the conditional probability 
ge should be equal to
unity at T=0. Although, due to some experimental imperfec-
tions pointed out by the authors, the value of the conditional
probability extrapolated to zero delay is 70% –80%.

Let us apply the model for false counting detectors to
calculate the conditional probability 
ge. According to �12�,
due to coupling dispersions, the state of the system atom-
cavity mode after the passage of the first atom through the
cavity can be written as

�1 = ���2�g,1��g,1� + ���2�e,0��e,0� + ��g,1��e,0� + H.c.� ,

�29�

where ���2=0.94 and ���2=0.06.

Following the model for false counting detectors, the
probability to the first atom to be detected in Dg is given by

pclick Dg

�1st atom� =� dk Tr��k��k�e−iH2et2/��1�e
iH2et2/�� , �30�

where

�1� =
1

N
���e��e� + �g��g��e−iH2et1/��1eiH2et1/���e��e� + �g��g��� .

�31�

N is the normalization constant, t1 is the time that the atom
takes to cross De, and t2 is the time that the atom takes to be
ionized inside Dg.

Developing the calculation from Eq. �30�, using the defi-
nition �20�, and assuming that �qe,g

e �2= �qg,e
e �2=0, we can write

pclick Dg

�1st atom� =

���2�1 −� dk�qg,k
e �2� � dk�qg,k

g �2 + ���2�1 −� dk�qe,k
e �2� � dk�qe,k

g �2

���2�1 −� dk�qg,k
e �2� + ���2�1 −� dk�qe,k

e �2�
. �32�

The detection of the first atom in Dg reduces the state of the electromagnetic field inside the cavity to �1�. After the passage
of the second atom, the state of the system atom-cavity mode can be written as

�2 = ���2�g,1��g,1� + ���2�e,0��e,0� + ���g,1��e,0� + H.c.� . �33�

Through a similar procedure used to calculate Eq. �32�, we can calculate the probability of the second atom to be detected in

Dg �pclick Dg

�2nd atom�� and in De �pclick De

�2nd atom��:

pclick Dg

�2nd atom� =

���2�1 −� dk�qg,k
e �2� � dk�qg,k

g �2 + ���2�1 −� dk�qe,k
e �2� � dk�qe,k

g �2

���2�1 −� dk�qg,k
e �2� + ���2�1 −� dk�qe,k

e �2�
, �34�

and

pclick De

�2nd atom� = ���2� dk�qg,k
e �2 + ���2� dk�qe,k

e �2. �35�

In Ref. �12�, the authors inform the efficiency of the de-
tectors ��dk �qe,k

e �2=�dk �qg,k
g �2=0.35�, the false counting rate

on De ��dk �qg,k
e �2=0.13� and the false counting rate on Dg

��dk �qe,k
g �2=0.1�. Therefore, the conditional probability at T

=0 yields


ge�0� =
Pge

Pge + Pgg

=
pclick Dg

�1st atom�pclick De

�2nd atom�

pclick Dg

�1st atom�pclick De

�2nd atom� + pclick Dg

�1st atom�pclick Dg

�2nd atom�
= 0.738,

�36�

a value close to the one obtained by the extrapolation to zero
time delay �between the atoms� of the exponencial fit shown
in Fig. 2 of Ref. �12�.
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IV. CONCLUSIONS

We have presented a dynamical model for the detection
process of atomic levels on field ionization detectors. On the
context of cavity QED, the model allows us to calculate the
reduced state operator, for the field inside the cavity, after the
classical signal generated by the detectors.

The detailed analysis of the detection process also let us
introduce naturally the effects of realistic features of the de-
tectors �e.g., efficiency and false counting rates� on the study
of microwave cavity experiments. For intrinsically inefficient
detectors, we found that the probability of a click in the
second detection zone is sensitive to the efficiency of the first
one. Besides, our results are in complete agreement with
those obtained in Ref. �13� by different methods.

If one allows the detectors to register false countings, the
probability of a click is sensitive to the “nondiagonal” or
coherence terms of the state of the system atom–high-Q cav-
ity field. In fact, false countings are a consequence of the
coupling between the two discrete atomic levels to the con-
tinuum in each detection zone. As a result of this coupling, a
click registered in any detector does not provide an un-
equivocal information about the atomic state. The detectors
acts as a “beam splitter,” mixing the two “paths” e and g,
and, to some degree, these “paths” become undistinguish-
able.

We have also shown, by applying the present model in the
experiment reported in �12�, that it is possible to calculate,
from a more realistic way, the empirical data produced in
cavity QED experiments.

APPENDIX: EVALUATION OF THE COEFFICIENTS
Ša ���

e
‹

In order to calculate the coefficients inside the integral in
Eq. �20�, let us write the eigenvalue equation for H2e,

H2e�	�
e � = �He�0� + H2e�I� + H2e�II���	�

e � = ��
e �	�

e � , �A1�

where �	�
e � and ��

e are eigenvectors and eigenvalues of the
Hamiltonian H2e, He�0�=�e �e��e � +�g �g��g � +�dk�k �k��k�,

H2e�I�=we�dk��e��k � + �k��e � �, and H2e�II�=wg�dk��g��k � + �k�
��g � �.

Let us project equation �A1� onto �k�,

�k�H2e�	�
e � = �k�He�0��	�

e � + �k�H2e�I��	�
e � + �k�H2e�II��	�

e �

= �k��k�	�
e � + we��e�	�

e � + wg��g�	�
e � = ��

e ��k�	�
e � .

�A2�

We can do the same with the discrete states �g� and �e�,

�g�H2e�	�
e � = �g�He�0��	�

e � + �g�H2e�I��	�
e � + �g�H2e�II��	�

e �

= �g��g�	�
e � + wg� dk��k�	�

e � = ��
e ��g�	�

e � ,

�A3a�

�e�H2e�	�
e � = �e�He�0��	�

e � + �e�H2e�I��	�
e � + �e�H2e�II��	�

e �

= �e��e�	�
e � + we� dk��k�	�

e � = ��
e ��e�	�

e � .

�A3b�

From the eigenvector’s normalization, we can also obtain the
following expression

���g�	�
e ��2 + ���e�	�

e ��2 +� dk���k�	�
e ��2 = 1. �A4�

Defining the fundamental energy level as �g=0, and using
Eq. �A3a� and �A3b� we can write

��e�	�
e � =

��
e we

wg���
e − �e�

��g�	�
e � . �A5�

From Eq. �A2�, we have

��k�	�
e � =

1

��
e − �k

�wg +
��

e we
2

wg���
e − �e�

��g�	�
e � , �A6�

and from the normalization condition, we obtain

��g�	�
e � = � 1

1 + � ��
e we

wg���
e − �e�

�2

+ �wg +
��

e we
2

wg���
e − �e�

�2� dk� 1

��
e − �k

2�
1/2

. �A7�

Therefore, Eqs. �A5�–�A7� give us the explicit form of the three coefficients.
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