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Coupling a two-level medium, described by the Maxwell-Bloch �MB� equations, to an external cavity mode
results in a prescribed boundary value for the electric field that can be tuned to the forbidden band gap of the
medium. It is shown that there exists a threshold of energy density flux above which a solitonlike light pulse
is generated and propagates in the medium at a fraction of the light velocity. When the driving frequency
becomes close to the band gap edge, where the group velocity vanishes, the MB equations tend to the nonlinear
Schrödinger equation which furnishes the theoretical ground to understand soliton generation by evanescent
fields as a manifestation of nonlinear supratransmission, produced by an instability of the evanescent wave.
Moreover, the propagation at a fraction of light velocity is shown to result from a continuous periodic exchange
between polarization �electromagnetic energy� and population �density of atoms in the excited level�. The
process is demonstrated to occur at twice the internal frequency of the generated gap soliton. Last, when the
medium spatial extension is of the order of the soliton dimension, an optical bistability is shown to occur at the
supratransmission threshold allowing for different output intensities corresponding to a given input value.
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I. INTRODUCTION

The propagation of an electromagnetic field in a dielectric
medium is one of the main basic problems founding the field
of interaction of radiation with matter �1�. When the medium
can be treated as a two-level system, as, e.g., an atomic gas
for a given frequency range of the electromagnetic field, the
governing equations in the dipolar approximation result to be
the Maxwell-Bloch system �MB� which couples the evolu-
tion of the electric field �Maxwell equations� to the polariza-
tion oscillations and population density variations �Bloch
equations� �2�.

In the isotropic case, as for an atomic vapor, following the
notations of �3�, the MB equations for the three-vectors E
�electric field� and P �polarization source term: D=�E+P�
can be written
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where N is the real-valued inversion of population density
�the difference of population between excited and fundamen-
tal levels� of equilibrium value Neq. The parameter � is the
dipole transition frequency, �=�� /�0 is the optical index,
and the fundamental coupling constant
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�21
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�	�12	2
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is related to the electric dipole moment �12 �the average is
taken over the orientations�. The coefficient ��2+2� /3 is the
Lorentz local field correction factor. The damping terms re-

sult from the attenuation A of the electric field and the re-
laxation times T1 and T2.

The parameter � is the fundamental coupling constant as
the interaction dissapears at �=0. Thus the intrinsic nonlin-
ear nature of MB is entirely mediated by the atoms: it is the
time variation of the density N that induces nonlinearity with
an intensity related to the coupling constant �.

In the case of a weak coupling, namely for underdense
media, nonlinearity allows for self-induced transparency
�SIT� of a light pulse whose peak frequency is tuned to the
resonant value �, when a linear theory would predict total
absorption �4�. SIT has been then largely studied �5�, and the
model �in the slowly varying envelope approximation� re-
sults to be integrable �6� and to have the mathematical prop-
erty of transparency: any fired pulse having an area above a
threshold evolves to a soliton, plus an asymptotically vanish-
ing background �7�. The point is that within the integrable
SIT model, the incident pulse �boundary datum� maps to an
initial value problem on the infinite time line for which the
inverse spectral transform machinery provides useful theo-
rems.

Away from the resonance, and also for dense media, the
question of the propagation of laser pulses in a two-level
medium has motivated a huge quantity of works. A widely
used approach consists in modeling the dynamical nonlinear
properties of pulse propagation by an approximate envelope
equation that selects propagation in one direction, the re-
duced Maxwell-Bloch system which has the nice property of
being integrable �8,9�, also when detuning and permanent
dipole are included �10�. As a consequence the properties of
the gap soliton, such as pulse reshaping, pulse slowing,
pulse-pulse interactions, are fairly well understood, more es-
pecially as the reduced MB system possesses explicit
N-soliton solutions �11�. Others interesting features include
pulse velocity selection �12�. However, unlike the SIT
model, the reduced MB system happens to be integrable for
an initial pulse profile which makes it difficult to relate to the
interesting physical problem, namely the evolution of an in-
cident light pulse.
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In order to improve the description of a more realistic
physical situation, the reduced MB equation was then re-
placed by the coupled-mode Maxwell-Bloch system where
the electric field envelope contains both right-going and left-
going slowly varying componants �13�. Here, an incident
laser pulse is translated on the model by an assumed pulse-
shaped boundary condition for the right-going envelope
�naturally associated with a left-going envelope that vanishes
on the other end of the medium�. As usual in such a repre-
sentation of a scattering problem, the adequation of the
model to the physical situation is a very difficult question
often left apart. Still, the approach produces interesting re-
sults, as, e.g., the proof of existence of gap 2� pulses in the
presence of inhomogeneous broadening �14� and their stabil-
ity �15�, the discovery of optical zoomerons �16�, and the
demonstration of the possibility of “storage of ultrashort op-
tical pulses” �17� demonstrated by numerical simulations of
the coupled-mode MB system associated to such a boundary
value problem. This storage can moreover be externally
managed to release the stored pulse and thus create a “gap
soliton memory” with a two-level medium �18�.

The coupled-mode approach has also been applied to un-
derstand the properties of resonantly absorbing Bragg reflec-
tors introduced in �19� and further studied in �20,21�, which
consist in a periodic array of dielectric films separated by
layers of a two-level medium. Very recently, the coupled-
mode MB system has been used to model “plasmonic Bragg
gratings” in nanocomposite materials where a dielectric is
imbedded in a periodic structure of thin films made of me-
tallic nanoparticules �22�.

Turning back to the original full MB system, the proper
mechanism of soliton generation by means of light pulse
scattering still remains an open question. In particular, a laser
pulse having a peak frequency belonging to the gap, would
essentially be reflected, and would not generate a gap soliton.
Moreover, numerical simulations have shown that the local-
ized gap structures �unlike true solitons� experience energy
exchange during interaction �23�. Hence gap-solitary waves
result mathematically from an initial condition in the MB
equations, which is hardly realizable in experiments, al-
though quite interesting, e.g., to form “optical subcycle
pulses” �24�.

We propose here to couple a two-level medium to a reso-
nant cavity tuned such as to generate a standing wave whose
frequency belongs to the forbidden band gap of the medium.
Indeed, for an attenuator �Neq	0� in the strong coupling
case, the linear dispersion relation of the undamped system
�1� shows a forbidden band gap between the two dispersion
branches. In the stop gap frequency range, the two-level me-
dium then acts as a Bragg mirror allowing to conceive a
cavity as represented by the scheme of Fig. 1.

The net result of the external driving by a cavity mode �of
angular frequency 
b� is to produce, by continuity conditions
for the electric field parallel component, a boundary value
datum for the set of equations �1� which we may write

	E	z=0 = A cos�
bt� , �3�

when the electric field E�r , t� is linearly polarized in the
tranverse direction �see below�. The input flux power density

�proportionnal to A2� is related both to the energy and the
angular frequency 
b of the electric field stored in the cavity.
In particular it is a parameter that can be externally adjusted.

We demonstrate that there exists a threshold of input flux
density above which solitonlike excitations are generated and
propagate inside the two-level medium. The mechanism is an
instability of the evanescent field �25� allowing energy to be
transmitted by the process of nonlinear supratransmission
�26,27�, which results in a soliton train output. Thus the two-
level medium pumped at one end by a standing cavity wave
inside a stop gap becomes a soliton gun which may have
important physical applications. Such a process occurs here
in the very general MB system by the effect of extrinsic
nonlinearity, due to coupling of field with medium, as op-
posed to integrable models with intrinsic nonlinearity such
as nonlinear Schrödinger �28,29� or sine Gordon �30,31�.

One of the interesting aspects of the process is the veloc-
ity of the generated soliton like pulse which happens to be a
fraction of the light velocity in the medium �typically 10% in
our simulations�. We will demonstrate that it is a fully non-
linear effect contained in the MB system which occurs by a
periodic continuous exchange between polarization energy
and population of excited level. Moreover, we shall show
that the frequency of such an energy exchange comes to be
twice the pulse frequency, which will be understood by using
the nonlinear Schrödinger limit equation �NLS� obtained in a
rigorous asymptotic limit �32�. In particular a rough approxi-
mation that would simply neglect higher harmonics �the so-
called rotating wave approximation� would not allow one to
understand this periodic exchange at the origin of slow-light
pulses propagation.

Another essentially nonlinear property of the Maxwell-
Bloch system submitted to boundary driving is the optical
bistability that manifests in the existence of solutions with
different outputs for a given input and different history. This
question, interesting for applications to optical switches,
memories, or digital amplifiers, is considered in the last sec-
tion where the process is again understood with help of the
NLS limit envelope equation.

II. INITIAL BOUNDARY VALUE PROBLEM

The system �1� is considered in the simplest case of a
linearly polarized electromagnetic field propagating in direc-
tion z, namely �ex is the unit vector�,

E�r,t� = exE�z,t� ⇒ P�r,t� = exP�z,t� . �4�
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FIG. 1. Scheme of the device that couples a cavity mode whose
frequency in the forbidden gap of a two-level medium. The evanes-
cent field in the medium may experience a nonlinear instability that
produces a solitonlike propagating pulse.
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By defining N0 as the density of active atoms, it is quite
useful to define the average energy that can be transferred to
the medium by

w0 =
1

2
N0�� . �5�

Then we may rescale variables and fields as

t� = �t, z� =
�

c
�z, N� =

N

N0
, �6�

E� = E� �

w0
, P� =

P
��w0

, �7�

and obtain the following dimensionless system

Ett − Ezz + Ptt = − �Et,

Ptt + P + �NE = − �2Pt,

Nt − EPt = − �1�N − Neq� , �8�

where from now on we forget the primes. The coupling
strength results in a unique fundamental constant � defined
as

� =
2�0c2

3�2 �	�12	2

N0

��
��2 + 2

3
�2

, �9�

and by the normalization of the population inversion density
�N� �−1,1��, where N=−1 when all the active atoms are in
the fundamental state, and N=1 when they are all in the
excited state. The dimensionless dissipation coefficients are
finally defined by

� =
c

�

A
�

, �1 =
1

�T1
, �2 =

2

�T2
. �10�

The dimensionless irreducible constant � characterizes the
strength of the nonlinear interaction between field and me-
dium.

In the case of an attenuator when the N0 atoms are ini-
tially in the fundamental state �namely, Neq=−1 or with di-
mensions Neq=−N0�, the resulting initial data read

E�z,0� = 0, P�z,0� = 0, N�z,0� = − 1. �11�

The net effect of the presence of the cavity is the boundary
driving �3� which becomes here

E�0,t� = a cos�
dt� , �12�

where, due to the scaling of time �6�, the driving angular
frequency 
d is in units of �, namely 
b=
d�. The system
of partial differential equations �8� constitutes with the
initial-boundary value data equations �11� and �12�, a well-
posed problem if it is completed with a boundary value at the
output end of the two-level medium. When outside the two-
level medium �zL�, the electric field is assumed to be con-
stant, the continuity of the magnetic component furnishes the
boundary datum

Ez�L,t� = 0. �13�

Actually such a boundary condition is not determinant for
long lengths L �a few times the typical soliton extension�
where one is only interested in the gap soliton formation.

The linear dispersion relation of system �8� is obtained by
assuming N=−1, E=E0 exp�i�kz−
t��, P= P0 exp�i�kz
−
t��, and by discarding the coupling nonlinear terms. It
reads

�
2 − k2��
2 − 1� − �
2 = 0, �14�

which furnishes the two branches and the stop gap illustrated
on Fig. 2. The upper edge of the stop gap defines the fre-
quency


0
2 = 1 + � , �15�

for which k=0 and vg=d
 /dk=0.
The problem we are interested in is thus the behavior of

the two-level medium under a boundary driving �12� when
the driving angular frequency 
d lies inside the stop gap,
namely,


d � � 1,
0 � , �16�

for which we shall demonstrate that above a threshold am-
plitude as of the boundary driving �12�, energy is transmitted
through the medium by means of slow-light solitons.

III. NONLINEAR SUPRATRANSMISSION PREDICTION

In order to predict the existence of a threshold of energy
transmission by nonlinear process, we consider the nonlinear
Schrödinger limit of the MB system �1�, with vanishing dis-
sipation, derived in �32�. With the electric field �4� we define
carrier and envelope components at first order �see �32� for
details� by

E�z,t� � ��z,t�ei�
t−kz� + c.c. + ¯ , �17�

where the envelope � is a slowly varying function of z and t,
and where 
 is related to k by the linear dispersion relation
�14�. The resulting equation reads

− i���t − vg�z� + ��zz + ��	�	2� = 0, �18�

for the following definitions:

vg =
d


dk
= k


1 − 
2

k2 − 
4 , �19�
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FIG. 2. The two branches of the dispersion relation for the di-
mensionless system �8� in the case �=1. The stop gap is �1,
0�.
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From the solution ��z , t� of Eq. �18�, the physical �dimen-
sionless� quantities are obtained by Eq. �17� for the electric
field and by

P�z,t� �
�

1 − 
2��z,t�ei�
t−kz� + c.c., �23�

N�z,t� � − 1 +
�

1 − 
2

1 + 
2

1 − 
2��z,t��̄�z,t�

+
1

2

�

1 − 
2 ���z,t�2e2i�
t−kz� + c.c.� . �24�

Note the presence of the second harmonic in the population
inversion N�z , t�, fundamental to interpret the nonlinear
propagation of a slow-light gap soliton.

In the present situation, the electric field at the boundary
z=0 has its frequency inside the stop gap, close to the upper
band edge, namely,


d = 
0 − �,
�


0
� 1. �25�

Consequently the carrier wave frequency 
 is precisely the
upper band edge 
0 and the envelope equation �18� simpli-
fies to

− i
0�t +

0

2 − 1

2
0
2 �zz +

1

4
�
0

2 + 3�	�	2� = 0, �26�

by evaluating the coefficients �19�–�22� at k=0 and 
=
0.
Note in particular that vg vanishes which allows the bound-
ary value problem on z� �0,L� for the MB system to map to
a boundary value problem on �0,L� for the above nonlinear
Schrödinger equation, namely,

��0,t� =
a

2
e−i�t, �z�L,t� = 0, � = 
0 − 
d. �27�

For a long length medium �L→ � �, the solution to that
boundary value problem reads as the stationary soliton solu-
tion to Eq. �26�,

z � 0:��z,t� =
Ae−i�t

cosh ��z − z0�
, �28�

�2 =
2�
0

3


0
2 − 1

, A2 =
8�
0


0
2 + 3

, �29�

where the amplitude a determines the center position z0 by
the matching requirement

a

2
=

A

cosh �z0
. �30�

There exists a real-valued solution z0 to that equation as far
as a�2A, which furnishes the sought threshold as=2A given
thus by

as
2 = 32

�
0 − 
d�
0


0
2 + 3

. �31�

We conclude that the boundary value �12� for the electric
field component of angular frequency 
d and amplitude a
produces an evanescent field in the two-level medium as
long as a	as, a value which is completely determined by the
stop gap edge 
0 and the applied frequency 
d. Above this
value, namely for aas, we observe an instability �described
in the last section� that produces a solitonlike excitation
which then propagates away from the boundary.

IV. NUMERICAL SIMULATIONS

The above prediction is now compared to numerical simu-
lations of the MB model �8� under initial-boundary values
�11�–�13�. Some precaution must be taken to settle the cw
boundary driving equation �12� which is not compatible with
vanishing initial data. The numerical simulation is thus
started at zero amplitude at t0=−100 followed by a transient
sequence where it is slowly increased to the value a reached
at t=0. We thus set the initial data for all z as

t = t0:E = P = 0, Et = Pt = 0, N = − 1, �32�

and the boundary values for all times as

E�0,t� = a�t�sin�
dt�, Ez�L,t� = 0,

a�t� =
a

2
�tanh„0.05�t + 40�… − tanh„0.05�t − 200�…� ,

�33�

where the driving is stopped after t=200 to avoid creation of
more than one soliton. The following numerical simulations
are performed without damping: �1=�2=�=0.

Typical results of a numerical simulation are displayed on
Fig. 3 at driving angular frequency 
d=1.4 when the gap
edge lies at 
0=1.414 �for a coupling constant �=1�. We
compute in particular the �normalized� value of the energy
density stored in the polarization �units w0=N0�� /2�

W�z,t� = −
1

2
P�z,t�E�z,t� , �34�

at a given time �here t=300� for a given driving amplitude
close to the predicted threshold. Thus energy does propagate
inside the medium above a threshold amplitude which allows
one to build the bifurcation diagram when varying the driv-
ing frequency and to compare to the theoretical prediction
�31�. This results in Fig. 4, which shows agreement when the
driving frequency becomes close to the gap edge, accord-
ingly with the fact that our prediction is based on the NLS
limit model �26� accurate only when the condition �25�
holds.
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An intensity plot of the numerical solution of Eq. �8� is
shown for illustration of nonlinear supratransmission on Fig.
5 with boundary driving frequency 1.4 and amplitude 0.35.
The generated breather moves at velocity 0.10. The external
driving actually started about t=0, according to Eq. �33�, and
the first breather is generated about t=150, a time necessary
to allow for the instability to develop. We may remark on the
plots of Fig. 5 the periodic marks appearing on the pulse
location. These are not an effect of the numerical code but
the manifestation of the way light propagates nonlinearly in
the medium, a fundamental effect now discussed.

V. PERIODIC ENERGY EXCHANGE

It is quite interesting indeed to understand how light ac-
tually propagates in the medium at a velocity less than the
light velocity. It occurs by a periodic permanent energy ex-
change between polarization and population, namely be-
tween the electromagnetic polarization energy density �W�
and the density of excited state �1+N�. This process is rep-
resented by the above mentioned periodic oscillations of the
amplitudes in Fig. 5 which are displayed differently in Fig. 6.
There, one sees the polarization energy �plot of W� and the
population density of excited state �plot of 1+N� exchanging
amplitude periodically, with a period value measured on Fig.

5 to be T=2.27 and checked by the plots of Fig. 6.
The oscillation process that slows down light is now un-

derstood by calling to the NLS limit for which the propagat-
ing pulse of the Maxwell-Bloch system can be approximated
by expressions �17�, �23�, and �24�, written now for 
=
0,
which eventually provide

W � 	�	2 + R��2e2i
0t� , �35�

1 + N � �1 +
2

�
�	�	2 − R��2e2i
0t� , �36�

where we have used the definition �=1−
0
2, and where R
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FIG. 3. Typical numerical solution of Eq. �8�: dimensionless
plots of the electric field �E�, the polarization �P�, the density of
excited atoms �1+N�, and the energy density �W� as functions of z
�horizontal axis� at time t=300 for the boundary values �33� with
frequency 
d=1.4 and amplitude a=0.32. The same simulation at
a=0.28 does not show any energy transmission.
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FIG. 4. Bifurcation diagram representing the threshold ampli-
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zontal axis�. The full line is the prediction �31� while the crosses are
the thresholds obtained by numerical simulation of the MB model
�8�.
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FIG. 5. Dimensionless intensity plot of the polarization energy
density W �left� and the density of excited atoms 1+N, �right� for
driving parameters a=0.35, 
d=1.4. The vertical axis is the time t,
and the horizontal axis is the position z in the medium. The modu-
lation of the intensities is measured to have a period of 2.27 �nor-
malized time�.
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means real part. Consequently, those two quantities possess
a permanent component over which an oscillation having the
period of �2e2i
0t is superposed with a phase opposition be-
tween W and 1+N, as apparent on Fig. 6.

We may compare now the NLS model with numerical
simulations. The soliton solution to Eq. �26� writes �up to a
translation of time and space�

��z,t� =
Bei��z−�t�

cosh���z − vt��
, � = v


0
3

1 − 
0
2 ,

�2 =
B2

4

0

2
0
2 + 3


0
2 − 1

, � = ��2 − �2�
1 − 
0

2

2
0
3 . �37�

The fit is obtained by measuring on the numerical simula-
tions of MB the two determining parameters: the velocity v
and the amplitude B. Using the simulations of Fig. 5, we
obtain v=0.10 and B=0.346, which provide through expres-
sion �35� and �36� the plots of the second line in Fig. 6 at
some convenient time T. As a consequence, the theoretical
value of the period of the oscillations can be evaluated as
� / �
0−�� and we obtain the value 2.28.

Note that the above moving soliton should not be con-
fused with the expression of the boundary stationary soliton
tail �28� which results from the boundary value imposed in
z=0 and which holds only when its amplitude is below the
threshold.

VI. GENERATING INSTABILITY

To complete the picture of the soliton generation process,
we briefly describe here the linear stability analysis that

shows the mechanism by which an instability grows when
the driving amplitude exceeds the threshold value. To that
end we consider the approximate model �26�, namely

− i�t +

0

2 − 1

2
0
3 �zz +


0
2 + 3

4
0
	�	2� = 0, �38�

on the finite interval z� �0,L� and look at the evolution of
the deformations of the static soliton solution stuck on the
boundary z=0 and centered in z=z0 according to expression
�28�. We thus set

��z,t� = �S�z − z0� + ���z,t��e−i�t, �39�

S�z − z0� =
A

cosh ��z − z0�
, �40�

where the parameters A and � are given from �=
0−
d by
expressions �29�.

At first order in �, the linear equation for the perturbation
� then reads

− i�t +

0

2 − 1

2
0
3 �zz +


0
2 + 3

4
0
�2� + �̄�S2 = �� . �41�

It is a Schrödinger scattering problem for the vector �� , �̄�,
of energy �, on the semiaxis z0 in the confining potential
−S2�z−z0�. At this point, one would like to display explicit
solutions to Eq. �41� and demonstrate that when the position
z0 becomes positive, an eigenvalue becomes complex and the
solution � grows exponentially, as done in �25�. Although we
do not have such solutions, the instability of the linear per-
turbation is easily demonstrated by numerical simulations of
Eq. �41� when varying the center position z0 from negative
values �stable� to positive ones �unstable� as displayed on
Fig. 7.

Then for negative values of z0, which means for driving
amplitudes less than the threshold value, the linear perturba-
tion does not grow and the solution is stable. For positive z0
the linear perturbation grows exponentially �at z0=0 it grows
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FIG. 6. Propagation of light inside the two-level medium pro-
ceeding by continuous periodic exchange of energy between polar-
ization and population of the excited level. The dashed line is 1
+N�z , t�, the full line is W�z , t�, both plotted as functions of z �di-
mensionless quantities� at three different times as indicated. Top:
results of numerical simulations of MB taken from Fig. 5. Bottom:
fit obtained by the solution of NLS according to expressions �35�
and �36�.
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FIG. 7. Dimensionless amplitudes 	��z , t�	2 at fixed z=5 on a
line L=20 obtained by solving Eq. �41� for a constant initial con-
dition plotted as a function of time t for different values of the
position z0 as indicated.
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linearly�, which shows the instability mechanism for soliton
generation. It is worth noting that this instability is a direct
consequence of the boundary value nature of the problem to
be solved. Indeed, the same situation on the infinite line
would evidently be stable: for z�R, the invariance by trans-
lation along z guarantees that the behavior of the perturbation
about the initial pulse centered in z0 cannot depend on z0.

VII. OPTICAL BISTABILITY

Another essentially nonlinear property is the bistability
that manifests in the solution behavior that can have different
outputs for a given input and different history. As an ex-
ample we solve the system �8�, on a short length L=4, for
initial-boundary value data as Eqs. �11� and �12�, where the
amplitude a varies in time according to the plot of Fig. 8.

In order to allow stabilization of the solution we include
small damping in the model by using the following param-
eters

� = 0.01, �1 = 0.01, �2 = 0.01, �42�

which means finite dephasing times T1 and T2 together with
nonzero field attenuation factor A. The result of numerical
simulations �still with a driving frequency 
d=1.4� is dis-
played in Fig. 9, where the state of the system, after the
perturbation of the driving amplitude a within t� �300,400�,
is radically different from the state before.

Again, here this process can be understood by using the
NLS limit model �26� which is now solved for periodic so-
lutions as follows. Let us seek a stationary solution of Eq.
�26� submitted to the boundary value problem �27� under the
form

��z,t� = ����e−i�t, � = z
0� 
0
2 + 3

2�
0
2 − 1�

, �43�

to obtain for the real-valued amplitude ����

�2�

��2 + �3 = g�, g =
4�
0


0
2 + 3

, �44�

��0� =
a

2
, � ��

��
�

z=L

= 0. �45�

Such an equation possess a set of explicit solutions in terms
of Jacobi elliptic function which we may write �33�

�1��� = A1cn��1�� − D�,�1� , �46�

�2��� = A2dn��2�� − D�,�2� , �47�

�3��� = A3dn−1��3�� − D�,�3� , �48�

with the following parameter relations

�1
2 =

g

2�1
2 − 1

, A1
2 =

2g�1
2

2�1
2 − 1

, �49�

�2
2 =

g

2 − �2
2 , A2

2 =
2g

2 − �2
2 , �50�

�3
2 =

g

2 − �3
2 , A3

2 = 2g
1 − �3

2

2 − �3
2 . �51�

together with the scaled length

D = L
0� 
0
2 + 3

2�
0
2 − 1�

. �52�

By construction the � j’s obey the free-end condition �45� and
the Aj’s are the output amplitudes � j�D�.
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FIG. 8. Dimensionless time variation of the amplitude a in the
boundary value �12�. The two points indicate the time values at
which the solution is plotted on Fig. 9.
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FIG. 9. Dimensionless polarization energy density W, plotted as
a function of �dimensionless� space z. Left: obtained form the solu-
tion of Eq. �8� for a boundary driving equation �12�, where the
amplitude a varies according to Fig. 8 for two different values of
time as indicated. Right: plot of the analytical expression �59� of
W�z , t�, at some convenient value of time t, for j=3 and j=1.
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As the parameters � j’s are the moduli of the Jacobi ellip-
tic functions, they all lie in �0,1�, consequently the output
amplitudes belong to different ranges of values according to

�1
2 =

A1
2

2�A1
2 − g�

� �0,1� ⇒ A1 � ��2g, � � , �53�

�2
2 =

2A2
2 − 2g

A2
2 � �0,1� ⇒ A2 � ��g,�2g� , �54�

�3
2 =

2g − 2A3
2

2g − A3
2 � �0,1� ⇒ A3 � �0,�g� . �55�

Now Eq. �45� fixes the input amplitude a, namely

�a

2
�2

=
2g�1

2

2�1
2 − 1

cn2 D�g

�2�1
2 − 1

,�1� , �56�

�a

2
�2

=
2g

2 − �2
2dn2 D�g

�2 − �2
2
,�2� , �57�

�a

2
�2

= 2g
1 − �3

2

2 − �3
2dn−2 D�g

�2 − �3
2
,�3� . �58�

Reporting hereabove the expressions �53�–�55� of the � j’s
eventually furnishes a in terms of the three Aj’s in their re-
spective intervals, it constitutes the bistability diagram.

In order to compare with the numerical solutions of the
MB system �8�, we solve equations �56�–�58� for the un-
knowns � j’s with given amplitude a �a=0.2 for Fig. 9�. It
provides the values of the Aj’s and thus the explicit expres-
sions of the functions � j��� which are used to compute the
polarization energy density W by expression �35�. We obtain

W�z,t� = � j
2�1 + cos�2
dt�� , �59�

an expression compared to the numerical simulations of the
MB system on Fig. 9.

VIII. CONCLUSION

The analysis of the Maxwell-Bloch system in the situation
where a cavity standing wave �linearly polarized� excites a
two-level medium at one end have revealed the existence of
a threshold of amplitude of cw irradiation �inside the forbid-
den band gap� above which nonlinear solitonlike pulses are
generated in the medium.

These solitary excitations then propagate at a fraction of
light velocity, by means of a periodic exchange between
electromagnetic polarization energy and population inver-
sion. Remarkably enough, this process is contained within
the MB model and entirely results from nonlinearity that
takes its origin in the coupling between field and two-level
medium. It is fully understood in the NLS limit by keeping
the second harmonic in the population inversion which
shows once again that rigorous asymptotic limits are worth: a
rough rotating wave approximation that would simply ne-
glect higher harmonics would fail to explain the oscillations
responsible for light slowing.

Although the MB system �8� does not possess known soli-
tary wave solution, nonlinear supratransmission have suc-
ceeded to generate such structures, whose numerical robust-
ness have been checked over long times �t�1200� without
dispersion. This is a common property of the nonlinear
pulses generated by a boundary instability encountered in
many nonintegrable systems, as nonlinear Klein-Gordon �30�
or coupled mode equations in Bragg media �27�.

In the case when the length of the medium is comparable
with the typical solitary wave extension, the driven MB sys-
tem locks to periodic multistable solutions as demonstrated
by our numerical simulations. These states are understood by
means of the Jacobi elliptic stationary solutions of the NLS
limit with again a convincing agreement. As usual, such
bistable systems are important to conceive sensitive detectors
or digital amplifiers.

ACKNOWLEDGMENTS

This work was supported by CNRS contract 3073 GDR-
PhoNoMi2 �Photonique Nonlinéaire et Milieux Microstruc-
turés� with the CNRS.

�1� L. Brillouin, Wave Propagation and Group Velocity �Academic
Press, New York, 1960�.

�2� L. C. Allen and J. H. Eberly, Optical Resonance and Two-
Level Atoms �Dover, New York, 1987�.

�3� R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum
Electronics �Wiley, New York, 1969�.

�4� S. L. Mac Call and E. L. Hahn, Phys. Rev. 183, 457 �1969�.
�5� A. I. Maimistov, A. M. Basharov, S. O. Elyutin, and Yu. M.

Sklyarov, Phys. Rep. 191, 11 �1990�.
�6� G. L. Lamb, Jr., Phys. Rev. A 9, 422 �1974�.
�7� M. J. Ablowitz, D. J. Kaup, and A. C. Newell, J. Math. Phys.

15, 1852 �1974�.
�8� J. D. Gibbon, P. J. Caudrey, R. K. Bullough, and J. C. Eilbeck,

Lett. Nuovo Cimento Soc. Ital. Fis. 8, 775 �1973�.

�9� I. R. Gabitov, V. E. Zakharov, and A. V. Mikhailov, Theor.
Math. Phys. 63, 328 �1985�.

�10� M. Agrotis, N. M. Ercolani, S. A. Glasgow, and J. V. Moloney,
Physica D 138, 134 �2000�.

�11� F. Hynne and R. K. Bullough, Philos. Trans. R. Soc. London,
Ser. A 330, 253 �1990�.

�12� S. V. Branis, O. Martin, and J. L. Birman, Phys. Rev. Lett. 65,
2638 �1990�.

�13� B. I. Mantsyzov and R. N. Kuz’min, Sov. Phys. JETP 64, 37
�1986�.

�14� B. I. Mantsyzov, Phys. Rev. A 51, 4939 �1995�.
�15� B. I. Mantsyzov and R. A. Silnikov, J. Opt. Soc. Am. B 19,

2203 �2002�.
�16� B. I. Mantsyzov, JETP Lett. 82, 253 �2005�.

JÉRÔME LEON PHYSICAL REVIEW A 75, 063811 �2007�

063811-8



�17� W. Xiao, J. Zhou, and J. Prineas, Opt. Express 11, 3277
�2003�.

�18� I. V. Mel’nikov and J. S. Aitchison, Appl. Phys. Lett. 87,
201111 �2005�.

�19� A. E. Kozhekin and G. Kurizki, Phys. Rev. Lett. 74, 5020
�1995�.

�20� A. E. Kozhekin, G. Kurizki, and B. Malomed, Phys. Rev. Lett.
81, 3647 �1998�.

�21� N. Aközbek and S. John, Phys. Rev. E 58, 3876 �1998�.
�22� I. R. Gabitov, A. O. Korotkevitch, A. I. Maimistov, and J. B.

McMahon, e-print arXiv:nlin.PS/0702049.
�23� P. J. Caudrey and J. C. Eilbeck, Phys. Lett. 62A, 65 �1977�.

�24� V. P. Kalosha and J. Hermann, Phys. Rev. Lett. 83, 544 �1999�.
�25� J. Leon, Phys. Lett. A 319, 130 �2003�.
�26� F. Geniet and J. Leon, Phys. Rev. Lett. 89, 134102 �2002�.
�27� J. Leon and A. Spire, Phys. Lett. A 327, 474 �2004�.
�28� R. Khomeriki, Phys. Rev. Lett. 92, 063905 �2004�.
�29� J. Leon, Phys. Rev. E 70, 056604 �2004�.
�30� F. Geniet and J. Leon, J. Phys.: Condens. Matter 15, 2933

�2003�.
�31� R. Khomeriki and J. Leon, Phys. Rev. E 71, 056620 �2005�.
�32� F. Ginovart and J. Leon, J. Phys. A 27, 3955 �1994�.
�33� P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals

for Engineers and Physicists �Springer, Berlin, 1954�.

SLOW-LIGHT SOLITONS IN TWO-LEVEL MEDIA … PHYSICAL REVIEW A 75, 063811 �2007�

063811-9


