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A general theory of optical resonance solitons and breathers in the presence of single-excitonic and biexci-
tonic transitions in an ensemble of inhomogeneously broadened semiconductor quantum dots is constructed.
Optical plane wave solitons �2� pulses� are formed in stacked layer structures �many-layered systems� of
semiconductor quantum dots. Optical small-amplitude bright breathers �0� pulses� in semiconductor quantum
dot waveguides are considered. Explicit analytical expressions for the shape and parameters of the solitons and
breathers in the regime of self-induced transparency are obtained as well as simulations of the space-time
dynamics of two-dimensional breathers presented with realistic parameters which can be reached in current
experiments. It is shown that, unlike for plane wave breathers, the parameters additionally depend on the
waveguide mode. In the special case of plane wave breathers in semiconductor quantum dots, known analytical
results are recovered.
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I. INTRODUCTION

The propagation of intense optical pulses in nonlinear me-
dia can result in waves with invariant profiles. Depending on
the carrier frequency with respect to the optical transitions,
these waves can be on- or off-resonant. Resonant nonlinear
waves can be formed within the McCall-Hahn mechanism if
the conditions for self-induced transparency �SIT� are ful-
filled:

�T � 1, T � T1,2, �1�

where T and � are the width and frequency of the pulse and
T1 and T2 are the longitudinal and transverse relaxation times
of the resonant atoms, respectively. Depending on the area of
the pulse � which is a measure of the light-matter interaction
strength, different waves can form: for ���, a soliton �2�
pulse� is generated, and for ��1, an optical small-
amplitude resonance breather �0� pulse� can be formed
�1–5�, which can be viewed as a pulsing soliton with an
internal frequency � and a “wave number” Q with ���
and Q�k, where k is the wave number of the pulse. The
breathers �6� which we are considering here are equivalent to
the pulsating 0� pulse from the McCall-Hahn theory of SIT
and the original breather of the sine-Gordon equation �7�.
Thus, they are like bound states of two kinklike solitons, but
unlike single solitons, they can be excited with relatively low
intensities of the input pulses. It can be shown that these
breathers are related to the single soliton solution of the non-
linear Schrödinger equation �NSE� �8–10�, since the NSE is
the small amplitude limit of both the sine-Gordon and the
SIT �Maxwell-Bloch� equations �8–12�.

In addition to the conditions for the existence of SIT, op-
tical resonance breathers must fulfill the condition

� � � �
1

T
�

1

T2
, �2�

which further limits the media in which breathers can form
�in solids, typically T1�T2�. For instance, these conditions
are satisfied for optical waves in solid dielectrics containing
a small concentration of the resonant impurity atoms �13,14�.
The relation between � and Q must be determined in each
specific case.

The existence of resonance breathers is one of the most
interesting and important manifestations of optical nonlinear-
ity of the medium. Since they have many solitonlike proper-
ties and, unlike solitons, can be excited for relatively small
pulse intensities in comparison to solitons which makes the
experimental realization easier, resonance breathers are of
particular interest for the study of nonlinear optical phenom-
ena. For these reasons, the study of the properties and the
formation of breathers in different media counts as one of the
principal problems in the physics of nonlinear waves. In ad-
dition, a recent study �15� of nonresonant soliton solutions
revealed many interesting aspects, among which is that most
solitons are unstable, and when unstable, the instability al-
most always leads to the formation of a breather. Thus, in
some nonlinear systems, breathers seem to be more stable
and numerous than solitons. Consequently, one can antici-
pate that in some systems, breathers may generally be of
more utility than single soliton solutions �2� pulses�.

In view of this, the physical properties of optical reso-
nance solitons and breathers of SIT in dielectrics containing
small concentrations of the resonant impurity atoms and bulk
semiconductors have been investigated in detail �13,16�. For
theoretical investigations of this phenomenon, the Maxwell-
Bloch equations in �1+1� dimensions are considered. The
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system of equations is integrable in terms of the inverse scat-
tering transform techniques, and the exact solutions of the
equations can be obtained �17–19�. The situation in limited
media is different, and propagating pulses which possess a
transverse structure, for instance, surface waves or wave-
guide modes �2�, need to be considered. Here, for the de-
scription of waves with a transverse structure, it is necessary
to use the Maxwell-Bloch equations in �2+1� or �3+1� di-
mensions and to take into account the boundary conditions of
the different media which requires special considerations.

Semiconductor quantum dots �SQDs� have been studied
extensively in the last years with respect to their nonlinear
optical properties �20�. SQDs, also referred to as zero-
dimensional systems, are nanostructures with confinement of
the charge carriers in all three spatial dimensions, resulting in
atomlike discrete energy spectra with strongly enhanced car-
rier lifetimes. Such features make quantum dots similar to
atoms in many respects �artificial atoms�.

Observation of optical coherence effects in ensembles of
quantum dots is usually spoiled by the inhomogeneous line
broadening due to dot size fluctuations, with typical broad-
enings comparable to electronic level splittings. Quantum
dots often have a base length in the range 50–400 Å. Size
fluctuations in the quantum dot ensemble lead to an inhomo-
geneous single-exciton and biexciton level broadening, with
a full width at half maximum of typically more than several
tens of meV. In addition, semiconductors, as opposed to
atomic systems which can be modeled by noninteracting
two-level systems, experience many-body effects �such as
exciton-exciton interactions leading to the formation of biex-
citonic states� which are unknown in atomic systems. Thus
the situation is more involved in quantum dots as compared
to atoms, because a strong optical pulse cannot only excite
single electron-hole pairs �excitons� but also multiple pairs
�multiexcitons�.

On the other hand, due to the large dipole moments, the
nonlinear interaction between the quantum dots and the op-
tical excitation is strongly enhanced in comparison with
atomic systems. Hence, from a fundamental standpoint, non-
linear optical effects, among them the effect of SIT, will be
substantially different in SQDs. Due to very long relaxation
times at low temperatures �21�, nonlinear optical experi-
ments can be performed with pulses of several tens of pico-
seconds where the influence of phonon dephasing is not of
major importance �22,23�. In addition, great progress has
been made in the exploitation of SQDs for technical devices
and their design and control. Experimental observations of
self-induced transmission on a free exciton resonance in
CdSe �24� and SIT in InGaAs quantum dot waveguides �25�
have been reported. For these reasons, it is interesting to
consider nonlinear optical effects in SQDs. On the theoreti-
cal side, the effect of SIT for solitons in a sample of inho-
mogeneously broadened SQDs in the presence of single-
excitonic and biexcitonic transitions has been investigated
numerically in Ref. �26�. The results have demonstrated that
intense optical pulses have properties of McCall-Hahn’s 2�
pulse and can propagate in realistic dot samples without suf-
fering strong losses. Numerical methods were used to inte-
grate the semiconductor Maxwell-Bloch equations, with
typical values for the pulse and quantum dot parameters.

Rabi oscillations as a prerequisite for resonance solitons
have been discussed numerically in Ref. �27,28�.

Recently, theoretical and numerical investigations of
breathers of SIT have been considered for plane waves in
SQDs, and explicit analytical expressions for the parameters
of the resonance breathers have been presented �29�. The
purpose of the present work is to theoretically investigate the
processes of the formation of optical resonance solitons and
breathers under the condition of SIT in SQD many-layered
systems and waveguides. A comparison with work in spa-
tially homogeneous systems �29� �plane wave propagation� is
made.

II. BASIC EQUATIONS

We consider the formation of optical nonlinear waves of
SIT in many-layered SQD systems for linearly polarized
plane waves as well as in SQD waveguides in the case when
a linearly polarized plane wave TE mode with width T and

frequency ��T−1 with an electric field strength E� �x ,y ,z , t�
=e�E�x ,y ,z , t� is propagating along the positive z axis, where
e� is the vector of polarization directed along the y axis. We
investigate in detail waveguide modes which are limited in
one transverse spatial dimension �here, in x direction� and
are independent of the other spatial dimension.

The pulse is tuned to transitions from the ground state �1�
of the SQD to the states �2� and �3�, with energies E1=0,
E2=��0=Ex+	x /2, and E3=��0=2Ex+	xx, respectively. The
quantities Ex= �E2+E2�� /2 and E3 are the energies of the
single-excitonic and biexcitonic states, respectively. 	x=E2
−E2� and 	xx are the energies of the exciton fine structure
splitting and biexcitonic binding energy �negative if bound�,
respectively �Fig. 1�; � is Planck’s constant. In order that
	x /2���0 and 	xx����0−�0�, the 1 to 2 transition and the
2 to 3 transition are very close to each other and to the pulse
frequency �. To avoid the influence of electron-phonon scat-
tering �22,23�, we assume that the pulse excites the system
mostly within the zero-phonon line �30�. The energetic spec-
trum of the quantum dots can be considered as a quasi-
equidistant three-level system in a cascade configuration
�
13=0� under off-resonant excitation �0−�0−��0 and

E1 |1〉

E′
2

E2

E3

2Ex
δxx

δx/2
Ex

δx/2 |2〉

|3〉

FIG. 1. Schematic of the SQD energetic levels.
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�0−��0. We assume that the detunings from the resonance
�0−�0−� and �0−� lie within the bandwidth of the pulse.

The Hamiltonian of the system is given by

H = H0 + V , �3�

where

H0 = ��0�2��2� + ��0�3��3�

describes the kinetics of the single-excitonic and biexcitonic
states and

V = − P� · E�

is the Hamiltonian of the light-quantum dot interaction. The
vector of polarization

P� �x,z,t� = n0� g�����
� 12�21 + 
� 23�32����,x,z,t�d�� + c.c.

is determined by the interband transitions occurring in the
quantum dots between the three energetic levels. The quan-
tities 
� 12 and 
� 23 are the dipole moments for the correspond-
ing transitions which we assume to be parallel to each other;
g��� is the inhomogeneous broadening function which arises
due to quantum dot size fluctuations. Because the energy
levels depend on the size of the dots, the exciton frequency
�0 and the quantity �=�0−� are also size dependent; n0 is
the constant quantum dot density. Since we investigate the
situation of a small concentration of quantum dots, interac-
tion of one quantum dot with another is neglected in the
Hamiltonian �3�.

The wave equation for the strength of the electric field of
an optical pulse E�x ,z , t� in media has the form

− c2�2E

�z2 + 2�2E

�t2 − c2�2E

�x2 = − 4�
�2P

�t2 , �4�

where

P�x,z,t� = n0� g�����
12�21 + 
23�32����,x,z,t�d�� + c.c.

�5�

is the y component of the vector of polarization, 
12
=
� 12·e�, 
23=
� 23·e�, c is the velocity of light in vacuum, and
 the semiconductor refractive index.

The quantities �nm are the elements of the density matrix
� which are determined by the Liouville equation

i�
��nm

�t
= 	

l

��n�H�l��lm − �nl�l�H�m�� ,

where n ,m , l=1,2 ,3. Substituting in this equation the ex-
pression for the Hamiltonian �3�, we obtain a system of equa-
tions for the elements of the density matrix for the quantum
dot ensemble:

i�
��11

�t
= �− 
12�21 + 
12

* �12�E ,

i�
��22

�t
= �
12�21 − 
23�32 − 
12

* �12 + 
23
* �23�E ,

i�
��33

�t
= �− 
23

* �23 + 
23�32�E ,

i�
��21

�t
= ��0�21 − 
12

* E��11 − �22� − 
23E�31,

i�
��32

�t
= ���0 − �0��32 + 
12E�31 − 
23

* E��22 − �33� ,

i�
��31

�t
= ��0�31 − 
23

* E�21 + 
12
* E�32. �6�

We can simplify Eqs. �4� and �6� using the method of
slowly changing profiles. For this purpose, we represent the
functions E and �nm in the form

E = 	
l=±1

ÊlZl,

�21 = �̂21Z1, �32 = �̂32Z1, �31 = �̂31Z2, �7�

where Êl and �̂nm are the slowly varying complex amplitudes
of the optical electric field and the elements of the density
matrix, respectively, and Zn=ein�kz−�t�. To guarantee that the

quantity E is real, we set Êl= Ê−l
* . We note that such a repre-

sentation of the solutions of a nonlinear wave equation for
pulses in semiconductors is widely used in the theory of
nonlinear waves �1,13,16,29,31–33�.

On substituting the expressions �7� in the nonlinear equa-
tions �4� and �6�, we obtain for the slowly varying complex

amplitudes of the optical electric field Êl the nonlinear wave
equation

	
l=±1

Zl
l2�c2k2 − ��2�Êl − 2ilkc2�Êl

�z
− 2il��

�Êl

�t
− c2�2Êl

�z2

+ �
�2Êl

�t2 − c2�2Êl

�x2 � = − 4�
�2P

�t2 �8�

and the system of equations for the quantities �̂nm,

i�
��11

�t
= − 
12Ê−1�̂21 + 
12

* Ê1�̂21
* ,

i�
��22

�t
= 
12Ê−1�̂21 − 
23Ê−1�̂32 − 
12

* Ê1�̂21
* + 
23

* Ê1�̂32
* ,

i�
��33

�t
= − 
23

* Ê1�̂32
* + 
23Ê−1�̂32,

i�
��̂21

�t
= ���0 − ���̂21 − 
12

* Ê1��11 − �22� − 
23Ê−1�̂31,

i�
��̂32

�t
= ���0 − �0 − ���̂32 − 
23

* Ê1��22 − �33� + 
12Ê−1�̂31,

OPTICAL NONLINEAR WAVES IN SEMICONDUCTOR… PHYSICAL REVIEW A 75, 063808 �2007�

063808-3



i�
��̂31

�t
= ���0 − 2���̂31 − 
23

* Ê1�̂21 + 
12
* Ê1�̂32, �9�

where �=2. Here, the rotating wave approximation for the
density matrix elements has been used �13,16,32�. Equations
�9� are exact only in the limit of infinite relaxation times. To
take into account that we consider a coherent interaction of
the optical pulse with quantum dots, i.e., T�T1,2, the influ-
ence of relaxation on the nonlinear wave processes are ne-
glected in the present work. For this purpose, we consider a
pulse which is short compared to the radiative lifetime of the
system, but long compared to the electron-phonon dephasing
time in order to neglect electron-phonon interaction �27�.

In the absence of phase modulation, Êl= Ê−l= Êl
*= Ê, we

obtain for the real envelope Ê:

	
l=±1

Zl
l2�c2k2 − ��2�Ê − 2ilkc2�Ê

�z
− 2il��

�Ê

�t
− c2�2Ê

�z2

+ �
�2Ê

�t2 − c2�2Ê

�x2 � = − 4�
�2P

�t2 , �10�

and for the slowly varying amplitudes �̂nm:

i�
��11

�t
= �− 
12�̂21 + 
12

* �̂21
* �Ê ,

i�
��22

�t
= �
12�̂21 − 
23�̂32 − 
12

* �̂21
* + 
23

* �̂32
* �Ê ,

i�
��33

�t
= �− 
23

* �̂32
* + 
23�̂32�Ê ,

i�
��̂21

�t
= ���0 − ���̂21 − 
12

* Ê��11 − �22� − 
23Ê�̂31,

i�
��̂32

�t
= ���0 − �0 − ���̂32 − 
23

* Ê��22 − �33� + 
12Ê�̂31,

i�
��̂31

�t
= ���0 − 2���̂31 − 
23

* Ê�̂21 + 
12
* Ê�̂32. �11�

When the transitions between energetic states of the quan-
tum dots correspond to a �m=0 transition, we may take 
21
and 
23 to be real vectors, 
21=
21

* , 
23=
23
* ; such transi-

tions might be induced by linearly polarized light which is
investigated in detail. Analogously, we can consider excita-
tions in quantum dots when we are dealing with �m= ±1
transitions, such as might be induced by circularly polarized
light; 
� 21 and 
� 23 are then necessarily complex vectors.

The systems of nonlinear equations for the slowly varying
envelopes �8�, �9� and �10�, �11� are in sufficiently general
form to describe various processes of the formation and
propagation of optical resonance solitons and breathers in
SQDs as well as for plane waves in many-layered systems
and waveguide modes with transverse structure.

III. SELF-INDUCED TRANSPARENCY IN STACKED
LAYER STRUCTURES (MANY-LAYERED SYSTEMS)

OF SEMICONDUCTOR QUANTUM DOTS

For the study of SIT in stacked layer structures, for ex-
ample, of InxGa1−xAs SQDs embedded in a GaAs host ma-
terial, it is sufficient to consider plane waves, i.e., all quan-
tities characterizing the wave process depend only on one
spatial coordinate z and time �see Fig. 2�a��. In the interac-
tion of an optical pulse with a resonantly absorbing medium,
the most significant effects are usually observed at exact
resonance and no inhomogeneous broadening of the spectral
line g���=	���. Therefore, for simplicity, we first consider
the system of equations �10� and �11� for plane waves in the
absence of phase modulation. Using the slowly varying am-
plitude approximation which is based on the consideration

that the pulse envelopes Êl vary sufficiently slowly in space
and time as compared to the carrier wave parts, i.e.,

� �Êl

�t
� � ��Êl�, � �Êl

�z
� � k�Êl� ,

the wave equation �10� and the polarization �5� take the form

	
l=±1

Zl
l2�c2k2 − ��2�Ê − 2ilkc2�Ê

�z
− 2il��

�Ê

�t
� = 4�l2�2P

�12�

and

P = n0�
12�̂21 + 
23�̂32�Z1 + c.c., �13�

respectively. We should note that such a situation can be
realized only in dielectrics with optically active impurity
atoms, not in SQD systems �see, for example, Refs.
�1,13,16,31��. Nevertheless, the consideration of this situa-
tion is useful for comparison with and generalization to the
more complicated situation which is realized in SQDs.

In the case of exact resonance and an equidistant energy
spectrum, we have

�0 = �, �0 = 2�0, �0 − �0 = � . �14�

Then the system of equations �11� reduces to

(a) (b)

FIG. 2. �Color online� Schematics of the geometries in which
the soliton and breather solutions are considered: �a� a many-
layered SQD system and �b� a SQD waveguide structure with con-
finement in one spatial dimension.
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i
��11

�t
= �̇��̂12 − �̂21� ,

i
��22

�t
= �̇��̂21 − ��̂32 − �̂12 + ��̂23� ,

i
��33

�t
= �̇���̂32 − �̂23� ,

i
��̂21

�t
= �̇�− �11 + �22 − ��̂31� ,

i
��̂32

�t
= �̇�− ��22 + ��33 + �̂31� ,

i
��̂31

�t
= �̇�− ��̂21 + �̂32� , �15�

where

��z,t� =

12

�
�

−�

t

Ê�z,t��dt�

is the area of the pulse and �=
23/
12.
The solution of these equations allows the determination

of the polarization �13�. Under the initial condition of the
quantum dots in the ground state, i.e., �11=1, �22=�33=0 for
t→−� �attenuating medium�, the solutions of Eqs. �15� have
the form

�̂21 =
i

2b3 �sin 2b� + 2�2 sin b�� ,

�̂32 = −
i�

2b3 �sin 2b� − 2 sin b�� , �16�

where

b2 = 1 + �2.

Substituting Eqs. �16� in �13�, the polarization obtains the
following form:

P = in0

12

2b3 	
l=±1

lZl��1 − �2�sin 2b� + 4�2 sin b�� . �17�

On substituting Eq. �17� in the nonlinear equation �12�
and taking into account the dispersion relation c2k2=2�2

for the optical plane waves, we obtain for the real quantity
�=b� the nonlinear wave equation

�2�

�t2 +
c



�2�

�t�z
= −

��
12
2 n0

�2�1 + �2�
��1 − �2�sin 2� + 4�2 sin �� .

�18�

This is the well-known double-sine-Gordon equation
�32,34�. It is not integrable by means of the inverse scatter-
ing transform and not completely integrable in general �34�,

but we can consider the two special cases when �=0 and
�=1.

In the first case ��=0� which corresponds to a two-level
system, Eq. �18� reduces to

�22�

�t2 +
c



�22�

�t�z
= −

2��
12
2 n0

�2 sin 2� , �19�

and in the second case ��=1� corresponding to a three-level
system with equal transition probabilities, Eq. �18� reduces
to

�2�

�t2 +
c



�2�

�t�z
= −

2��
12
2 n0

�2 sin � . �20�

Equations �19� and �20� are the well-known sine-Gordon
equation for the quantities 2� and 2�, respectively
�32,34–36�.

The simplest way to investigate this equation is to use a
local time coordinate �= t−z /V, where V is the constant
pulse velocity. In this case, Eq. �19� transforms to

d2�

d�2 =
1

T2 sin � , �21�

where the pulse width T is determined by the expression

T2 =
�2

2��
12
2 n0

� c

V
− 1� .

Equation �21� has McCall-Hahn’s “2� pulse” or soliton so-
lution

Ê =
2�


12T
sech

t −
z

V

T
.

Analogously, we find a soliton solution of Eq. �20�.
Now we consider SIT for plane waves in SQDs. From the

energetic structure of the quantum dots, we can see that the
conditions of perfect resonance �14� are exact only in the
limits 	x→0 and 	xx→0. In real quantum dots, these quan-
tities are not equal to zero and therefore result in errors by
the amounts of the order 	x /�0 and 	xx / ��0−�0�. To achieve
	x /2���0 and 	xx����0−�0�, the 1 to 2 transition and the
2 to 3 transition are assumed to be very close to each other
and to the pulse frequency �, and the energy spectrum of the
quantum dots is considered as a quasiequidistant three-level
system in a cascade configuration �
13=0� under off-
resonant excitation �0−�0−��0 and �0−��0. We as-
sume that the detunings from the resonance �0−�0−� and
�0−� lie within the bandwidth of the pulse.

Otherwise, it is necessary to apply an excitation with two
pulses of different frequencies, under which condition only
the existence of simultonlike excitations are possible. A si-
multon is a nonlinear two-frequency pulse characterized by
two different carrier wave frequencies which can propagate
in a medium without profile distortion �32�.
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In general, the detunings from the resonance �0−�0−�
and �0−�, which describe the SQDs, are different. Under
the assumption of off-resonant excitation with a constant de-
tuning �0−�0−���0−�=� and 
12=
23, i.e. �=1, Eqs.
�11� are simplified considerably to

i
�p

�t
= �p + �̇N, i

�N

�t
= �̇�p − p*� , �22�

where

p = �̂21 + �̂32, N = �33 − �11.

Assuming the validity of the simple factorization for the
imaginary part of the quantity p, which is usually applied in
the theory of SIT �1,13,16,32�, we obtain

Im p��,z,t� = F���Im p�0,z,t� = F���
1
2

sin 2� ,

�23�

where F��� is the dipole spectral response function
�1,13,37–39�.

Substituting Eq. �23� in the system of equations �22� and
taking into account that for attenuating media �→0 and N
→−1 for t→−�, we find that the function F��� is deter-
mined by the pulse width T and the detuning � in the form

F��� =
1

1 + �2T2

and, as in the case of the two-level system, is Lorentzian
�13,37,38�. From Eqs. �22� and �23�, we obtain the real part
of the quantity p and N:

Re p =
1 − F

�
�̇, N = − F���cos 2� + F��� − 1.

Using these results, the polarization of the SQDs, under the
condition �=1, obtains the form

P = in0

12

2
	
l=±1

lZl� g����F����d�� sin 2� . �24�

We should note that the solutions �16� and �23� describe
two different physically interesting situations. Equations �16�
are the solutions of Eqs. �11� under the condition of exact
resonance �14� and for an arbitrary value of the quantity �;
for example, for the two-level and three-level atom realized
for �=0 and �=1, respectively. Equation �23� is the solution
of Eqs. �11� for off-resonant excitation �0−�0−�=�0−�
�0 and �=1; this describes, for example, the situation in
SQDs. The two solutions coincide for the case �=1 and �0
−�0−�=�0−�=0 �F�0�=1�.

Substituting the polarization �24� in the wave equation
�10�, we obtain the nonlinear wave equation

�dÊ

d�
�2

= T−2Ê2 −

12

2

2�2 Ê4, �25�

where the width of the pulse is determined by the equation

1

T2 =
2��
12

2 n0

� 1

V
−

1

C
�C2�

� g����F����d�� − O��2�; �26�

C=c / is the velocity of light in the medium. The solution
of Eq. �25� for the envelope function has the form �1,13�

Ê =
2


0T
sech

t −
z

V

T
, �27�

where 
0=2
12/�. From Eq. �26�, we can determine the
delay of the 2� pulse on a unit length in the resonance me-
dium

1

V
−

1

C
=

2��
12
2 n0

C2�
� g����d��

T−2 + ��2 − O��2� . �28�

Such optical solitons in SQDs have been investigated nu-
merically in Ref. �26�.

IV. OPTICAL BREATHERS IN SEMICONDUCTOR
QUANTUM DOT WAVEGUIDES

The plane wave breather solution of the system of equa-
tions for the SQDs �10� and �11� in the �many-layered sys-
tem� stacked layer structure of SQDs was considered analyti-
cally in a recent work �29�. Here, we investigate optical
breathers in SQD waveguides. We consider a breather solu-
tion of Eq. �8� for one TE mode of a planar waveguide which
is limited to −h /2�x�h /2 in one transverse spatial dimen-
sion and is independent of the other spatial coordinate y. For
TE modes, only the components Ey of the electric and Hx and
Hz of the magnetic field of the waveguide modes do not
vanish. We should note that waveguides which are limited in
both x and y directions will be approximately described by
means of a planar model of waveguide if the limitation in
one direction is much stronger than in the other, i.e., �Lx
��Ly, where �Lx ,�Ly are the extension of the waveguide in
the x and y direction, respectively.

In the absence of phase modulation, the envelope of the

electric field Êl�x ,z , t� and the function of the transverse
structure of the waveguide mode ��x� will be real functions,

i.e., ��x�=�*�x� and Êl= Êl
*. Then El

ˆ can be factorized and

written in the form El
ˆ �x ,z , t�=��x�El

˜ �z , t� �1,2,40,41�. The
functions ��x� for different waveguide modes are orthogonal
to each other �40,41�.

Multiplying Eq. �8� by the function ��x� and integrating,
we obtain
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� ��x� 	
l=±1

Zl
l2�c2k2 − ��2�Êl − 2ilkc2�Êl

�z
− 2il��

�Êl

�t

− c2�2Êl

�z2 + �
�2Êl

�t2 − c2�2Êl

�x2 �dx = 4�l2�2� ��x�Pdx .

�29�

For simplicity, the index l of the quantity Êl will be neglected
in the following:

� ��x� 	
l=±1

Zl
l2�c2k2 − ��2�Ê − 2ilkc2�Ê

�z
− 2il��

�Ê

�t

− c2�2Ê

�z2 + �
�2Ê

�t2 − c2�2Ê

�x2 �dx = 4�l2�2� ��x�Pdx .

�30�

Unlike for situations considered in the previous section for
solitons and in Ref. �29� for breathers, which are valid only
for plane waves, for waves with transverse structure it is
important to keep the second order derivatives for the trans-
verse coordinate x in the wave equations �29� and �30�.

In the further considerations, it will be more convenient to
transform this equation to the following form:

� ��x� 	
l=±1

Zl�Wl
��

�t
− iAl

�2�

�t2 − iBl
�2�

�z�t
− c2 �3�

�z2�t

+ �
�3�

�t3 �dx =
4�l2�2
12

�
� ��x�Pdx , �31�

where

Wl = l2�c2k2 − ��2� − c2 �2

�x2 , Bl = 2lkc2, Al = 2l�� ,

��x,z,t� =

12

�
�

−�

t

Ê�x,z,t��dt� = ��x�

12

�
�

−�

t

Ẽ�z,t��dt�

= ��x���z,t�; �32�

the polarization P is determined from Eq. �5�.
Taking into account that for waveguide modes with

l= ±1,

W±1��x� = 0, �33�

and hence that the transverse equation

�2�

�x2 + �m� = 0 �34�

is satisfied for the waveguide mode, where ��2 /c2−k2=�m
is the mode eigenvalue, Eq. �31� reduces to

	
l=±1

Zl�− iAl
�2�

�t2 − iBl
�2�

�z�t
− c2 �3�

�z2�t
+ �

�3�

�t3 �

=
4�l2�2
12

�

� ��x�Pdx

� �2�x�dx

�35�

with the polarization

P�x,z,t� = i
n0
12

2
	
l=±1

lZl� g����F����d�� sin 2��x,z,t� .

�36�

We consider a breather solution of Eq. �35� under the
condition ��1. For this purpose, we make use of the per-
turbative reduction method, in which we use the following
expansion for the area of the nonlinear pulse �35,42�:

��x,z,t� = ��x�	
�=1

�

	
n=−�

�

��Ynfn
�����,�� , �37�

where

Yn = ein�Qz−�t�, � = �Q�z − vgt�, � = �2t, vg =
��

�Q
;

� is a small parameter. Such a representation allows us to
separate from � the still more slowly changing quantities
fn

���. Consequently, it is assumed that the quantities �, Q, and
fn

��� satisfy the inequalities

� � �, k � Q, � �fn
���

�t
� � ��fn

����, � �fn
���

�z
� � Q�fn

���� ,

and Eq. �2�.
On substituting Eqs. �36� and �37� in Eq. �35�, we obtain

the nonlinear wave equation

	
l=±1

	
�=1

�

	
n=−�

�

��YnZl�W̃l,n+�Jl,n
�

��
+�2hl,n

�

��
+�2iHl,n

�2

��2� fn
���

= − i
R̃

3 	
l=±1

	
�,��,��=1

�

	
n,n�,n�=−�

�

lZlYn��+��+��fn−n�−n�
��� fn�

����fn�
����,

�38�

where

W̃l,n = − in��− Aln� + BlnQ − �n2�2 + c2n2Q2 +
l

n

R

�
� ,

Jl,n = Al2n�Qvg − BlnQ�� + Qvg� + 3n2��2Qvg

− c2n2Q2�2� + Qvg� ,

Hl,n = − AlQ
2vg

2 + BlQ
2vg − 3�n�Q2vg

2 + c2nQ2�� + 2Qvg� ,

hl,n = − Al2n� + BlnQ − 3�n2�2 + c2n2Q2,
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R =
4��2
12

2 n0

�
� g����F����d��, R̃ = R

� �4�x�dx

� �2�x�dx

.

�39�

The constant R characterizes the nonlinear interaction of the
optical pulse with the quantum dots and depends on the in-
homogeneous broadening of the spectral line. The coefficient

R̃ additionally takes into account the transverse structure of
the waveguide mode.

To determine the values of fn
���, we equate the various

terms corresponding to the same powers of �. As a result, we
obtain a chain of equations. In first order,

W̃l,nfn
�1� = 0. �40�

In the following, we are interested in a breather which van-
ishes for t→ ±�. Consequently, according to Eq. �40�, only
the quantities f±1

�1� differ from zero. The relation between �
and Q, for fixed values of l and n �l ,n= ±1�, is determined
from Eq. �40�:

Aln� − BlnQ + �n2�2 − c2n2Q2 −
l

n

R

�
= 0. �41�

We have to consider the situation when n= l= ±1, where
f l

�1��0 and f−l
�1�=0 separate from the situation when n=−l

= ±1, where f−l
�1��0 and f l

�1�=0. The former case is consid-
ered in detail. Substituting Eq. �41� in Eqs. �39� with n= l
= ±1, one easily sees that the following equations hold:

Jl,l = 0,

vg =
c2�k + Q�

��� + � +
R

2��2� ,

Hl,l = lQ2��c2 − �vg
2 + vg

2 R

�3� ,

hl,l = − 2���� + � +
R

2��2� . �42�

To second order in �, we obtain

f l
�2� = 0. �43�

Substituting Eqs. �41�–�43� in Eq. �38� and taking into ac-

count that from the condition Êl= Ê−l
* follows that f−l

�1�

= �f l
�1��*, we obtain, using the definition Hl,l= lH0, to third

order in �:

− ilhl,l
�f l

�1�

��
+ H0

�2f l
�1�

��2 + R̃�f l
�1��2f l

�1� = 0. �44�

From Eq. �44�, after simple transformations, we obtain the
well-known nonlinear Schrödinger equation �NSE� for the
quantity � j =�f j

�1� �j= ±1�:

ij
�� j

�t
+ p

�2� j

�y2 + q�� j�2� j = 0, �45�

where

p =

c2 − �vg
2 + vg

2 R

�3

2��� + � +
R

2��2� , q =
R̃

2���� + � +
R

2��2� ,

y = z − vgt . �46�

The quantity q contains R̃ and hence depends on the
waveguide mode. Under the condition pq�0, i.e., stabiliza-
tion between “dispersion” and nonlinear compression of the
pulse, the NSE has a fundamental or N=1 soliton, a so-called
bright NSE soliton, solution,

� j = K
eij�1

cosh �2
, �47�

where

�1 =
Vb

2p
z − �Vbvg

2p
+

Vb
2

4p
−

q

2
K2�t,

�2 = K q

2p
�z − �vg + Vb�t� . �48�

K and Vb are the amplitude and velocity of the nonlinear
wave, respectively. Substituting the soliton solution for the
superenvelope Eq. �47� in Eq. �37� and taking into account
that the function cosh �2 varies more slowly than cos�Qz
−�t+�1�, we obtain for the envelope of the electric field the
bright breather solution �2,9–11,43,44�

Ê�x,z,t� =
2K��


12

sin�Qz − �t − �1�z,t��
cosh �2�z,t�

��x� . �49�

The appearance in expression �49� of the factor sin�Qz
−�t−�1�z , t�� indicates the presence of periodic beats �slow
in comparison with the spatial coordinates and time, with
characteristic parameters � and Q�, as a result of which the
soliton solution �47� for f l

�1� is transformed into the solution

�49� for the real envelope Ê. This is a closed-form time- and
space-periodic solution of the nonlinear wave equation �10�.
In the framework of the NSE, it is called simply a soliton,
but in the framework of SIT or the sine-Gordon equation, it
would be called a breather �pulsing soliton�, with the NSE
soliton being the envelope. In either framework, to the order
that these equations have been expanded, the solutions will
propagate through the medium without any loss of energy
and be stable against infinitesimal perturbations of the inital
data �34�. Equation �49� is a breather in the above sense with
the NSE soliton as the envelope and the phase modulation
given by �1�z , t��0.

The stability of the breather solution as it propagates in a
solid is a question which has not been addressed in this pa-
per. This would require one to carry out the expansion done
herein to one additional order. Doing so would yield a col-
lection of various terms involving damping, anisotropy, and
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diffraction which would act on the breather as it propagates.
Once such terms are obtained, there are standard methods for
determining their effects on a breather or soliton solution
�17,45�.

Unlike for solitons where the pulse velocity is related to
the pulse width T �see Eq. �26��, in the case of the NSE
soliton �breather� the pulse velocity and the pulse width are
independent from each other �46�. Figure 3 shows the space-
time dynamics of the breather solution for realistic quantum
dot and pulse parameters �52�. In Fig. 3�a�, the evolution of
the breather solution inside and outside the waveguide with
thickness h is shown. In Fig. 3�b�, a cross section of the
breather at x=0 is given, showing the breather oscillating
with frequency �.

V. CONCLUSION

In the present paper, we have shown that in the propaga-
tion of optical pulses through SQD media under the condi-
tion of SIT, optical solitons �2� pulses� and small-amplitude
breathers �0� pulses� can arise. The soliton of SIT is inves-
tigated analytically which up to now has only been consid-
ered numerically �26�. The explicit forms of the shape and
velocity of the plane wave soliton are given by Eqs. �27� and
�28�. We have obtained the small-amplitude breather solution
for the sine-Gordon equation �19� and �20�, which is well
known to be the soliton solution of the NSE �11,12,43,47�,
using the expansion �37�. Another way of transforming the
small-amplitude wave packets of the sine-Gordon equation
to the NSE can be found in the monograph �12�.

The breathers of SIT which are considered in SQD
waveguides have a transverse structure and are characterized
by the function ��x� which is determined by Eq. �34�. The
explicit form of the breather shape and parameters deter-
mined via the waveguide mode are given by Eqs. �46�, �48�,
and �49�. The relation between the breather beat quantities �
and Q is given by Eq. �41�. The breather solution is valid if
the condition qp�0 is satisfied. In analogy to solitons, we
can call the solution �49� fundamental or bright breather.

It should be noted that these results and their interpreta-
tion are applicable to pulses with sufficiently smooth enve-
lopes under the condition that the size of the pulse is large in
comparison with the wavelength, i.e., kL0�1, where L0 is
the length of the soliton or breather. Moreover, the length of
the breather should be much greater than the characteristic
length of change of the periodic beats, QL0�1.

It should also be noted that the NSE contains not only the
soliton solution �47�, but also N-soliton solutions with a
more complicated behavior. In particular, for N-soliton solu-
tions of the NSE, there are characteristic oscillations of the
envelope and strong compression of the pulse peaks already
in the initial stage of propagation of the wave. Under these
conditions, we cannot always use the slowly varying enve-

lope approximation, nor the separation from Êl of the more
slowly varying parts f l

��� �Eq. �37��. Therefore, the scheme
presented above is not valid for such solutions, and for them
a completely different method is needed �see, for example,
Ref. �48��.

We considered the situation when a phase modulation is

absent, Êl= Êl
*, and thus the quantities Êl and � are real

functions. In order to find the breather �NSE soliton� solu-
tion, we have used the expansion �37� to separate from the
real quantity � the more slowly varying complex functions
f l

��� which satisfy the NSE and contain the phase function
�1�z , t�. Consequently, the existence of the phase function
�1�z , t� does not mean that we take into account a phase
modulation. In order to consider the more general situation
with phase modulation �which is not the goal of this article�,
it is necessary to consider a more general form of Eq. �29�
under the condition that the Êl is a complex function and
contains a phase function which depends on the time and
space variables.

Finally, it should be noted that the results for breathers of
the waveguide mode are generalizations of the situation con-
sidered in Ref. �29� in which plane wave SIT breathers, for
example, in a stacked layer structure �many-layered system�
of SQDs, are investigated. Unlike for the plane wave
breather solution, the parameters �1 and �2 of the breather in

the waveguide depend on the quantity R̃ and consequently on
the waveguide mode. However, the relation between � and
Q characterizing the oscillations of the breather is indepen-
dent of the waveguide mode. We have considered here the
breather solution �49� to the continuous Maxwell-Bloch
equations, but we should note that breathers can also appear
in different physical situations such as, for instance, discrete
breather solutions �49,50� as well as quantum breathers in
electron-phonon coupled finite chain systems �51�, which
have similar properties.

h

(a)

-80 -40 0 40 80time [ps] -1
-0.5

0
0.5

1

x [µm]

E [arb. units]

h/2

(b)

-80 -40 0 40 80time [ps] 0

0.5 x [µm]

E [arb. units]

FIG. 3. �Color online� In �a�, the general form of the two-
dimensional breather is shown for a fixed value of z. Along the x
axis, the dark zone corresponds to the thickness of the waveguide.
Outside of the waveguide, the breather amplitude decays exponen-
tially as one moves away from the boundaries. �b� shows a cut of
the breather at x=0. The breather oscillates with the frequency �
along the t axis. This cut corresponds to the one-dimensional
breather result of Ref. �29�.
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In conclusion, we have predicted the existence of optical
breathers in a three-level SQD system for experimentally rel-
evant parameters. In particular, we predict optical breathers
with a temporal length of a few tens of picoseconds and peak
intensities of several MW/cm2. We hope that the presented
results will initiate a search for breathers in quantum dot
nanostructures. Breathers as stable wave solutions are of im-
portance for the lossless and shape-invariant transport of in-
formation on nanoscales. Technically, the different approxi-

mations presented here could be used in the future for a
search for other types of 0� pulses than investigated here.
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