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Quantum theory of the intraband resonant tunneling of a Bose-Einstein condensate loaded in a two-
dimensional optical lattice is considered. It is shown that the phenomena of quantum collapse and revival can
be observed in the fully quantum problem. The mean-field limit of the theory is analyzed using the WKB
approximation for discrete equations, establishing in this way a direct connection between the two approaches
conventionally used in very different physical contexts. More specifically we show that there exist two differ-
ent regimes of tunneling and study dependence of quantum collapse and revival on the number of condensed
atoms.
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I. INTRODUCTION

Passage from the exact many-body description of an
atomic gas at zero temperature to the mean-field theory is
based on the assumption about large occupation number N of
the ground �or, more generally, some specific quantum� state.
Then N−1/2 can be shown to be the parameter of expansion,
which in the leading order gives the Gross-Pitaevskii equa-
tion �1�. Respectively, the mentioned requirement must also
be applied to mean-field theories of the Landau-Zener tun-
neling �2–4�, for which interesting experimental data are
available �5�, to instabilities of Bose-Einstein condensates
�BEC’s� in optical lattices �3,6� observed experimentally in
�7�, and to a theory of nonlinear Bloch-band tunneling �8�.
Similar approach was also exploited in a pure quantum
theory of a Bose-Einstein condensate �BEC� in a double-well
trap �9�, based on a model with linear coupling �10�. Either
for the Bloch-band tunneling problem or for the tunneling in
a double-well potential the approach of large N is justified
when the system is close to the mean-field regime and the
respective dynamical solutions are characterized by the es-
sentially nonzero populations of the quantum states between
which tunneling occurs. Such regimes indeed exist when the
description is reduced to a dimer �11�. At the same time the
mean-field approximation to the above problems allows so-
lutions where the populations of the states repeatedly be-
come zero. Strictly speaking this violates the initially made
supposition about large atomic numbers, because a state with
negligible population cannot be treated in the mean-filed ap-
proximation. Therefore the theory requires modifications.

We thus can formulate the main goal of the present paper
as the analysis of the macroscopic nonlinear tunneling be-
tween two quantum states with the same �or infinitely close�
energies in the limit corresponding to large total number of
particles, allowing however populations of each of the states
to become negligibly small at some moments of time. We
will pay the main attention to the quantum effects, not ac-
counted by the standard mean-field theory.

To be specific, as a physical system we explore a BEC
loaded in a two-dimensional optical lattice and consider tun-
neling between two states with the same energy. Such a situ-
ation can be experimentally realized in at least two different
ways. First, one can use a nonseparable lattice, with properly
chosen parameters providing closer of the lowest gap �as, for
example, this is suggested in �8��. Then nonlinear tunneling
occurs between X and M points of two different bands �see
Fig. 1�. A more general situation, however, corresponds to
the nonlinear tunneling between two X points of the same
band, rotated by � /2 with respect to each other �these are the
points X1,2 in Fig. 1�. Such intraband tunneling does not de-
pend on the size of the gap, and hence can be observed in
any lattice including separable one. Moreover, whenever one
deals with the nonlinear tunneling, the stability issue ac-
quires especial importance �3,8�, since depending on the sign
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FIG. 1. �Color online� The contour plot of the periodic potential,
given by Eq. �38� below, used for the numerical simulations. The
inset shows the first Brillouin zone, the reciprocal lattice basis vec-
tors Q1,2, and the high symmetry points �, M, and Xj. The nonlinear
intraband tunneling occurs between the points X1 and X2.
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of the effective mass the homogeneous excitations can be
either modulationally stable or unstable. This in particular
means that tunneling between two states in different bands
�like tunneling between X and M points, mentioned above,
or, tunneling in one-dimensional case between two neighbor
zones� represents a transition between stable and unstable
states, what causes asymmetry of the tunneling. That is why,
in the present paper we concentrate on intraband tunneling
between two stable X points, what rules out instability and
allows one to limit the consideration to plane Bloch waves.

In the mean-field approximation this problem was consid-
ered in �12�, which in the two-mode approximation is re-
duced to a model imitating either a Josephson junction or
Rabi oscillations in a system of two-level atoms. Such a
model describes population oscillations between two states.
Using the mentioned analogy, one can predict that quantiza-
tion of the motion should result in quantum collapse and
revival of the above oscillations �13�. Obtaining those phe-
nomena in the process of intraband tunneling constitutes the
second aim of the present paper.

Finally, we emphasize an interesting mathematical aspect
of the problem at hand. Namely, we will establish a formal
link between the mean-field approximation, where the small
parameter can be identified as 1/N and the discrete WKB
method, having � as a formal small parameter, which is de-
scribed in details in Ref. �14�. In our approach both methods,
appearing originally as independent as they are used in dif-
ferent setups and based on different physical assumptions,
are intimately related to each other allowing us to appreciate
the accuracy of the mean-field model, which will be the third
goal of the present work. It is to be mentioned that earlier the
link between the semiclassical and mean-field approaches
was discussed in �15�, where a linearly couped two-level
system, modeling either a BEC in a double-well trap or a
spinor condensate, was considered and where the quantum
corrections appeared as a decoherence of the quantum states.
We, thus present one more physical system, a BEC in an
optical lattice, having no linear coupling and rather different
stability properties, which also allows experimental verifica-
tion of the mean-field approximation. In our case the quan-
tum effects will be manifested through the quantum collapse.

The paper is organized as follows. In Sec. II we deduce
the quantum two-mode model describing resonant intra-band
tunneling, expand its solution over the Fock basis and de-
duce the dynamical system for the expansion coefficients. In
Sec. III we discuss the mean-field approximation starting
with the derived dynamical system and based on the WKB
method for discrete equations. Section IV is devoted to nu-
merical study of both full quantum and mean-field models.
The outcomes are summarized in the Conclusion.

II. QUANTUM MODEL

A. Inter- and intraband transitions

Let us start with the Hamiltonian of a BEC in a two-
dimensional, x�R2, optical lattice V�x�,

H = �
V

d2x �†�x��−
�2

2m
�2 + V�x����x�

+
g

2
�

V
d2x �†�x��†�x���x���x� , �1�

where V=Mv0 is the total area of the lattice consisting of M
cells each one of the area v0, g is the interaction coefficient
in two dimensions, and �†�x� and ��x� are the creation and
annihilation field operators. Introducing the Bloch waves
�nk�x� through the standard eigenvalue problem
�−��2 /2m��2+V�x���nk=Enk�nk, where n is a number of the
zone and k is the wave vector in the first Brillouin zone
�BZ�, and considering them orthonormalized;
�V�nk

* �x��n�k��x�dx=�nn��kk�, we represent

��x� = 	
n,k

�n,k�x�bn,k, �2�

where the creation and annihilation operators satisfy the
usual commutation relations �bnk ,bn�k��=0 and �bnk ,bn�k�

† �
=�nn��kk�.

The expansion �2� allows one to rewrite the Hamiltonian
in the form

H = 	
n,k

Enkbnk
† bnk

+ 	
k1,. . .,k4

n1,. . .,n4

�k1k2k3k4

n1n2n3n4 �k1+k2−k3−k4,Qbn1k1

† bn2k2

† bn3k3
bn4k4

,

�3�

where Q is an arbitrary vector of the reciprocal lattice,

�k1k2k3k4

n1n2n3n4 =
g

2
�

V
d2x �n1k1

* �n2k2

* �n3k3
�n4k4

�4�

�hereafter an asterisk stands for complex conjugation�.
Next we apply the rotating wave approximation, i.e., ne-

glect all four-wave processes which do not satisfy the energy
conservation law. This allows us to simplify the Hamiltonian
�3�:

H = 	
n,k

Enkbnk
† bnk + 	

k1,. . .,k4

n1,. . .,n4

�k1+k2,k3+k4+Q�En1k1
+En2k2

,En3k3
+En4k4

� �k1k2k3k4

n1n2n3n4 bn1k1

† bn2k2

† bn3k3
bn4k4

. �5�

Further reduction of the Hamiltonian can be done by tak-
ing into account that the periodic medium is highly disper-
sive, and therefore for the resonant four-wave interactions,
equality of the group velocities of the respective matter
waves must be imposed. In the case of tunneling between
two states, say �n1 ,q1� and �n2 ,q2�, this means the constraint
�En1q1

/�q1=�En2q2
/�q2. Together with the momentum and

energy conservation laws, expressed by the first and the sec-
ond Kronecker deltas in Eq. �5�, this means that the resonant
nonlinear tunneling can occur only between highly symmet-
ric points of the BZ. As far as we have limited ourselves to
the intraband tunneling, we conclude that the only points of
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the BZ—the points X—satisfy the above requirements.
Moreover, in the BZ there are only two physically different X
points. Assuming that the lattice is orthogonal with a period
d in both directions, the BZ can be identified simply as the
domain �−� /d ,� /d�� �−� /d ,� /d�. Consequently the two X
points we are interested in, below they are referred to as X1
and X2, correspond to the two vectors q2= �0,� /d� and q1

= �� /d ,0�. The group velocities in these points are zero.
Now one readily verifies that Eq. �5� is significantly sim-

plified allowing one to rewrite the Hamiltonian in the form
of a sum

H = 	
n

Hn + Hi−b, �6�

where

Hn = Enq1
bnq1

† bnq1
+ Enq2

bnq2

† bnq2
+ �q1q1

nn �bnq1

† bnq1

† bnq1
bnq1

+ bnq2

† bnq2

† bnq2
bnq2

� + �q1q2

nn �bnq1

† bnq1

† bnq2
bnq2

+ bnq2

† bnq2

† bnq1
bnq1

+ 4bnq1

† bnq2

† bnq1
bnq2

� �7�

describes intraband transitions between states X1 and X2 of
the nth band and

Hi−b = 4 	
n1n2

n1�n2

�q1q2

n1n2�bn1q1

† bn2q2

† + bn2q1

† bn1q2

† �

��bn1q1
bn2q2

+ bn2q1
bn1q2

� �8�

describes transitions between X points of different bands. In
the above formulas we introduced �q1q2

n1n2 =�k1k2k1k2

n1n2n1n2 and used
the symmetry properties of the Bloch functions, giving in
particular �q1q1

nn =�q2q2

nn and �q1q2

nn =�q2q1

nn , as well as the fact
that �nq1

and �nq2
correspond to X points and hence can be

chosen real and periodic.

B. Dynamical equations and their accuracy

Dynamics of the condensate can be described by the time
evolution of the coefficients of the expansion of a given mul-
tiparticle state 
	�t�� over the Fock basis. In the case when
initially one band, say the band n0, is populated more densely
than the other ones, it is natural to represent the basis as

N1 ,N2 ;n�, where Nj stand for the occupation numbers of the
states X j of the given band, while n symbolically designate
occupation numbers of all other bands. Thus


	�t�� = 	
N1,N2,n

CN1N2n�t�
N1,N2;n� . �9�

Now we consider the situation, where initially �i.e., at t
=0� all atoms belong to X points of the chosen band, i.e.,
when N1+N2=N with N being the total number of particles.
Then, introducing the simplified notation 
N1 ,N2�
= 
N1 ,N2 ;0� for such states, which also can be rewritten as

N1 ,N2�= 
k ,N−k�= 
k� 
N−k� �here k=N1�, and respectively
CN1N20�t��Ck�t�, we can express


	�0�� = 	
k=0

N

Ck�0�
k,N − k�, 	
k=0

N


Ck�0�
2 = 1. �10�

For the next step, it is not difficult to verify that the dy-
namics of a state, initially spanned over the kets 
k ,N−k�,
i.e., subject to the initial condition �10�, which is induced by
the Hamiltonian �6� results only in the states belonging to
initial subspace, i.e.,


	�t�� = 	
k=0

N

Ck�t�
k,N − k�, 	
k=0

N


Ck�t�
2 = 1, �11�

for all t.
Indeed, substituting Eq. �9� in the Schrödinger equation

i�
� 
	�

�t
= H
	� �12�

and applying 
N1 ,N2 ;n
 in order to obtain the equations for
the expansion coefficients, one finds that for all coefficients
with N1+N2
N �i.e., for states with n�0� the derivatives
dCN1N2n /dt linearly depend on different CN1�N2�n� with N1�
+N2�
N, but do not depend on CN1N20. This follows from the
relations Hi−b 
N1 ,N2�=0 and Hn 
N1 ,N2�=0 for n�n0. The
first of these formulas means that no coupling occurs when at
least one of the states in not occupied, while the second
relation means zero result when one probes the energy of an
empty band �Hn does not originate interband transitions� and
in our case the only band, n0=0, is initially occupied. Thus
all the coefficients CN1N2n with n�0 are identically equal to
zero, provided they are zero at t=0.

Summarizing the described situation subject to assump-
tion that only one band n0 is populated and neglecting the
unessential for the dynamics the linear energy term En0q1
+En0q2

, one arrives at the effective two-mode model whose
Hamiltonian can be written down in the form

Heff = Hn0
− En0q1

− En0q2
+ �11�n1 + n2� = �11�n1

2 + n2
2

+ ��4n1n2 + �b1
†�2b2

2 + �b2
†�2b1

2�� , �13�

where bj =bn0qj
, i.e., b1

† 
k ,N−k�=�k+1 
k+1,N−k� and
b2

† 
k ,N−k�=�N−k+1 
k ,N−k+1�, nj =bn0qj

† bn0qj
are the

populations of the states Xj of the band n0, �11=�q1q1

n0n0, and
�=�q1q2

n0n0 /�q1q1

n0n0 . Hamiltonian �13� preserves the total number
of atoms in the Xj points, what naturally reflects the approxi-
mations made.

The above calculations, which resulted in Eq. �13�, hold
for the more general Hamiltonian �5� obtained in the rotating
wave approximation, but fail for the original model account-
ing all possible transitions �not only the resonant ones�. This
defines the accuracy of the two-mode approximation: The
ratios between the accounted and neglected terms are of the
order of 1 /N.

Now the Schrödinger equation �12� with H substituted by
Heff results in a system of ordinary differential equations for
the coefficients Ck

i

N

dCk

d�
=

�

4
�bk−1Ck−2 + bk+1Ck+2� +

ak

4
Ck, �14�

with the dimensionless time �= �4�11N /��t and with the co-
efficients
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ak = 1 + 2�2� − 1�
k

N
�1 −

k

N
� , �15�

bk = � k

N
� k

N
+

1

N
��1 −

k

N
��1 −

k

N
+

1

N
��1/2

. �16�

III. FICTITIOUS PARTICLE REPRESENTATION
AND THE SEMICLASSICAL LIMIT

A. Mean-field equations viewed as a quasiclassical limit

Equation �14� can be viewed as the Schrödinger equation
for a fictitious quantum particle in the one-dimensional dis-
crete space k= �0,1 ,2 , . . . ,N�. Indeed, setting x=k /N and h
=2/N, introducing a differentiable function ��x� of the con-
tinuous variable x� �0,1�, such that ��x�=�NCk /2 at the
points x=k /N �17� let us define the quantities:

bh
�±��x� = bh�x + h/2� ± bh�x − h/2� ,

bh�x� = �x�x + h/2��1 − x��1 − x + h/2��1/2,

a�x� = 1 + 2�2� − 1�b0�x� .

Now Eq. �14� becomes

ih����x� =
a�x�

2
��x�

+
�

2
�bh�x +

h

2
�eip̂ + bh�x −

h

2
�e−ip̂���x� . �17�

Here the parameter h plays the role of the Plank constant �,
p̂�−ih�x is the “momentum operator” of the fictitious par-
ticle, and the “wave function” ��x� is assumed to be normal-
ized in the usual way �0

1dx 
��x�
2=1.
Equation �17� describes a fictitious quantum particle of

the mass proportional to 1/� moving in a compact curved
space defined by the interval �0,1� �hence bh

�±��x� are the
functions of the momentum operator�. Note that the “mo-
mentum” eigenvalues can be restricted to the first BZ, i.e.
�−� /d ,� /d�.

The semiclassical dynamics corresponds to the limit h
→0, i.e., when the number of BEC atoms N→
, what is the
usual limit of the Gross-Pitaevskii equation. It should be
noted that the characteristic time t of the evolution scales as
�gN�−1�; hence the quantity gN must be kept fixed, which is
the second condition of the mean-field limit. It is also clear
that the limit h→0, if it exists, corresponds to the continuous
limit of the discrete equation �17� �see also Ref. �14��.

In order to derive the quasiclassical equation correspond-
ing to the limit h→0 we proceed in the usual way. Setting
��x ,��=eiS�x,�,h�/h for a complex action S�x ,� ,h� viewed as a
series S=S�0�+hS�1�+¯, we get the equation

− S� =
�

2
�bh�x +

h

2
�e�i�S�x+h�−S�x��/h�

+ bh�x −
h

2
�e�i�S�x−h�−S�x��/h�� +

a�x�
2

. �18�

Assuming that the function S�x ,� ,h� has derivatives with
respect to x up to the second order, expanding

S�x ± h� − S�x�
h

= ± Sx
�0� + O�h�

and setting h→0 in Eq. �18� we get the Hamilton-Jacobi

equation for the classical action S̃�x ,��=S�0��x ,��−� /2:

− S̃� = b0�x��� cos�S̃x� + 2� − 1� �19�

�recall that b0�x�=x�1−x��.
Thus the physical sense of the transition to the classical

limit in our problem is the transition from a discrete equation
to its continuous limit. Note that in our setup the usual clas-
sical limit �→0, sometimes understood as a mathematical
abstraction, acquires the well established sense of the limit of
a large number of atoms and thus can be studied experimen-
tally.

In the case of a finite h �finite N� we have �p̂ ,x�=−ih, i.e.,
the usual canonical commutator of the momentum and coor-
dinate. It turns out, however, that quasiclassical dynamics is
more convenient to describe in terms of variables z=1−2x

and �= S̃x= p, where x and p are the classical limits of the
corresponding quantum variables. Then the Poisson brackets
of the respective classical dynamics read

��,z� = lim
h→0

i

h
�p̂,1 − 2x� = − 2

and the classical Hamiltonian can be recovered from the
Hamilton-Jacobi equation �19�:

H =
1

4
�1 − z2��2� + � cos � − 1� . �20�

Thus the classical Hamiltonian equations have the form

ż = − 2
�H

��
=

�

2
�1 − z2�sin � , �21a�

�̇ = 2
�H

�z
= �1 − 2� − � cos ��z . �21b�

In our case these equations correspond to the mean field
approximation.

In order to clarify the physical meaning of the introduced
classical variables z and � let us compute
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�n2 − n1�
	� = N 	
N1,N2

N1+N2=N

CN1

* N2 − N1

N
CN1

= N�1 − 2	
k=0

N
k

N

Ck
2� = N�1 − 2
x�� �22�

and


	
�b2
†�2b1

2
	� = N2	
k=0

N

Ck
*bk+1Ck+2 = N2�bh�x +

h

2
�eip̂�

�23�

�in the last formula we used Ck+2=eip̂Ck�.
Thus in the limit h→0

z = lim
h→0


z� =

n2� − 
n1�

N
�24�

is the relative population of the states �as it is clear z� �
−1,1�� and

� = lim
h→0


p̂� = arg
�b2
†�2b1

2� . �25�

is the relative phase.

B. On the mean-field dynamics

Let us now discuss some aspects of the dynamics de-
scribed by the mean-field approximation. First of all we ob-
serve that the system �21� has two fixed points: P1= �z
=0,�=0� and P2= �z=0,�=��. The respective frequencies
are �1

2= �3� /2���−�c� and �2
2= �� /2��1−�� with �c

=1/3. Thus one easily verifies that P2 is a local maximum,
while P1 is a saddle-point for �
�c and a local minimum
for ���c.

Next, following Ref. �14� we take into account that the
classical energy E=H�z ,�� is bounded by the two potential
curves, one corresponding to �=0 �the curve U�+��x�� and
the other to �=� �the curve U�−��x��:

U�−��x� = �� − 1�b0�x�, U�+��x� = �3� − 1�b0�x� , �26�

i.e., U�−��x��E�U�+��x�. Therefore, the turning points of the
classical system �21a� and �21b� lie on the curves U�±��x�.
One can express the period of oscillations between two turn-
ing points x1 and x2 as follows:

T = 2�
x1

x2 dx
��U�+� − E��E − U�−��

. �27�

This integral can be expressed in terms of the complete el-
liptic integral of the first kind K�·�. To this end we single out
four physically different cases.

Case 1. If �
�c and the energy of “classical” motion is
�3�−1� /4
E
0, the turning points belong to different
curves, for instance,

x1 =
1

2
�1 −�1 +

4E

1 − �
� � U�−�,

x2 =
1

2
�1 −�1 +

4E

1 − 3�
� � U�+�,

and the period is given by

T1 =

4K� 2�− 2E�

��1 − 3���1 − � + 4E�
�

��1 − 3���1 − � + 4E�
. �28�

The difference in the atomic population oscillates about a
nonzero value.

Case 2. If �
�c and the energy of “classical” motion is
��−1� /4
E
 �3�−1� /4
0, the turning points belong to a
single curve:

x1,2 =
1

2
�1 ±�1 +

4E

1 − �
� � U�−�

and the period is given by

T2 =
2�2

�− �E
K���1 − 3���1 − � + 4E�

2�− 2E�
� . �29�

The difference in the atomic population oscillates about zero.
Case 3. If ���c and the energy of “classical” motion is

in the interval ��−1� /4
E
0, the turning points belong to
a single curve:

x1,2 =
1

2
�1 ±�1 +

4E

1 − �
� � U�−�

and the period is given by

T3 =

8K�� 1 +
4E

1 − �

1 +
4E

1 − 3�
�

��1 − ���3� − 1 − 4E�
. �30�

The two states have equal average populations.
Case 4. If ���c and the energy of “classical” motion is

in the interval 0
E
 �3�−1� /4, the turning points belong
to a single curve:

x1,2 =
1

2
�1 ±�1 +

4E

1 − 3�
� � U�+�

and the period is given by

T4 =

8K��1 +
4E

1 − 3�

1 +
4E

1 − �
�

��3� − 1��1 − � − 4E�
. �31�

The two states have equal average populations.
Finally we mention that Eqs. �21a� and �21b� can be di-

rectly obtained from the two-mode Hamiltonian of the
Bloch-band tunneling in the meanfield approximation �see
�12,16� for more details�:
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Hm−f = �11
A1
4 + �11
A2
4 + 4�12
A1
2
A2
2 + �12�A1
*�2A2

2

+ �12�A2
*�2A1

2, �32�

where the complex amplitudes A1,2 are determined by the
expansion of the order parameter 	

	 = A1�t��1�r�e−iEt + A2�t��2�r�e−iEt �33�

and determine average populations of the levels N j = 
A j
2,
and � j�r� are the respective Bloch states. The complex am-
plitudes are connected by the particle conservation law: N
=N1+N2. Now the system �21a� and �21b�, is obtained from
the Hamiltonian equations by defining

z =

A2
2 − 
A1
2

N
and � = arg�A1

2�A2
*�2� �34�

�cf. Eq. �25��.

C. “Coherent” states

Turning now to the quantum system, we observe that the
dynamical equations for the coefficients Cn have to be sup-
plied by the initial conditions. As in the standard WKB ap-
proximation, the corresponding initial conditions must be
smooth enough. At the same time a natural question arises
about construction of quantum states, 
	�t��c, most closely
resembling the mean-field dynamics. We will refer to such
states as coherent states.

In order to construct such states we recall the explicit
form of the meanfield ansatz �33� and consider the respective
boson operator c†=�1b1

†+�2b2
†, where �1,2 are time depen-

dent complex parameters satisfying 
�1
2+ 
�2
2=1. Next we
define


	�t��c � 
�1,�2� �
��1�t�b1

† + �2�t�b2
†�N

�N!

0,0�

= 	
k=0

N � N!

k ! �N − k�!
�1

k�2
N−k
k,N − k� . �35�

By using the identities


�1,�2
nj
�1,�2� = N
� j
2,


�1,�2
nj
2
�1,�2� = N
� j
2 + N�N − 1�
� j
4,


�1,�2
n1n2
�1,�2� = N�N − 1�
�1�2
2,


�1,�2
�b2
†�2b1

2
�1,�2� = N�N − 1��1
2��2

*�2,

we obtain for the energy �dropping an inessential constant�

E = 
�
H
�� = �11N�N − 1��
�1
4 + 
�2
4 + ��4
�1
2
�2
2

+ �1
2��2

*�2 + �2
2��1

*�2�� . �36�

Writing the Hamilton equations for the complex amplitudes
� j in the form

i�
d� j

dt
=

1

N

�E

�� j
* ,

in terms of the normalized time �=4�11N /� and setting

z = 
�2
2 − 
�1
2 and � = arg��1
2�2

*2� �37�

�cf. Eq. �34�� we recover the system �21� in the limit N
→
. Comparing Eq. �32� with Eq. �36� one gets the physical
meaning and a link among the quantum mechanical and
mean-field amplitudes � j and A j.

IV. NUMERICAL SIMULATIONS

In order to proceed with the numerical simulation of the
described phenomena we observe that their occurrence does
not depend on a particular choice of the potential. Therefore,
we concentrate on the simplest case of a lattice having a
cos-like profile. Recalling that the spatial coordinates are
measured in the units of the lattice period d, the energy is
measured in terms of the recoil energy Er=�2�2 / �2md2�, the
time is measured in the units � /Er and the lattice is � peri-
odic, we set

V = V0�cos�2x� + cos�2y�� . �38�

The respective BZ is given by �−1,1�� �−1,1�.
We consider intraband tunneling between two X points of

the second lowest band. The respective tensors of the inverse
effective mass have positive components, and therefore the
respective Bloch states are modulationally stable, provided
the interactions among atoms are repulsive �i.e., �ij �0�.

Generally speaking one may have two physically different
situations. When V0�Vth, with Vth�0.627 for the case �38�,
there exists a full two-dimensional gap in the spectrum,
whose width depends on a particular value of V0. If the po-
tential amplitude is weak enough, i.e., V0
Vth, the gap is
closed �the gap width becomes zero at V0=Vth�. For V0
=Vth one computes, using Eq. �38�, that �q1q1

22 �0.1494 and
�q1q2

22 �0.1303, and respectively �=�th�0.8727��c. Thus,
generally speaking, one can distinguish three different re-
gions of the parameters, which correspond to �i� �
�c, �ii�
�c
�
�th, and �iii� ���th. The parameters �th and �c
have however different physical origins: �th is related to the
band structure and thus can affect physical applicability of
the two mode model, due to possible tunneling to the other
bands, while �c is an intrinsic parameter of the model.

Since our numerical study aims to check precisely the
two-mode model we will consider only the case where the
full gap is open, i.e., V0�Vth, and select two particular cases:
The case I with V0=6 when �q1q1

22 �0.2708 and �q1q2

22

�0.0.0652, and respectively ��0.2407
�c, and the case
II with V0=1 when �q1q1

22 �0.1551 and �q1q2

22 �0.0626, and
respectively ��0.4040��c.

The numerical simulations of the discrete Schrödinger
equation �14� were performed by using the variable order
Adams-Bashforth-Moulton solver. The error was controlled
by checking the norm of the vector Ck�t�. The values of z and
� were obtained by using the correspondence formulas �22�
and �23�.

In Fig. 2 we show typical dynamics of the populations in
the case I, i.e., for �
�c, of the condensate of N=350 at-
oms. One can observe relatively fast, i.e., at ��100, decay
of Rabi oscillations followed by almost steady distribution of
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the atoms, approximately 90% of atoms concentrated in one
state. This behavior is typical for a quantum collapse. The
both populated states are characterized by the same phases.
After much longer interval of time ���1500 the revival of
the oscillations is observed.

Although collapse of Rabi oscillations was earlier ob-
served in pure mean-field models �see �3,8��, the nature of
the phenomenon considered here is very different. Suppres-
sion of the oscillations in the case of spatially extended sys-
tems is related to development of inhomogeneous spatial pat-
terns, mainly related to modulational instability of one of the
states. In the case at hand, however the effect is essentially
quantum and disappears in the meanfield limit �where N
→
�. This is clearly illustrated in Fig. 3, where we compare
the results of the quantum dynamics with its mean-field limit
at earlier stages of the evolution.

Now we turn to the case II, where ���c, which is shown
in Figs. 4 and 5. The main feature of this situation is that as
a result of quantum collapse both states become equally
populated �z→0�, what is also in accordance with the mean-
field dynamics �cf. Figs. 2 and 4�. The revival occurs at latter
times ���3000.

In all the figures one can observe that the period of the
Rabi oscillations is very accurately reproduced by the mean-
field approximation, i.e., by the formulas �28�–�30�. In
particular, Figs. 3 �or 2� and 5 correspond to the cases 1
�with z=0.72 and E�−0.033� and 3 �with z=0.98 and E
�−0.0059� described in Sec. III B. Then using Eqs. �28� and
�31� one computes T�16.86 and T�51.99, which matches
very well with the periods obtained from the direct numerical
simulations. The described behavior has a simple physical
explanation: Passage to the mean-field description is per-
formed at a constant gN, i.e., at a constant effective nonlin-
earity of the system. Meantime, the tunneling time depends
on the relative value of the nonlinear interaction term, i.e., on
�.

Comparing Figs. 2 and 4 one observes the expected effect
of the delay of the quantum collapse in terms of the dimen-
sionless time � with increase of the number of particles. At
the same time the numerical simulations did not reveal any
significant effect of the initial phase mismatch ��0� on the
collective dynamics.
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1

τ

Φ
/π

FIG. 2. Quantum evolution for N=350 BEC atoms and the lat-
tice with �=0.2407. As the initial population we used the Gaussian
distribution Ck�0�=exp�ik− �k−kc�2 / �2�2�� with �2=50 and kc=50.
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FIG. 3. �Color online� The initial quantum evolution �solid
lines� vs mean-field evolution �dashed lines� for parameters as in
Fig. 2.
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FIG. 4. Quantum evolution for N=500 BEC atoms and the lat-
tice with �=0.404. The initial condition used is Ck�0�=exp�−�k
−kc�2 / �2�2�� with kc=25 and �2=50.

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

z

0 1000 2000 3000 4000 5000 6000

−2

0

2

4

6

τ

Φ
/π

FIG. 5. Quantum evolution for N=1000 BEC atoms and the
lattice with �=0.404. The initial condition used is Ck�0�=exp�ik
− �k−kc�2 / �2�2�� ���0�=2� with kc=10 and �2=50.
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Another relevant parameter is the initial distribution of the
atoms. Clearly, the closer the initial distribution of atoms
�defined by kc and � in the numerics� to the one violating the
mean-field assumptions, when almost all of the atoms are at
one of the Xj points, the further the dynamics from the qua-
siclassical one, which is reflected in Fig. 5 in the fact that the
collapse time of the oscillations is twice as smaller as that of
Fig. 4 for twice as much number of atoms. Also, in Fig. 5 the
phase dynamics at the recurrence of quasiclassical relative
population oscillations contains the quasiclassical oscilla-
tions interrupted by the 2�m jumps.

V. DISCUSSION AND CONCLUSION

In the present paper we have considered the quantum tun-
neling of a Bose-Einstein condensate loaded in a two-
dimensional lattice. The considered tunneling occurs be-
tween two stable states, hence allows us to restrict the
consideration to a spatially homogeneous model. Such a
model, in the rotating wave approximation, was further re-
duced to the effective two-state system, where both states
possess the same energies. The considered tunneling is es-
sentially nonlinear and related to the four-wave mixing due
to the two-body interactions �in a pure linear system such a
tunneling cannot occur because of violation of the momen-
tum conservation�.

The main finding of the work is the quantum collapse and
revivals of the Rabi oscillations between the tunneling states,
which are suppressed in the mean-field approximation due to
the fact that tunneling between two equal-energy states result
in configurations of low atomic population of one of the
states and thus, strictly speaking, cannot be described in
terms of the mean-field approximation. Nevertheless, the lat-
ter approach turns out to be useful in predicting different
regimes of the tunneling, with collapse occurring to either
equal or disbalanced populations of the states, and for accu-
rate estimate of the frequency of the Rabi oscillations �i.e.,
the tunneling time�.

Existence of a well-defined frequency of the oscillations
and the difference in spatial patterns of the condensate in
different X states of the lattice suggest a way of experimental
observation of the phenomenon, which could be based, for
example, on direct imaging at specific moments of time. To
estimate the physical time scale corresponding to the period
of the Rabi oscillations, we consider a condensate of 87Rb
atoms, with the s-wave scattering length as=5.25 nm, which

is tightly trapped, say in y direction, with the respective l
oscillator length �=0.1 �m, and has N=350 atoms occupy-
ing M =25 sites of a lattice with the period d=2 �m �i.e., the
2D optical lattice is imposed in the �x ,z� plane and has five
cells in each direction�. In this case g �the 2D nonlinear
constant� is given by g=2�2��2as /m�y. Then using the data
from Fig. 2 �also Fig. 3� we obtain that the dimensionless
period T�16.68 in the physical units is TRb�0.00655 s.
Thus, taking into account that the collapse and subsequent
revival would occur after about 1 s and 10 s, respectively,
we see that this is a relatively slow process. This is an ex-
pected slowness as far as in this example we used a small
number of atoms not providing effective enough tunneling
due to the two-body interactions. The collapse and revival
time could be reduced by using a larger condensate, how-
ever, for a very large number the collapses and revivals will
be suppressed because of approaching the mean-field limit.
An alternative way to accelerate the quantum collapse, and
thus make easier its observation is to use more light atoms,
say sodium ones, or by increasing the scattering length.

A number of important questions, however, are left for
further studies. Among them we mention the resonant inter-
action of more than two states, the quantum theory of non-
linear Landau-Zener tunneling, the study of interplay of
quantum collapse and of modulational �dynamical� instabil-
ity in the case when the spatial extension of the system is
taken into account and the states among which the tunneling
occurs possess different stability properties �what is an in-
trinsic feature of the nonlinear systems�, the effect of open-
ing or closer of the total gap in the lattice, the interplay
between the quantum collapse and the dynamical collapse
�also called the blow up� which can occur in Bose-Einstein
condensates with attractive atomic interactions, etc.
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