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We investigate the quantum dynamics of Raman-coupled Bose-Einstein condensates driven by laser beams
that carry orbital angular momentum. By adiabatically eliminating the excited atomic state we obtain an
effective two-state Hamiltonian for the coupled condensates, and quantization of the matter-wave fields results
in collapse and revivals in the quantum dynamics. We show that the revival period depends on whether the
initial nonrotating condensate displays broken U�1� symmetry or not, and that the difference may be detected
by measuring the motion of quantized vortices that are nested in the density profile of the Raman-coupled
condensates. We further study the steady-state population transfer using a linear sweep of the two-photon
detuning, by which the atomic population is coherently transferred from an initial nonrotating state to the final
vortex state.
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I. INTRODUCTION

Controlling and probing of the quantum state of cold at-
oms or molecules are opening up new frontiers for exploring
the fundamentals of quantum mechanics. At the ultracold
temperatures characteristic of Bose-Einstein condensates
�BECs� matter reveals its wave character, and the quantum
statistics of the atoms or molecules play an important role.
By controlling both the atomic collisions and the properties
of laser fields applied to a BEC, one may generate tailor
made quantum states of matter. For example, photons and
atoms can interchange mechanical momentum, and atoms
can therefore be prepared into a specific center-of-mass mo-
mentum state by the appropriate choice of spatial light field
profile �1,2�. The light field may also be used for the detec-
tion of the atomic quantum state �3�.

A commonly applied notion for atomic BECs is that of
Bose broken symmetry �BBS� �4–7�, or broken U�1� sym-
metry, whereby the state vector for the BEC is described via
a wave packet of states of varying atom number N. In this
scheme the fact that the atom number is not fixed is traded
off for the fact that the macroscopic wave function for the
BEC, obtained as the expectation value of the field annihila-
tion operator, acquires a definite phase, hence the name bro-
ken U�1� symmetry. The BBS approach is typified by the use
of a coherent-state description for the state of a BEC. In
contrast, a number conserving �NC� approach is also pos-
sible, but in that case the phase of the corresponding macro-
scopic wave function has no physical significance, and U�1�
symmetry is preserved. In the absence of atomic collisions, it
is known that whether or not the U�1� symmetry is broken
does not affect any physical observables, and whether one
describes the state of the BEC as a coherent state or a num-
ber state is largely a matter of calculational convenience
�5,7�. Furthermore, for the case involving the interference
between two BECs, even for an initial state with a fixed
number of atoms, quantum coherence is built up by the mea-
surement process which leads to uncertainty in the atom
number, and the resulting interference pattern is indistin-
guishable from that which would have resulted from a coher-
ent state description �8,9�.

However, this equivalence between the BBS and NC ap-
proaches holds only when atomic collisions can be ne-
glected. If one takes atomic collisions into account differ-
ences between the two approaches appear in the collapse and
revival times that can occur in the interference between
BECs with different spatial modes, for example in the inter-
ference between condensates �10,11�, a double-well system
�12�, or in Ramsey fringe-type experiments �13�. Intuitively,
the revival period difference arises from the fact that the
allowed number difference �N between the two BECs is
different for the two cases: In the NC approach �N is always
an even integer, whereas in the coherent state approach based
on BBS �N can be an arbitrary integer. Since atomic colli-
sions lead to matter wave phase shifts proportional to the
atom number, the interference between two BECs, which
depends on �N, is markedly different depending on whether
U�1� symmetry is broken or not, and leads to a factor of two
difference in the revival period between the two approaches.
This factor of two difference has recently been observed for
the first time in an experiment that looks at the interference
between atoms released from a lattice of double well systems
�14�: Depending on the preparation conditions, the atoms
trapped in each individual double well in the lattice may be
best described as a number state or a coherent state, and this
leads to a factor of two difference in the revival time in the
interference pattern that arises when the atoms are released
and allowed to interfere.

Collapse and revivals have previously been investigated
experimentally in the Jaynes-Cummings model of a two-
level atom interacting with a quantized laser field �15�, wave
packet dynamics of Rydberg atoms �16�, matter waves in an
optical lattice �17�, and most recently for a matter wave in a
lattice of double wells �14�. Nevertheless, the use of collapse
and revivals to test the fundamental notion of U�1� broken-
symmetry as applied to a single BEC via the period of the
collapse and revivals has not been realized experimentally so
far. Walls and co-workers �10,11� showed that this could be
realized by coupling an initial BEC with a given mode struc-
ture to a second BEC mode, thereby realizing a two-mode
system. The period of the revivals of the system would then
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act as a test of whether or not the initial isolated BEC exhib-
ited BBS or not. Search �13� has proposed precisely such an
experiment based on a Ramsey fringe approach, but this has
not been realized to date.

In this paper, we consider the case of Raman-coupled
BECs using Laguerre-Gaussian �LG� beams �18� as a poten-
tial testing ground for the BBS description of an initial BEC.
Because of the helical phase structure of the laser fields,
orbital angular momentum �OAM� is transferred from the
light to the atoms and results in a BEC in a coherent super-
position of two components with distinct center-of-mass
OAM �18–20�. �In another scheme for generating vortices a
decentered Gaussian beam is rotated around the center of a
trapped BEC �21�, but we do not analyze that case here.� By
considering BECs with relatively small numbers of atoms,
and quantizing the matter-wave fields, the system can be
mapped onto a Hamiltonian that describes the dynamics of
an ideal two-mode system. Then the granular nature of the
matter-wave field becomes important, and we explore the
collapse and revivals in the system both with and without
broken U�1� symmetry. In particular, we show that the dif-
ference between the two approaches is directly visible in the
motion of quantized vortices that appear in the density pro-
file of the Raman-coupled condensates, the density profile
being a relatively easy physical quantity to observe. To put
our proposal in context, collapse and revival dynamics have
previously been observed using the spatial density profile in
a two-component 87Rb BEC �22�, and the Raman vortex cou-
pler using LG beams has now been realized experimentally
�23�, both of these experiments being performed for large
atom numbers where the granular nature of the matter wave
fields is not relevant.

This paper is organized as follows. In Sec. II we formu-
late the problem, and map the three-level �-type atomic sys-
tem coupled with LG fields onto a two-mode Hamiltonian in
the angular-momentum representation. In Sec. III, we focus
on the collapse and revival dynamics for initial number states
and coherent states for the BEC, and show that these may be
measured using the spatial density profile of the Raman-
coupled condensates as well as the atom statistics. Section
IV summarizes the results in this paper, mentioning the time-
dependent two-photon detuning for the stimulated Raman
population transfer.

II. FORMULATION OF THE PROBLEM

In this section we formulate the two-mode approximation
for two Raman-coupled BECs and introduce the angular mo-
mentum representation used to solve the quantum dynamical
system.

A. Hamiltonian

We consider a quantum-degenerate sample of ultracold
bosonic atoms with three participating levels �a� , �b�, and �e�
arranged in a � configuration, see Fig. 1. The sample is
irradiated by a pair of laser fields of frequencies �1,2, transi-
tions between �a� and �b� being dipole forbidden. The system

Hamiltonian Ĥ= ĤA+ ĤAF is given by �24�

ĤA = �
j=a,b,e

� d3r �̂ j
†�r�Ĥ0

�j��̂ j�r�

+
1

2 �
j,j�=a,b,e

� j j�� d3 r�̂ j
†�r��̂ j�

† �r��̂ j��r��̂ j�r� , �1�

ĤAF = − �� d3r��̂e
†�r��̂a�r��1

�+��r�e−i�1t + H.c.

+ �̂e
†�r��̂b�r��2

�+��r�e−i�2t + H.c.� , �2�

where �̂ j
† ,�̂ j are creation and annihilation field operators for

bosonic atoms in the states j=a ,b ,e. Atomic collisions are
included via the pseudopotential coefficients � j j�
=4��2ajj� /M, where ajj� is the s-wave scattering length be-
tween two atoms in the states j and j�, and M is the atomic
mass. The coupling of the atoms to the classical optical fields
is described by the Rabi frequencies �1,2

�±�, where ± denotes
the positive and negative frequency components. The atoms
are further supposed to be confined in harmonic traps, so that
the center-of-mass Hamiltonian for atoms in each state j
=a ,b ,e is given by

Ĥ0
�j� = −

�2�2

2M
+ Vj�r� , �3�

Vj�r� =
M�r,j

2 �x2 + y2�
2

+
M�z,j

2 z2

2
, �4�

with �r,j and �z,j the oscillator frequencies along the radial
�r� and longitudinal �z� directions for the different atomic
states.

If the detuning � from the excited state �e� is sufficiently
large �see Fig. 1�, the population of that state remains negli-
gible and spontaneous emission may be neglected. The ex-
cited state can then be adiabatically eliminated as

�̂e�r� =
1

�
��1

�+��r��̂a�r�e−i�1t + �2
�+��r��̂b�r�e−i�2t� �5�

and the Hamiltonian for the atom-field interaction reduces to

a
b

e
∆

2Ω
δ

1Ω

FIG. 1. � atomic level scheme: Three hyperfine states �a� , �b�,
and �e� are coupled with light fields of Rabi frequencies �1,�2, and
laser frequencies �1, �2, respectively. The common detuning � is
sufficiently large that the excited state �e� is not significantly
populated.
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ĤAF =
− 2�

�
� d3r��1

�+��2
�−�ei��2−�1�t�̂b

†�̂a + H.c.� , �6�

where we have omitted the diagonal terms due to the ac-stark
shift, which create an effective potential for the atoms but do
not affect the dynamics. The atom-field interaction Hamil-
tonian HAF in Eq. �6� reflects the fact that if an atom makes
a transition from state �a� to the excited state via absorption
of a photon of frequency �1, this will be rapidly followed by
emission of a photon of frequency �2 and a Raman transition
to the state �b�.

Bringing these results together, the system Hamiltonian

Ĥ= ĤA+ ĤAF is now given by

ĤA = �
j=a,b

� d3r �̂ j
†Ĥ0

�j��̂ j + �
j,j�=a,b

� j j�

2
� d3r �̂ j

†�̂ j�
†

�̂ j��̂ j ,

ĤAF =
− 2�

�
� d3r��1

�+��2
�−�ei��2−�1�t�̂b

†�̂a + H.c.� . �7�

This Hamiltonian is the starting point for our analysis.

B. Orbital angular momentum of light

Light has two kinds of angular momentum: A spin-
angular momentum associated with its polarization, and an
orbital angular momentum �OAM� associated with mechani-
cal rotation �25�. The system described by the Hamiltonian
�7� corresponds to a familiar coherent coupler between the
atomic BECs in the states �a� and �b� if both light fields are
plane waves or Gaussian beams, that is, beams that carry no
OAM. Then the absorption-emission process transfers the
atom from the state �a� to the state �b� that is shifted in
momentum by the two-photon recoil. On the other hand, if
one or both of those laser fields carries OAM, the light field
can impart its OAM to the atoms, and hence angular-
momentum transfer occurs associated with the coherent cou-
pling �26�. In this case, the two-photon recoil is associated
with the difference of angular momenta of two light beams,
and one realizes a Raman vortex coupler. The Raman vortex
coupler has previously been studied theoretically in the limit
of large atom numbers where a treatment based on coupled
Gross-Pitaevskii equations is applicable �18�, and an experi-
mental realization of this case has been reported �23�. Here
we explore the opposite limit of low atom numbers, where
the granular nature of the quantum matter wave fields be-
comes relevant.

A typical set of light fields that carry OAM are Laguerre-
Gaussian beams whose mode functions at the beam waist z
=0 are given by �25�

LGp
l �r,	� 
 �− 1�p	 r

w0

�l�

Lp
�l�	 r2

w0
2
e−r2/2w0

2
eil	, �8�

where w0 is the focused spot size at z=0, p is the radial mode
number, l the winding number, which describes the helical
structure of the wave front, and

Lp
�l��r� = �

j=0

p ��l� + p�!�− r� j

�p − j�!��l� + j�!j!
, �9�

are Laguerre polynomials. By using LG modes for the Ra-
man coupling between the matter wave fields in the Hamil-
tonian �7� we can therefore create a matter-wave vortex even
though the initial state is nonrotating. Henceforth, we con-
sider only the LG modes with p=0, and we thus need only
consider one quantum number l, to specify the OAM.

C. Two-mode Hamiltonian

We assume that all atoms are initially in the state �a� with
total angular momentum zero, and that this state is Raman-
coupled to the state �b� with a winding number l by using a
pair of LG laser fields, one with a winding number zero and
the other with winding number l. We further assume that
two-body interactions are weak enough, and the external har-
monic trapping frequencies �r,j =�r and �z,j =�z are large
enough, that the mode profiles of the two atomic states are
not significantly modified from their single particle forms
�0,l�r� �12,27�.

Under these assumptions the matter-wave field operator
may be expressed as

�̂�r,t� = â�t��0�r� + b̂�t��l�r� , �10�

where â and b̂ are the bosonic annihilation operators for the
states �a� and �b�, and the positive frequency components of
the Rabi frequencies are

�1
�+��r� = �1�l�r�, �2

�+��r� = �2�0�r� . �11�

When the LG beam remains well collimated over the longi-
tudinal extent of the condensate, dz�k0w2 /2, the laser mode
functions �0,l at the beam waist and the condensate mode
functions �0,l may be expressed as

�l�r� =
1

�l!�
	 r

w0

l

e−r2/2w0
2
eil	eikz, �12�

�l�r� =
1

�l!�dr
2	 r

dr

l

e−r2/2dr
2
eil	�z�z� . �13�

We assume that l0, and that the radial and longitudinal
atomic oscillator ground state widths are the same for both
atomic states dr=�� / �M�r�, and dz=�� / �M�z� �28�. We
further assume that the longitudinal trapping is much stron-
ger than the radial trapping, drdz, and that the longitudinal
wave function remains fixed as the ground state �z�z�
=e−z2/2dz

2
/��1/2dz. The two-mode approximation is then valid

under the conditions Naij �dk �12�, where i , j=a ,b and k
=r ,z.

Substituting Eqs. �10�–�12� into the system Hamiltonian

�7� with Ej =�d3r � j
*Ĥ0� j, and transforming to a

rotating frame using the unitary transformation U0

=exp−i�Ea�â†â+ b̂†b̂� /�− ��2−�1�b̂†b̂�t�, finally yields the
reduced two-mode Hamiltonian
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Ĥ = ��r��l + �/�r�b̂†b̂ + Gaaâ†â†ââ + Gbbb̂†b̂†b̂b̂

+ 2Gabâ†b̂†b̂â − g�â†b̂ + âb̂†�� , �14�

where we have defined �=�2−�1+ �Eb−Ea� /� as the two-
photon detuning, which may be controlled experimentally.
The dimensionless coupling constants for the atom-atom and
atom-light interactions are given by

Gjj� =
� j j�Vjj�j�j

2��r
�j, j� = a,b� , �15�

g =
2�1�2U0ll0

�r�
, �16�

with

Vklmn =� d3r �k
*�l

*�m�n

=
1

2�dr
2�2�dz

2

�k + l�!�k+l=m+n

2k+l�k!l!m!�k + l − m�!
, �17�

Uklmn =� d3r �k
*�l

*�m�n

=
�k+2l−m

���2 + 1�k+l+1

�k + l�!�k+l=m+n

�k!l!m!�k + l − m�!
. �18�

The parameter ��dr /w0 characterizes the ratio of the radial
oscillator ground state width to the focused light spot size,
and the Kronecker delta enforces angular-momentum conser-
vation for the atom-field interactions. Henceforth the ener-
gies, lengths, and angular momenta are measured in units of
��r, dr, and �, respectively.

D. Angular-momentum representation

In order to study the quantum dynamics described by the
Hamiltonian �14�, we introduce the following operator com-
binations that map our problem to Schwinger’s angular-
momentum representation �12�,

Ĵ+ = âb̂†, Ĵ− = â†b̂ , �19�

Ĵx =
1

2
�Ĵ+ + Ĵ−� , �20�

Ĵy =
1

2i
�Ĵ+ − Ĵ−� , �21�

Ĵz =
1

2
�b̂†b̂ − â†â� . �22�

These operators obey the SU�2� commutation relations

�Ĵi , Ĵj�= i�ijkĴk where �ijk denotes the Levi-Civita antisym-

metric symbol, and the Casimir invariant is found to be Ĵ2

= Ĵx
2+ Ĵy

2+ Ĵz
2= j�j+1� with j=N /2. For the basis �j ,m� with

m=−j ,−j+1, . . . , j, which are eigenstates of Ĵz, the operators
satisfy

Ĵz�j,m� = m�j,m� , �23�

Ĵ2�j,m� = j�j + 1��j,m� , �24�

Ĵ±�j,m� = ��j ± m + 1��j � m��j,m� . �25�

In the angular-momentum representation the Hamiltonian
�14� then becomes

Ĥ = hzĴz + �Ĵz
2 − 2gĴx, �26�

where

hz = l + � − �N − 1��−, �27�

�− = Gaa − Gbb, � = Gaa + Gbb − 2Gab. �28�

The angular basis states �j ,m� and the Fock basis states
�na ,nb�F are related by �j ,m�= �N /2−m ,N /2+m�F.

III. QUANTUM DYNAMICS

In this section we explore the quantum dynamics of the
two-mode model, first with no atomic collisions, and then we
study the collapse and revivals that occur with atomic colli-
sions. In particular, we highlight that the collapse and reviv-
als may be monitored by following the motion of quantized
vortices that appear in the spatial density profile, and we
shall also study the resulting atom statistics.

A. No atomic collisions

In the absence of atomic collisions, Gij =0, giving
hz= l+� and �=0, the two-mode Hamiltonian reduces to the
form of two simple coupled harmonic oscillators. Then the
solution of the Heisenberg equations of motions for â�t� and

b̂�t� is found to be

�â�t�

b̂�t�
� = e−i�l+��/2�A�t� B�t�

B�t� A*�t� ��â�0�

b̂�0�
� , �29�

where

A�t� = cos �t +
i�l + ��

2�
sin �t , �30�

B�t� =
ig

�
sin �t , �31�

and the effective Rabi frequency � is defined as

� =
��2g�2 + �l + ��2

2
. �32�

We consider an initial state where all atoms are condensed
in the hyperfine state �a� with zero OAM. If we take a num-
ber conserving initial state with definite atom number,
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���0��N= �N ,0�F= �N /2 ,−N /2�, then the half population dif-

ference Ĵz= �b̂†b̂− â†â� /2 evolves in time as

N���0��Ĵz���0��N = − N
�l + ��2 + �2g�2 cos�2�t�

2�2��2 . �33�

The total-angular-momentum operator is just proportional to
the number operator of the state �b�,

L̂ = lb̂†b̂ = l�Ĵ + Ĵz� , �34�

and the fluctuations in angular momentum coincide with the
number fluctuations of the state �b�. The time evolution of
the angular momentum for an initial Fock state is given by

N���0��L̂���0��N =
Nl sin2��t�

1 + �l + ��2/�2g�2 . �35�

We note that the maximum population transfer occurs at the
resonant two-photon detuning �=−l, and the parameter g in
Eq. �16� describing the single-particle Raman coupling be-
tween the LG field and the BECs decreases with increasing
winding number l.

We now repeat the same calculation, but using a Glauber
coherent state as an example of an initial BEC displaying
BBS

���0��� = ��,0� = �
N=0

�

C�,N�N,0�F, �36�

where

C�,N = e−���2/2 �N

�N!
, �37�

with ���2� N̄ being the average number of atoms. The num-
ber and phase fluctuations of the coherent state are given by
�n= ���, and ���1/ �2 �� � �, respectively. The time evolu-

tions of the half population difference ����0� � Ĵz ���0��� and

the total angular momentum ����0� � L̂ ���0��� are easily
shown to coincide with Eqs. �33� and �35� with the replace-

ment N→ N̄. In other words, in the absence of the atomic
collisions, the physical quantities are therefore independent
of whether the state of the initial BEC exhibits BBS or not.

B. Collapse and revivals

The two-mode Hamiltonian exhibits a rich variety of
quantum dynamics depending on the relative magnitude of
the atomic collisions and atom-field coupling, and the OAM
of the LG beam. The system dynamics can be categorized
into three typical parameter regimes �29�, namely �i� the
Rabi regime g��N, �ii� the Josephson regime
g��N�gN2, and �iii� the Fock regime gN��. Oscilla-
tions between the two BEC states are almost perfect in the
Rabi regime at the resonance condition hz=0, but the transfer
between the coupled BECs reduces as the Josephson regime
is approached. In the Fock regime, the Rabi oscillations are
suppressed and the number in each internal state is almost a
constant, like the case of self-trapping in a double-well po-

tential or the Mott state in optical lattices. The critical point
of the self-trapping transition is �N�4g, which lies in the
Josephson regime �ii�. Here we concentrate on the situation
where the system is in the Rabi regime, considering for con-

creteness the parameter values N= N̄=100, �=5�10−3, and
g=10, corresponding to a condensate with a mesoscopic total
number of atoms. In the following numerical study we
choose l=2 as a representative example, and take the two-
photon detuning as �=−l+ �N−1��−, so that hz=0. With
these parameters we anticipate almost complete Rabi oscil-
lations of the population difference between the two conden-
sate components.

To proceed we introduce two initial states that represent
NC and BBS states for the initial BEC. First, for the NC state
we choose a state with a well-defined atom number �N ,0�F in
Fock-space representation. The subsequent quantum dynam-
ics of the coupled BECs may then be represented in the
angular-momentum basis as

���t��N = �
m=−j

j

Am�t��j,m� , �38�

where j=N /2, and the normalization is given by
�m �Am�t��2=1. On the other hand, for an initial condition
with BBS where the initial state is a coherent state �� ,0�, the
time evolution of the coupled BECs may be represented in
the angular-momentum basis as

���t��� = �
N=0

�

C�,N �
m=−j�

j�

Am
�j���t��N,2j��j�,m� , �39�

where there is no dynamical coupling between subspaces
with different total number of atoms since the Hamiltonian
conserves the atom number �30�.

Figure 2 shows the numerically calculated time evolution

of �Ĵx�N and �Ĵz�N for an initial Fock state, and of �Ĵx�� and

�Ĵz�� for an initial coherent state. In both cases atomic colli-
sions cause the anticipated complete Rabi oscillations be-
tween the two BECs to be modulated by a sequence of col-
lapses and revivals, the revivals being a characteristic
consequence of the granular nature of the matter wave fields.

The components Ĵx,y characterize the coherence between the

states �a� and �b�, while Ĵz corresponds to half their popula-

tion difference. We note that �Ĵx� exhibits a revival in the

middle of the collapse of �Ĵz� for both coherent and Fock
initial states.

There is a significant difference between the period of
revivals for the NC and BBS initial states. In the Rabi re-
gime, and for the resonant case hz=0, the collapse time and

revival time in the population difference �Ĵz� are numerically
found to be

Tcollapse
�N� =

C
��N

, Trevival
�N� =

2�

�
�40�

for the initial Fock state, and
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Tcollapse
��� � Tcollapse

�N� , Trevival
��� = 2Trevival

�N� �41�

for the initial coherent state, respectively, where the constant
is C�10. This factor of 2 difference in the revival period is
also found in the double-well system and for the Ramsey
fringe experiment proposed by Search, and the revival period
agrees with that he found for the resonant case �13�.

For the sake of completeness we comment briefly on the
effect on our findings of selecting a nonzero value of the
parameter hz. For the case hz�0, which would be possible
using a Feshbach resonance, the system enters the Josephson
regime as �− increases, and this reduces the collapse time for
both the Fock and coherent states. The Rabi oscillations are
then no longer perfect, and the coherent state collapses much
faster than the Fock state. Although the revival time becomes
longer, the factor of two difference between Fock and coher-
ent initial states remains. This is different from the situation
in the Ramsey technique, where the system evolves freely in
time �without coupling between the BECs� between the

Ramsey pulses and the coupling term proportional to Ĵx in
the Hamiltonian is zero. In the present case, by contrast, the
Raman coupling is on at all times.

Finally we emphasize that the factor of two difference in
revival period depends only on whether the initial state is NC
or not. For instance, if the initial state is chosen as number-
conserving coherent state with binomial statistics �31�, then
the period of the revival will still be half that of the Glauber
coherent state.

C. Quantized vortex motion

The results of the previous section show that the collapse
and revivals in the dynamics of the quantum vortex coupler

can be used to test whether the initial state of the BEC is
described as a NC state or a BBS state, and these results are
in perfect accord with previous works on this topic. How-
ever, measuring the components of the angular momentum in
Schwinger’s representation raises issues of how to detect
these quantities. Here we propose to detect the collapses and
revivals by monitoring the spatial density profile of the
Raman-coupled BECs, and in particular, the motion of the
quantized vortices that appear in the profile. Collapse and
revival dynamics have previously been observed by monitor-
ing the spatial density profile in a two-component 87Rb BEC
�22�, and a Raman vortex coupler using LG beams has now
been realized experimentally �23�. These experiments were
performed for large atom numbers where the granular nature
of the matter wave fields is not relevant, but they show that
the proposed approach has some validity.

To proceed we investigate how the quantum dynamics can
manifest itself in the spatial density profile of the coupled
BECs. From Eq. �10�, the density operator �̂�r , t� may be
written as

�̂�r,t� = �̂†�r,t��̂�r,t� = �̂0�r,t� + �̂I�r,t� , �42�

where

�̂0�r,t� = ��0�r��2�	1 +
r2l

l!

Ĵ�t� − 	1 −

r2l

l!

Ĵz�t�� , �43�

�̂I�r,t� =
rl��0�r��2

�l!
�Ĵ−�t�eil	 + Ĵ+�t�e−il	�

=
rl��0�r��2

�l!
�Ĵx�t�cos�l	� + Ĵy�t�sin�l	�� , �44�

and the total density profile for both atomic states is given by
��̂�r , t��= ��̂0�r , t��+ ��̂I�r , t��.

From this equation we see that the spatial density profile
is directly related to the pseudospin components, hence it
will also display the collapse and revival phenomenon. Since
the qualitative properties of the density profile are the same
for both the Fock and coherent initial states, with the caveat
that the revival period is twice as long for the coherent state,
here we show results for the case of an initial number state.

Figure 3�a� shows the evolution of the density profile
��̂�r , t��N over one Rabi oscillation for times sufficiently
short that the first collapse is barely noticeable, and Fig. 3�b�
shows the corresponding evolution of �Ĵi�N /N , i=x ,y ,z for
the number state here times are scaled to the revival time
Trevival

�N� . For the earliest time t /Trevival
�N� =5�10−4 in these plots,

�Ĵz�N /N�−1/2, meaning that the condensate is almost en-
tirely in the nonrotating Gaussian mode, and the left-most
gray-scale density profile in Fig. 3�a� shows this Gaussian
density profile. As time progresses, however, the Raman cou-
pling transfers more population to the rotating BEC mode
with l=2, and the second through fourth density profiles in
Fig. 3�a� show this process in which two vortex cores with
winding number l=1 progressively make their way towards
the center of the condensate. Halfway through the Rabi os-
cillation the BEC is composed purely of the rotating state,

FIG. 2. Time evolutions of �a� �Ĵz�N, �b� �Ĵz��, �c� �Ĵx�N, �d� �Ĵx��

for N= N̄=100, �=5�10−3, and g=10.
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corresponding to the time t /Trevival
�N� =6.25�10−4 in Fig. 3�b�

where �Ĵz�N /N�1/2, and the density profile is now that for a
pure matter-wave vortex with l=2 centered at the origin. For
longer times the process reverses up until t /Trevival

�N�

=7.5�10−4 when the next Rabi oscillation starts.
During a single Rabi oscillation the distance between the

two l=1 matter-wave vortices is related to the population

difference �Ĵz�N. The angle of the line joining the two l=1
vortex cores �where the density goes to zero� may be under-
stood by looking at the off-diagonal part of the density pro-
file ��I�r , t��N. As seen from Eq. �44�, the angle of the line
joining the vortex cores is determined by the pseudospin

components �Ĵx� and �Ĵy�. For example, the spatial distribu-
tion of the off-diagonal part of the density profile at the angle

	=0 is always proportional to �Ĵx�, whereas at the angle 	

=� /4 it is proportional to �Ĵy�. For the parameters of this

example we have that ��Ĵx�N � � ��Ĵy�N�, see Fig. 3�b�. Then,
viewing the expectation values of the pseudospin compo-
nents as parameters on a Bloch sphere, one Rabi oscillation
corresponds to a round trip between the south pole

��Ĵz�N /N=−1/2� and the north pole ��Ĵz�N /N=1/2�, with the
shortest path being taken on the Bloch sphere. Since the

component �Ĵx� is small compared to the other two compo-
nents, the off-diagonal term is approximately given by ��I�
�rl ��0�r��2�Ĵy�t��sin�l	� /�l!, which illustrates the change in
profile in Fig. 3�c� for times before and after the system
evolves halfway through the Rabi oscillation in Fig. 3�b�.
When the value �Ĵy�N crosses zero halfway through the Rabi
oscillation at t /Trevival

�N� =6.25�10−4 in Fig. 3�b�, the positions
of the off-diagonal density maxima and minima are inter-
changed. This gives rise to the change in the angle of the line
joining the two l=1 vortex cores in Fig. 3�a�. We remark that
if the dynamics takes the longer path on the Bloch sphere,

i.e., as happens when Ĵx and Ĵy become comparable and ex-
change their values, the position of the vortices can rotate
around the condensate. Hence the radius and angle of the
vortex position generally follow a trajectory on the Bloch
sphere.

Figure 4 shows a time sequence of density plots over time

scales long enough to allow for a collapse and revival, the
lower plot showing the evolution of �Ĵz�N /N versus time. For
short times the system undergoes Rabi oscillations as in Fig.
3, but modulated by a collapse envelope are shown for times
t /Trevival

�N� �0.1, in the upper left panel. In the collapse region
0.1� t /Trevival

�N� �0.9 when �Ĵz�N /N→0, the density profile is
to all intents and purposes stationary and the vortex cores
assume fixed positions, see the central upper panel. Finally,
for t /Trevival

�N� 0.9 the first revival starts, the vortex cores get
back into motion, and the Rabi oscillations start again, see
the right most upper panel. Thus the motion of the vortex
cores in the density profile provides a convenient means to
monitor collapse and revivals in the quantum dynamics of
the matter wave vortex coupler. Density measurements thus
represent a powerful tool to measure the dynamics of the
collapse and revivals as well as the motion of the condensate
on the Bloch sphere, and as such allow one to measure the
factor of two difference in the revival times for initial state
displaying Bose broken symmetry or being number conserv-
ing.

D. Atom statistics

For completeness we now briefly discuss the atom statis-
tics of the system as it undergoes a series of collapses and
revivals. A familiar measure of the atom-number fluctuations
is Mandel’s Q parameter �32�

Qj =
���n̂j�2� − �n̂j�

�n̂j�
, j = a,b , �45�

where Q=0 corresponds to a Poissonian, −1�Q�0 to a
sub-Poissonian, and Q0 to a super-Poissonian distribution.

FIG. 3. �Color online� �a� Time sequence of density profiles ���r , t��N given by Eq. �42�, and �b� expectation values of the pseudospin

components during one Rabi cycle. Solid curve with the filled dots shows �Ĵz�N, dotted curve with the open dots �Ĵy�N, and dotted curve with

the filled dots �Ĵx�N, respectively. �c� Off-diagonal part of the density ��I�r , t��N given by Eq. �44�. Upper and lower panels show the typical
patterns for the first half and latter half of a Rabi cycle, respectively. The alignment of the two density maxima �mimina� rotates by � /2

anytime when the �Ĵy�N crosses the zero.

FIG. 4. �Color online� Density profiles ���r , t��N �upper panels�
and half population difference �Ĵz�N /N �lower panel� for times al-
lowing for collapse and revivals. The density plots are shown at the
times indicated by small circles in the lower panel.
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In particular, Q=−1 corresponds to a Fock state with ��nj�
=0. As expected and illustrated in Fig. 5, the Mandel param-
eter also exhibits the factor of two difference in the revival
times depending on the U�1� symmetry of the condensate.
For the initial Fock state �Fig. 5�a��, Qa=−1 initially, and
Qa�t� returns to that value periodically near the revivals. For
an initial coherent state, on the other hand, the Mandel pa-
rameter is initially Qa=0. It then becomes negative near the
revivals, indicative of a sub-Poissonian distribution, but
never reaches the Fock state value Qa=−1. Note also that the
average values of Qa for the coherent and Fock state ap-
proach each other as the number of atoms increases.

E. Effects of thermal dissipations

To assess the feasibility of an experimental demonstration
of these predictions, we consider the specific example of a
87Rb condensate with Raman coupling between the two hy-
perfine states �a�= �F=1,mF=−1� and �b�= �F=1,mF=1�.
The trapping potentials of these two states are almost iden-
tical, V1�r��V2�r�. It is experimentally clearly desirable to
have a relatively short revival time, so that a tight condensate
confinement is preferable. Taking �r=2��100 Hz and �z
=2��300 Hz, the corresponding oscillator lengths are then
dr�1 �m, dz�0.6 �m. All s-wave scattering lengths are
approximately the same, aaa�abb�aab�5.5 nm. For this
set of parameters, the validity of the two-mode model re-
quires that the total number of atoms has to be N�200. For
the case of an OAM l=1, these values result in the dimen-
sionless parameters Gaa=2Gbb=2Gab�3.7�10−3 and thus
�=Gaa /2=1.8�10−3 �see Eqs. �15� and �17��. Typical time
scales are then estimated as TRabi�1.4�10−3 s, Tcollapse

�N�

�0.5 s, Trevival
�N� �5.5 s, and Trevival

��� �11.0 s, respectively.
Hence the difference in the revival periods of the Fock and
coherent states should be observable in a condensate with a
relatively long lifetime on the order of a few tens of second.

We note that there is a caveat with respect to our proposal
in that it involves multiply charged matter-wave vortices
with winding numbers whose magnitude is greater than one.
In particular, it is well known that if a multiply charged
vortex is initiated and allowed to evolve freely it will quickly
decay into multiple singly charged vortices in the presence of
even a small background component of thermal atoms �33�.
The decay time �d for a doubly quantized vortex ranges from
one to a few tens of milliseconds, depending on the total
number of atoms.

However, this does not pose a problem for the Raman
coupler analyzed here, as the matter-wave vortices are not
freely moving, but rather are externally driven by the LG
beams. More specifically, the applied LG laser fields continu-
ally drive the matter-wave field between the zero-charged
�l=0� and doubly charged �l=2� vortex states with a time
period corresponding to the inverse Rabi frequency TRabi
�1.4�10−3 s. �This is true even in the collapse region
where the time-independent density profile arises from an
average over many oscillating components with slightly dif-
ferent periods.� Thus, as long as TRabi��d there will be neg-
ligible decay of the doubly-charged vortex created in any
Rabi cycle before it is returned to the zero-charged state and
the next Rabi cycle starts.

IV. SUMMARY

In summary, we have studied the quantum dynamics of
the vortex coupler using the Laguerre-Gaussian beams. As a
consequence of the quantization of the matter-wave field, the
atoms are found to undergo a series of collapses and revivals
whose period is directly observable as an off-axis motion of
the quantized vortex cores that appear in the condensate den-
sity. The angle of the vortex also provides direct information
on its path on the Bloch sphere that describes its dynamics in
the Schwinger representation. An important feature is that
the characteristic time scale of the collapse and revivals dif-

FIG. 5. �Color online� Mandel’s Q parameter defined by Eq.
�45� for initial �a� Fock and �b� coherent states. The value becomes
−1 near the revival for the initial Fock state, while it is always
larger than −1.

FIG. 6. �Color online� Population transfer from the state �a� to
�b� with the linear sweep of the two-photon detuning. The insets and
the numbers express the intensity of the interference pattern and the
corresponding �dimensionless� time.
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fers by the factor 2 depending on whether the description of
the condensate is in terms of a number-conserving state or a
state with broken U�1� symmetry �10,11,13�.

We finally note that instead of generating the collapse and
revivals used to test the appropriate theoretical description of
the condensate, our scheme can also be modified slightly to
permanently transfer the condensate population to the state
�b�. All that is required is to sweep the two-photon detuning
linearly in time at an appropriate rate. We illustrate this tech-
nique with the parameters N=100, �=5�10−3, g=2, and �
=20−4t in Fig. 6. Since both the initial and final states are in
the Josephson regime, no detectable collapse and revival oc-

curs in any observables. The Ĵx and Ĵy components have
maximum values when the detuning � crosses the resonance,

and a significant change in Ĵz occurs at this point. Note that
a population transfer is achievable independently of the U�1�
symmetry, although the variances and atom statistics differ
significantly in both cases.
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