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We consider the thermodynamics of a homogeneous superfluid dilute Bose gas in the presence of weak
quenched disorder. Following the zero-temperature approach of Huang and Meng, we diagonalize the Hamil-
tonian of a dilute Bose gas in an external random �-correlated potential by means of a Bogoliubov transfor-
mation. We extend this approach to finite temperature by combining the Popov and the many-body T-matrix
approximations. This approach permits us to include the quasiparticle interactions within this temperature
range. We derive the disorder-induced shifts of the Bose-Einstein critical temperature and of the temperature
for the onset of superfluidity by approaching the transition points from below, i.e., from the superfluid phase.
Our results lead to a phase diagram consistent with that of the finite-temperature theory of Lopatin and Vinokur
which was based on the replica method, and in which the transition points were approached from above.
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I. INTRODUCTION

An interacting ultracold dilute Bose gas in a weak random
external potential, which is homogeneous in the mean, rep-
resents an interesting model for studying the relation be-
tween Bose-Einstein condensation and superfluidity and has
been the subject of various theoretical investigations in the
last few years �1–6�. Two different methods have been used
for performing the average over the impurity scatterers. In
Refs. �1–3� the average of the grand potential over the dis-
order is taken perturbatively in the strength of the disorder
after diagonalizing the Hamiltonian by means of a Bogoliu-
bov transformation. Alternatively, in Refs. �4–6� the averag-
ing is implemented by the replica method. In Ref. �4�, the
replica symmetric solution of the model is found by a sys-
tematic diagrammatic Beliaev-Popov perturbation theory for
the dilute superfluid gas in the presence of disorder. At zero
temperature the two different approaches give equivalent re-
sults. At finite temperatures, however, the approach based on
the Bogoliubov transformation becomes unsatisfactory since
it necessarily neglects important quasiparticles correlations
�1,3�. The replica trick, on the other hand, has limitations of
its own by making the mathematical and also the physical
description less transparent. For these reasons it would
clearly be desirable to develop an alternative theory avoiding
these shortcomings. This is the goal of this paper, where we
show how the perturbative approach of Refs. �1–3� can be
extended to include the leading effects of the scattering be-
tween quasiparticles at finite temperature. As a result, some
discrepancies between the two different methods are re-
solved.

The paper is organized as follows. In order to make the
paper self-contained, we briefly rederive in Sec. II the ther-
modynamic potential and the equation of state for the case of
a vanishing spatial correlation length of the disorder poten-
tial �1�. In the limit of zero temperature, we also determine
the high-order Beliaev corrections to the chemical potential
�4�. In Sec. III we give the derivation of the superfluid com-
ponent of the system in the presence of a random potential.
The disorder-induced corrections of the velocity of sound are
there obtained from hydrodynamic equations for the super-
fluid component of the system. In Sec. IV we extend the
theory to finite temperatures within the mean-field Popov

approximation. In Sec. V the thermodynamics and the phase
diagram are investigated by means of the many-body
T-matrix approximation. In particular, we use the theory to
calculate the shift of the Bose-Einstein critical temperature
and of the temperature for the loss of the superfluidity when
approaching the critical points from below. Comments and
conclusions remain for Sec. VI.

II. BOGOLIUBOV’S THEORY

We consider the effects of an external random field on the
thermodynamics of a dilute Bose gas. The random field is
assumed to have a probability distribution P�U� normalized
to one when averaged over all disorder configurations, that is
�d�U�P�U�=1. The average over the disorder fields is de-
fined as

�¯� =� d�U� ¯ P�U� , �1�

and for the disorder potential we assume the ensemble aver-
ages

�U�x�� = 0,

�U�x�U�x��� = R�x − x�� . �2�

At very low temperatures, when the wavelength of the atoms
in the gas is much larger than the range of the impurity
scatterers responsible for the random potential �9�, one may
consider the limit of a �-correlated type of disorder

R�x − x�� = R0��x − x�� .

The constant R0 is then related to the concentration of the
impurities and to the s-wave scattering length of the random
scatterers �9�. We assume that any time scale of the disorder
potential is frozen, i.e., very long in comparison with the
thermodynamic time scale. This so-called quenched-disorder
limit has the consequence that the disorder average must be
taken after the thermodynamic average over the grand-
canonical ensemble. Therefore, the total average of an ob-
servable reads
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��O�gr� =� d�U�P�U��O����gr, �3�

where �O����gr indicates the grand-canonical average.
At equilibrium, the grand-canonical partition function of a

Bose gas in a disordered medium is given as a functional of
the random external potential U�x�

Zgr�U� =� d��*�d���exp	−
1

�
S��*,�;U�
 , �4�

where the functional integral is performed over c-number
fields �*�x ,�� and ��x ,�� periodic in imaginary time over
��=� /kBT. The Euclidean action S is given by

S��*,�;U� = �
0

��

d�� dx�*�x,��

�	��
�

��
−

�2�2

2m
− 	 + U�x��

+
1

2
� dx��*�x�,��V�x − x����x�,��
��x,�� ,

�5�

where 	 is the chemical potential and V�x−x�� the atomic
repulsive interaction potential. The disorder average of the
thermodynamic potential 
=−�ln Zgr� /� is obtained from

�
� = −
1

�
�ln Zgr� . �6�

The average of Eq. �6� is highly nontrivial because the dis-
order average is nonlinear in Zgr due to the logarithm. In this
paper we calculate this average by following the method of
Huang and Meng in Ref. �1�, which is based on a canonical
Bogoliubov transformation �8�.

Expanding the fields in Fourier modes in a finite volume
V according to ��x ,��= �1/��V�1/2
k,nak,nei�k·x−�n�� with the
Matsubara frequencies �n=2�n /��, and the corresponding
complex conjugate expression for �*�x ,��, we write the ac-
tion in momentum space as

S�a*,a� = 

k,n

�− i��n + 
k − 	�ak,n
* ak,n

+
1

V



k,k�,n

ak,n
* Uk−k�ak�,n�n,0

+
1

2��V



n,n�,m
k,k�,q

Vqak+q,n+m
* ak�−q,n�−m

* ak�,n�ak,n.

�7�

In this equation we have introduced the free particle disper-
sion 
k=�2k2 /2m and the Fourier transform of the interac-
tion potential Vq=�dxV�x�e−iq·x. At very low temperatures,
the de Broglie wavelength �th of the atoms is much larger
than the range r0 of the interaction potential such that
r0 /�th�1. Therefore, only s-wave scattering is relevant in
the gas and we can neglect the momentum dependence of the

interaction potential, setting Vq=V0. Breaking the gauge
symmetry of the action by introducing the decomposition
��x ,��=�n0+���x ,�� and expanding the resulting expres-
sion up to quadratic order in �� and U, the effective action
becomes

S�2��a,a*� = − ��	n0V +
1

2
��n0

2V0V + ��n0U0

+ 

k,n

��− i��n + 
k − 	 + 2n0V0�ak,n
* ak,n

+ �n0

V
�1/2



k,n

��ak,n
* Uk + U−kak,n��n,0

+
1

2
n0V0


k,n

��ak,n
* a−k,−n

* + ak,na−k,−n� , �8�

where the prime denotes that k=0 is excluded from the
sum. The condensate density n0 remains to be determined by
minimizing the thermodynamic potential. Note that we
have also neglected as of higher order the term 1/
V
k,k�,n

� ak,n
* Uk−k�ak�,n�n,0, which requires the assumption of

weak disorder �1�. The effective action is diagonalized by a
Bogoliubov transformation

ak,n = uk�k,n − vk�−k,−n
* − zk,

ak,n
* = uk

*�k,n
* − vk

*�−k,−n − z−k
* , �9�

where the coherence factors uk, vk and the complex number
zk can be taken real positive by appropriately choosing the
phase of the complex fields. In such a case we have

uk
2 =

1

2
�1 +


k − 	 + 2n0V0

�
k
� ,

vk
2 =

1

2
�− 1 +


k − 	 + 2n0V0

�
k
� ,

z±k = �n0/V�1/2 Uk

�
k
�uk − vk�2, �10�

where �uk�2− �vk�2=1, ukvk�0, and where the Bogoliubov
spectrum is given by

�
k = ��
k − 	 + 2n0V0�2 − �n0V0�2. �11�

After the diagonalization the action reads

S�2��a,a*� = − ��	n0V +
1

2
��n0

2V0V + ��n0U0

+ 

k,n

��k,n
* �k,n�− i��n + �
k�

+
��

2 

k

��
k − �
k − 	 + 2n0V0��

−
��

V


k,n

��Uk�2
n0�
k − 	 + n0V0�

�
k
2 . �12�

By performing the functional integral of Eq. �4� and averag-
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ing over the disorder, the thermodynamic potential of Eq. �6�
becomes

�
� = − 	n0V +
1

2
n0

2V0V + 

k

�
1

�
ln�1 − e−��
k�

+
1

2

k

���
k − �
k − 	 + 2n0V0��

− 

k

�n0R0
�
k − 	 + n0V0�

�
k
2 . �13�

The first two terms on the right-hand side represent the
mean-field result while the remaining three terms describe
thermal and quantum fluctuations. From the thermodynamic
relation n=−�1/V���
� /�	 we have for the particle density
in the grand-canonical ensemble

n = n0 + n� + nR, �14�

with the depletion due to the normal interaction

n� =
1

V


k

�� 
k − 	 + 2n0V0

�
k
N��
k�

+

k − 	 + 2n0V0 − �
k

2�
k
� , �15�

and the disorder-induced depletion

nR =
1

V


k

�n0R0
�
k − 	 + n0V0�2

�
k
4 . �16�

Here N��
k�= �e��
k −1�−1 is the Bose distribution function.
The chemical potential can be eliminated from this expres-
sion by minimizing �
�, given in Eq. �13�, with respect to
the condensate density n0 �cf. Eq. �20� below�. In the mean-
field approximation this yields 	�n0V0, which corresponds
to the Hugenholtz-Pines relation for that approximation. At
this minimum, the thermodynamical potential of Eq. �13�
becomes �with n0�	 /V0�

�
� � −
1

2
n0

2V0V + 

k

�
1

�
ln�1 − e−��
k�

+
1

2

k

���
k − 
k − n0V0� − 

k

�
R0n0


k + 2n0V0
,

�17�

with �
k��
k�
k+2n0V0�. Analogously, in the equation of
state of Eq. �14�, we obtain

n� � n0
8

3
�n0a3

�
�1/2

+
1

V


k

�

k + n0V0

�
k
N��
k� , �18�

and �1�

nR = R0
m2

8�3/2�4�n0

a
, �19�

where we have made the replacement V0→T2B, that is, we
have eliminated the unknown bare potential V0 for the two-

body scattering matrix T2B�4��2a /m proportional to the
s-wave scattering length a. According to the limitations of
the Bogoliubov approximation, the theory is valid under the
conditions nR, n��n0�n. The constraint n��n implies the
diluteness condition n1/3a�1. The condition nR�n is
equivalent to the inequality R0��m2R0 /8�3/2�4�na�1/2�1.
Associating to the strength R0 of the disorder perturbation a
length scale defined as d��2��2 /m�2 /R0, the condition on
R0� can be rewritten as 2�n1/3a�1/2dn1/3 /���1. In the dilute
limit n1/3a�1 this requires dn1/3�1, i.e., the length scale
associated with the interaction energy due to the impurity
potential must be much larger than the interparticle distance
n−1/3. The condition R0��1 can also be reexpressed and elu-
cidated by introducing the healing length of the condensation
wave function which is defined as �heal�1/�8�na. Accord-
ing to the theory of superfluidity in Bose-Einstein condensa-
tion �BEC�, the inverse of the healing length characterizes
the upper boundary of the momenta in the phononic spec-
trum of the fluid. At this wavelength, the energy of the exci-
tations is of the order of �
k�	. The condition R0��1 is
equivalent to �2��heal�d. Therefore, the theory is valid
when the energy of the excitations, induced by the impurity
scattering, is far below the value �2 /m�heal

2 that marks the
crossover from the collective phononic excitations to the
single-particle excitations.

The lowest-order Hugenholtz-Pines condition 	=n0V0
neglects the effects of quasiparticle interactions �10,11�, as
well as the scattering between the quasiparticles and the im-
purities �4�. Nevertheless, the beyond mean-field Beliaev
corrections to the leading order result 	=n0V0 depend, both
in the normal and in the disorder interactions, only on two-
body collisions and can be calculated in the framework of
the Bogoliubov theory �12�. Minimizing the thermodynamic
potential of Eq. �13� with respect to the condensate density,
we have

	 = n0V0 + V0
1

V


k

��2
k − 2	 + 3n0V0

�
k
N��
k�

+
2
k − 2	 + 3n0V0 − 2�
k

2�
k
�

−
1

V


k

�R0� 
k − 	 + 2n0V0

�
k
2

−
2n0V0�
k − 	 + n0V0��2
k − 2	 + 3n0V0�

�
k
4 � . �20�

In order to find the corrections to the mean-field result we
substitute in the right-hand side of Eq. �20� the zero-loop
result 	=n0V0 to obtain the next order correction to the re-
lation between the chemical potential and the condensate
density. At T=0, the Bose distribution N��
k� can be ne-
glected, and we have

	 = n0V0 + 2V0
1

V


k

�

k + n0V0 − �
k

2�
k
− n0V0

2 1

V


k

�
1

2�
k

−
1

V


k

�R0

k − 2n0V0

�
k + 2n0V0�2 . �21�

Subtracting the ultraviolet-divergent contribution −n0V0
2�1/
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V�
k�1/2
k in the third term and eliminating in the above
expression the bare potential V0 for the two-body scattering
matrix defined by the Lippmann-Schwinger equation T2B

=V0−V0�1/V�
k�
1

2
k
T2B, we find

	 = n0T2B�1 +
40

3
�n0a3

�
� −

1

V


k

�R0

k

�
k + 2n0T2B�2

+ T2BnR. �22�

Using the equation for the number of particles in Eqs. �14�,
�18�, and �19�, we have that Eq. �22� can be rewritten as

	 = nT2B�1 +
32

3
�na3

�
� + �	R, �23�

with

�	R = −
1

V


k

�R0

k

�
k + 2n0T2B�2 , �24�

in agreement with the zero-temperature result of Ref. �4�.
Note that the beyond mean-field correction given by �	R still
contains an ultraviolet divergency, which is not related to the
interaction and was thus not yet removed by the renormal-
ization of the latter. Rather its origin lies in the fact that we
have considered a �-correlated random potential. In second-
order perturbation theory, it changes the original chemical
potential 	=	bare without the random potential, to the new

value 	=	bare− 1
V2 
k�

�Uk�2


k
. Thus, after averaging, we must

make the change 	=	bare→	+R0�1/V�
k�1/
k, which re-
moves the divergency. After renormalizing in this way, we
have

�	R = 6T2BnR, �25�

which corresponds to a shift for the macroscopic compress-
ibility ���	R� /�n=�� /�0=3nR/n with respect to the mean-
field value �0=T2Bn /m of the Bogoliubov theory for a clean
system. Using the thermodynamic relation 	=�F /�N, we
can calculate the free energy F from Eq. �23�. At T=0 this
coincides with the energy E and we find �1,4�

�E�
V

�
2�a�2n2

m
�1 +

128

15
�na3

�
�1/2

+ 8R0�� . �26�

III. SUPERFLUID COMPONENT

In a Bose-Einstein condensate, random impurities consti-
tute a source of incoherent scattering which tends to localize
the condensate. As shown by Huang and Meng �1� the for-
mation of local condensates in the minima of the random
potential reduces the superfluid component of the fluid even
at zero temperature, where, in the absence of disorder, the
whole fluid would be superfluid �13�. For the sake of com-
pleteness and in order to propose a simpler derivation, we
rederive in this section the superfluid component in the pres-
ence of weak disorder �1,2,4� by extending the Bogoliubov
diagonalization method to a moving system. The superfluid
density ns is related to the total density by the relation

ns = n − nn, �27�

where nn is the density of the normal component of the fluid.
In order to calculate nn, we consider the action of Eq. �7�
when the gas is in motion. The moving reference system is
related to the laboratory system by a Galilean transformation
x�=x+ut and t�= t. The fields in the moving system have a
relative velocity vs with respect to those in the inertial frame.
They are related by the transformation �*��x� , t��
=e−imvsx/��*�x , t� and ���x� , t��=eimvsx/���x , t�. Therefore,
in the new reference system, the action in Eq. �7� becomes

S�a*,a� = 

k,n

�− i��n + �k�u − vs� + 
k − 	eff�ak,n
* ak,n

+
1

V



k,k�,n

ak,n
* Uk−k�ak�,n�n,0

+
1

2

1

��V



k,k�,q
n,n�,m

Vqak+q,n+m
* ak�−q,n�−m

* ak�,n�ak,n,

�28�

where the new chemical potential is defined as 	eff=	
+muvs−mvs

2 /2. In the broken symmetry regime, the action
in the new reference frame, up to the quadratic order in the
fluctuations fields, reads

S�2��a,a*� = − ��	effn0V +
1

2
��n0

2V0V + ��n0U0

+ 

k,n

��− i��n + �k�u − vs� + 
k − 	eff + 2n0V0�

�ak,n
* ak,n + �n0

V
�1/2



k,n

��ak,n
* Uk + U−kak,n��n,0

+
1

2
n0V0


k,n

��ak,n
* a−k,−n

* + ak,na−k,−n� . �29�

The latter action can again be diagonalized by the Bogoliu-
bov transformation described in Eqs. �9�–�11�. This is
achieved by replacing 	→	eff in the definition of uk, vk, and
�
k, and by defining the new shift variable z±k as

z±k = �n0/V�1/2 Uk

�
k ± �k�u − vs�
�uk − vk�2. �30�

Performing the diagonalization, the functional integration
and the average over the disorder, we obtain the averaged
thermodynamic potential

�
� = − 	effn0V +
1

2
n0

2V0V + 

k

�
1

�
ln�1 − e−���
k+�k�u−vs���

+
1

2

k

���
k − �
k − 	eff + 2n0V0��

− 

k

�n0R0
�
k − 	eff + n0V0�

�
k
2 − ��k�u − vs��2 . �31�

Expanding for small �k�u−vs� to second order, we have
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�
� � − 	effn0V +
1

2
n0

2V0V + 

k

�
1

�
ln�1 − e−��
k�

+
1

2

k

���
k − �
k − 	eff + 2n0V0��

− 

k

�n0R0
�
k − 	eff + n0V0�

�
k
2

− 

k

�
�2k2

3 ��
e−��
k

2�e−��
k − 1�
+ R0n0

2
k

�
k
4��u − vs�2,

�32�

where the term linear in u−vs vanishes as a consequence of
the symmetry �
k=�
−k of the Bogoliubov spectrum of Eq.
�11�. Moreover, minimizing this thermodynamic potential
with respect to n0, we obtain the zero-loop result 	eff=n0V0,
which gives �
k��
k�
k+2	eff�. At this minimum, the mo-
mentum of the system can be calculated from the thermody-
namic relation

p = − � ��
�T,V,	eff�u�,u��
�u

�
T,V,	

. �33�

We find

p = mVnvs +
1

3

k

����2k2 e−��
k

�e−��
k − 1�
+ R0n0�2k2 4
k

�
k
4�

��u − vs� , �34�

where we have used the thermodynamical relation n
=−�1/V���
� /�	 and the identity �	eff /�u=mvs. Therefore,
we can conclude that the density of the normal part of the
fluid moving with velocity u is given by �1�

nn =
1

V


k

�
2

3
�
k

e��
k

�e��
k − 1�2 +
4

3
nR. �35�

Note that in two dimensions the derivation of the normal
component due to the disorder is analogous, but the factor
1 /3 in the formula for the thermodynamic potential in Eq.
�35� is replaced by a factor 1 /2. After the integration in two
dimensions, we obtain

nn =
1

V


k

��
k
e��
k

�e��
k − 1�2 +
R0m2

8�3�4a
, �36�

in agreement with Refs. �2,14�.
The depletion of the superfluid density due to the disorder

affects also the propagation of an external disturbance
through the system, because the collective motion of the su-
perfluid component is “hampered” by the component of the
condensate localized in the minima of the disorder potential.
In order to see this effect, we now calculate the corrections to
the velocity of sound induced by the disorder at zero tem-
perature. Let us assume that for weak disorder the dynamics
of the superfluid component of the gas can be described by
the phenomenological two-fluid hydrodynamic equations
�15�

�

�t
n + ��vsns + vnnn� = 0,

m
�

�t
vs + ��	 +

1

2
mvs

2� = 0, �37�

where 	 is the chemical potential given in Eq. �23�. How-
ever, in that expression, we shall neglect the second-order
Beliaev term due to the normal interactions in comparison to
the corrections due to the disorder, and we shall focus on the
latter. Then Eqs. �37� represent a Landau “two-fluid” model
for the superfluid condensate and the localized nonuniform
condensate. What is somewhat unusual is that, in this case,
the normal component induced by the disorder is at zero
temperature and does not carry any entropy of the system.
Furthermore, we assume that for low frequency excitations,
only the superfluid component can react to the probe, while
the localized normal component remains stationary. Such a
situation is familiar from the propagation of the fourth sound
in 6He �16� which is expressed by the condition vn=0. If we
restrict ourselves to the linear regime, we can write n�t�=n
+�n�t� and 	=	0+�	 with �	= ��	 /�n��n. Then, Eqs. �37�
give the equation of motion

m
�2

�t2�n − ��ns � � �	

�n
�n�� = 0. �38�

From Eqs. �19� and �25� we have that ��	 /�n�=T2B�1
+3nR/n�. Moreover, from the result for the superfluid den-
sity in Eq. �27� we have ns=n�1−4nR/3n�. Therefore, Eq.
�38� can be put into the form

�2

�t2�n − c2�2�n = 0, �39�

which exhibits a phonon dispersion ��=cq. Within this di-
rect approach, the sound velocity is found to be c2�c0

2�1
+5nR/3n� in agreement with Refs. �2,4�. Note that c0

2

=T2Bn /m is the mean-field value of the Bogoliubov theory
for the clean system. The derivation of the sound mode we
gave here is rather general and sufficiently simple to be gen-
eralized in order to calculate the effects of the disorder on the
frequencies of the collective modes in trapped gases �17�.

IV. POPOV’S THEORY

At finite temperature the interactions of the thermal com-
ponent of the gas are described by the contributions to the
action beyond the quadratic order given in Eq. �8�. In this
section we extend the Bogoliubov approach of Sec. II includ-
ing these fluctuations according to the scheme of the Popov
theory �18� which is designed for the temperature domain
kBT�	. In that approximation the cubic and quartic contri-
butions are taken as

S�3��a,a*� �� n0

��V


k,n

�ñV0�ak,n
* + ak,n� �40�

and
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S�4��a,a*� �
2

��V


k,n

�ñV0ak,n
* ak,n, �41�

where the temperature-dependent total depletion ñ
����*���gr� is still to be determined. For our present ther-
modynamic considerations, we neglect the cubic terms fol-
lowing �18� and include the quartic term. The cubic term in
Eq. �40� only contributes in second and higher orders of V0
and is taken into account by the introduction of the T2B ma-
trix below. The new action is still diagonalized by the same
Bogoliubov transformation, Eqs. �9�–�11�, but with the dif-
ference that the chemical potential 	 has now to be replaced
everywhere by the new variable

	� = 	 − 2ñV0, �42�

and that the condensate density n0 becomes strongly tem-
perature dependent. Performing again the functional integral
and the disorder average, the thermodynamic potential of Eq.
�13� reads

�
� = − 	n0V +
1

2
n0

2V0V + 

k

�
1

�
ln�1 − e−��
k�

+
1

2

k

���
k − �
k − 	� + 2n0V0��

− 

k

�R0n0
�
k − 	� + n0V0�

�
k
2 . �43�

Popov theory is equivalent to replacing in the contribution
n0

2V0 /2 to the pressure 
 /V the bare interaction V0 by the
renormalized T2B matrix and to adding the contributions
2n0ñT2B+ ñ2T2B �18�. After these steps the averaged thermo-
dynamic potential can be rewritten as

�
� = − 	n0V +
1

2
n0

2T2BV + 2n0ñT2B + ñ2T2B

+ 

k

�
1

�
ln�1 − e−��
k�

+
1

2

k

���
k − �
k − 	� + 2n0T2B��

− 

k

�R0n0
�
k − 	� + n0T2B�

�
k
2 . �44�

The equilibrium condition at fixed temperature is found by
minimizing the thermodynamic potential of Eq. �44� with
respect to n0. Using the modified Hugenholtz-Pines relation
	�=n0T2B, which fixes ñ according to Eq. �42� as ñ
= ��	 /T2B�−n0� /2, we obtain instead of Eq. �20�,

	� = n0T2B + n0T2B�40

3
�n0a3

�
�

+ T2B 1

V

k

��2
k + n0T2B

�
k
N��
k� − N�
k�� + 2��3

2
�

��mkBT
2��2�3/2

T2B −
1

V


k

�R0

k

�
k + 2n0T2B�2 + T2BnR,

�45�

where nR is given by the same expression as in Eq. �19�. In
the “high” temperature limit kBT�n0T2B, the main contribu-
tion to the momentum integral containing the Bose distribu-
tion comes from the region 
k�n0T2B and the Bose distribu-
tion can be approximated as N�x��kBT /x. Therefore, Eq.
�45� can be rewritten as

	� = n0T2B�1 +
40

3
�n0a3

�
� − 3T2B�n0T2B�1/2

m3/2kBT
2��3

+ 2��3

2
��mkBT

2��2�3/2

T2B −
1

V


k

�R0

k

�
k + 2n0T2B�2

+ T2BnR. �46�

In the limit of zero disorder R0=0 this result reduces, of
course, to that of Popov �18�. The new equation of state is

n = −
1

V

��
�
�	

= n0 +
8

3
�n0a3

�
�1/2

+
1

V


k

�

k + n0T2B

�
k
N��
k�

+
1

V


k

�
R0n0

�
k + 2n0T2B�2 . �47�

This latter equation has the same form as the equation of
state of the Bogoliubov theory as given in Eq. �14� with Eqs.
�18� and �19�, but the domain of validity and the details of
the temperature dependence are, of course, different. In the
“high” temperature region kBT�n0T2B where the Popov
theory applies, we can neglect the quantum depletion of the
zero-temperature theory, and the thermal depletion n�
= �1/V�
k�N��
k���
k+n0T2B� /�
k� can be simplified as

n� � − �n0T2B�1/2
m3/2kBT

2��3 + ��3

2
��mkBT

2��2�3/2

. �48�

Therefore, Eq. �47� can be rewritten as

n = n0 + n� T
T c

0�3/2

− �n0T2B�1/2
m3/2kBT

2��3 + nR. �49�

The curve for the critical temperature Tc in the Popov theory
can be obtained by putting n0�T � equal to zero in Eq. �49�.
We note that the contribution in Eq. �49� due to the disorder
vanishes when approaching the critical point because, ac-
cording to Eq. �19�, we have nR��n0�T �. Therefore, we can
argue that even the presence of a random potential of the
kind under consideration here, the Popov approximation
does not shift the value of the critical temperature away from
that of an ideal Bose gas T c

0. In the absence of disorder, the
Popov approximation of a dilute Bose gas describes a first-
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order phase transition: at the critical temperature T c
0 the con-

densate density n0�T � exhibits a discontinuous jump to a
finite value. The latter can be calculated analytically �20� as
a function of the scattering length a. It can be shown, that the
effect of the disorder is to suppress this discontinuity and that

the jump vanishes for R0� larger than some value R̃0�.
Nevertheless, the normal-to-superfluid transition of the

liquid occurs at the temperature Ts defined as the temperature
at which the superfluid density ns=n−nn vanishes. By means
of Eq. �35� this condition can be expressed as

n −
1

V


k

�
2

3
�s
k

e�s�
k

�e�s�
k − 1�2 −
4

3
nR = 0. �50�

At “high” temperatures such that kBTs�n0T2B, the latter
equation can be approximated as

n � n� Ts

T c
0�3/2

−
2

3
�n0T2B�1/2

m3/2kBTs

2��3 +
4

3
nR. �51�

Therefore, Eqs. �49� and �51� represent two coupled equation
for n0 and Ts. In the lowest order in the strength of disorder
and interaction we can approximate Eq. �49� with the ideal
gas result n0�n�1− �T /T c

0��3/2��. Substituting this in Eq. �51�
and neglecting there the second term on the right-hand side,
in the limit R0�� �na3�1/6, we obtain an equation for the criti-
cal temperature Ts as a function of the total density and the
strengths of the interaction and the disorder

�1 − �Ts/T c
0�3/2�1/2 �

4

3
� 1

na

R0m2

8�3/2�4 �
4

3
R0�. �52�

Solving for Ts we find for the critical temperature where
superfluidity disappears when coming from lower tempera-
tures

Ts/T c
0 � 1 − �32/27�R0�

2. �53�

This result coincides with Eq. �32� of Ref. �4�. Here it has
been derived assuming that near the critical temperature Ts
the interaction between the bosonic particles can be de-
scribed by the temperature independent T2B matrix. This is
consistent only if the critical temperature Ts is not too close
to the transition temperature T c

0. The reason is that near the
Bose-Einstein condensation point the quasiparticle interac-
tions acquire a strong temperature dependence �7,20,21�. As
pointed out in Ref. �4�, the consistency condition is satisfied
when R0�� �na3�1/6. In the opposite regime, when R0�
� �na3�1/6, we will show in the next section that we have
Ts�Tc, where Tc is the Bose-Einstein condensation tempera-
ture including disorder effects which depends linearly on R0.
In that case, temperature effects on the particle-particle scat-
tering cannot be neglected and the two-body T2B matrix of
the Popov theory has to be replaced by the many-body T
matrix, which we shall do in the next section.

The failure of the Popov approximation in the regime
R0�� �na3�1/6 has a specific physical reason. The Popov ap-
proximation, as considered here up to now, neglects the
Hartree-Fock contribution by which the presence of the im-
purities affects the scattering among two thermal particles.
This can be seen, for example, by calculating the relation

between the chemical potential 	 and the total density n and
comparing it with the result of Lopatin and Vinokur in Ref.
�4�. Using Eqs. �46�–�48�, we find

	 = T2Bn − T2B 1

�
�	��1/2

m3/2kBT
�3

+ T2B��3

2
��mkBT

2��2�3/2

−
1

V


k

�R0

k

�
k + 2	��2 . �54�

We observe that in comparison with the theory of Ref. �4� we
seem to miss in Eq. �54� the Hartree-Fock term
T2BR0m3kBT /4�2�6. A corresponding contribution seems
also to be absent in the equation of state in Eq. �49� and in
the normal density component of Eq. �51�. However, since
we are in the regime R0�� �na3�1/6, the latter contribution is
in fact negligible and one obtains the value of Ts as indicated
in Eq. �53�. In order to access also the regime R0�� �na3�1/6,
in the next section, we will extend the Popov theory to the
many-body T matrix approximation. In this way we will find
results similar to the one of Lopatin and Vinokur but within
a gapless theory approaching the critical point from below.

V. MANY-BODY T MATRIX

In the vicinity of the critical temperature of Bose-Einstein
condensation, the interactions between the quasiparticles are
strongly renormalized by temperature effects and vanish at
the transition point for this reason �21�. For a clean system,
Bijlsma and Stoof �7� have shown that the quasiparticles
interaction is well described by the many-body T matrix TMB.
In the presence of weak disorder, the many-body T matrix
continues to obey, in lowest order, the same formal Bethe-
Salpeter equation as in the absence of disorder �7�

TMB�k,k�,K;z� = V�k − k�� +� dk�

�2��3V�k − k��

� 	� u+
2u−

2

z − �
+ − �
−
−

v+
2v−

2

z + �
+ + �
−
�

��1 + N+ + N−� + � u−
2v+

2

z + �
+ − �
−

−
u+

2v−
2

z − �
+ + �
−
��N+ − N−�


� TMB�k�,k�,K;z� , �55�

where N+�N��
+� and N−�N��
−�. The plus sign denotes
the momentum argument K /2+k�, and similarly the minus
sign denotes the argument K /2−k�. In the low-temperature
domain, where BEC experiments with cold atoms are always
realized, the momentum and energy dependence of the TMB

matrix can be neglected. This even applies to the domain
kBTc�kBT�	 of sufficiently high temperatures where the
Popov approximation applies, to which we sometimes refer
as the “high”-temperature domain in this context. Then we
have
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TMB�0,0,0;0� = V0 − V0TMB�0,0,0;0� � dk

�2��3

�� 1

2�
k
+

n0V0

4��
k�3��1 + 2N��
k�� .

�56�

The integral on the right-hand side contains an infrared di-
vergency �22� caused by the well-known fact that the finite-
temperature theory does not properly account for the dynam-
ics of the phase fluctuations in the infrared limit �19�.
However, in the “high” temperature limit na�th

2 �1 the infra-
red divergent term must, in fact, be dropped. This follows
because at “high” temperatures the Bogoliubov spectrum
�
k deviates from 
k−	� only for a very small interval of
momenta around zero, where 
k�n0T2B�nT2B. Therefore
this phononic part of the spectrum merely makes an asymp-
totically small contribution to all thermodynamic quantities.
Therefore, we can set uk=1 and vk=0 in Eq. �55�. With this,
and after having eliminated the bare potential V0 by means of
the Lippmann-Schwinger equation for the T2B matrix, we
obtain

TMB�0,0,0;0� = T2B�0,0;− 2	�� − T2B�0,0;− 2	��

�� dk

�2��3

N��
k�
�
k

TMB�0,0,0;0� .

�57�

Solving for TMB�0 ,0 ,0 ;0� we find �7,20�

TMB�0,0,0;0� =
T2B�0,0;− 2	��

1 + T2B�0,0;− 2	�� � dk

�2��3

N��
k�
�
k

.

�58�

The many-body T-matrix approximation in a dilute ultracold
Bose gas can now be obtained from the formulas of the
Popov theory as developed in the previous section just by
replacing �20� there the two-body T-matrix T2B�0 ,0 ;−2	��
�T2B by the temperature dependent many-body T-matrix
TMB�0 ,0 ,0 ;0�. The excitation spectrum is thereby changed
to

�
k = ��
k − 	 + ��11�k,�n��2 − ���12�k,�n��2, �59�

where the self-energies are given by

��12 = n0TMB�0,0,0;0� ,

��11 = 2nTMB�0,0,0;0� . �60�

The condition 	�=	−��11=n0TMB�0 ,0 ,0 ;0� ensures the
spectrum to be gapless.

The Bose factor in the many-body T matrix of Eq. �58�
leads to a temperature-dependent scattering length, defined
as

aT � mTMB�0,0,0;0�/4��2. �61�

For temperatures not too close to the Bose-Einstein critical
temperature, where the usual mean-field Popov theory of the

previous section is valid, the denominator in Eq. �58� repre-
sents a negligible correction. In that case, the many-body T
matrix indeed reduces to the two-body temperature-
independent T2B-matrix T2B=4��2a /m. However, approach-
ing the critical region near the Bose-Einstein transition, the
scattering between quasiparticles now becomes strongly tem-
perature dependent �7,20�. A more detailed insight can be
gained by considering the “high” temperature expansion of
Eq. �58� �20�. In that case, the latter reduces to a quadratic
equation which can be solved analytically. Using Eq. �61� we
find for the temperature-dependent scattering length

aT � a�1 +

��
T

T 0
c�2

− ��
T

T c
0����

T
T c

0�2

+ 4
n0

n

2
n0

n
� .

�62�

where ���2�� /��3/2�2/3��na3�1/6. In Fig. 1 the curve re-
sulting from the “high” temperature expansion of Eq. �62� is
compared with the curve obtained from Eqs. �58� and �61�.
For temperatures not too close to the critical point, we have
��T /T c

0�2�4�n0 /n� and the curve of Eq. �62� can be ap-
proximated by

� � �

�

�

�

�

�
�

�� � �� � 	

�

� � �

� � 	

�

� � �

�

�

�

�

�
�

�� � � � �� � � � �

� � � �

� � � �

� � � �

� � � 	

(a)

(b)

FIG. 1. �a� Temperature-dependent scattering length as a func-
tion of the rescaled temperature T /T c

0 calculated numerically from
Eq. �58� �solid line� and from the analytic expression of Eq. �62�
�dashed line�. The dotted line shows the asymptotic limit described
by Eq. �63� valid in the Popov region for temperatures not too close
to T c

0. �b� Temperature-dependent scattering length as a function of
the rescaled temperature T /T c

0 near T c
0. The lower line shows the

numerical result from Eq. �58� compared to the asymptotic expres-
sion given in Eq. �64� described by the upper line. In both pictures
the gas parameter of the Bogoliubov theory has been chosen such as
�na3�1/3�0.01.
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aT � a�1 − 2
��

��3/2�2/3 �na3�1/6
T

T c
0

1
�n0/n

� , �63�

while for temperatures just below the critical temperature T c
0

the scattering length between quasiparticles becomes a uni-
versal function of the density and temperature given by

aT �
��3/2�4/3

4�

n0

n4/3 , �64�

which vanishes at the critical temperature T c
0 �7,21� with the

same power as the condensate density. The two different
asymptotic regimes of the expression in Eq. �62� are also
shown in Fig. 1. Note that Fig. 1�a� also includes the zero-
temperature limit where the Popov approximation as well as
the many-body T matrix are infrared divergent. However,
this is an asymptotic small region because the condition of
validity of the Popov approximation defined by na�th

2 �1 is
equivalent to impose the condition T /T c

0� ���3/2�2/3 /4��
��na3�1/3.

By applying these results to the equation of state in Eq.
�49� the latter can be rewritten as

n = n0 + n� T
T c

0�3/2

− �n0
4��2aT

m
�1/2m3/2kBT

2��3

+ R0�n0

aT

m2

8�3/2�4 . �65�

For a clean system neither the two-body nor the many-body
T-matrix theory induce a shift of the critical temperature �7�.
In contrast to this, we find that in the presence of
�-correlated disorder the effects described by the many-body
T matrix induce such a shift of Tc. This is illustrated in Fig.
2, where the solutions of the coupled equations �62� and �65�
for aT and the condensate density n0 are shown as function of
the temperature in absence and in presence of disorder. The
origin of the shift becomes evident when considering the
limit T→T c

0 in Eq. �65�. If we insert in that equation for the
temperature dependence of the condensate density that of an
ideal Bose gas, the term due to the disorder does not vanish
at T c

0 as it would in the simple Popov theory. This follows
because the temperature-dependent scattering length aT goes
to zero with the same exponent as the condensate density n0,
and both effects cancel. Thus we obtain

n = n�T/T c
0�3/2 + R0m3kBT c

0/8�2�6, �66�

which is solved by

Tc � T c
0�1 − �� , �67�

where ��R0m3kBT c
0 /12�2�6n=2� / �3��3/2�2/3dn1/3��1.

This value differs by a factor of 1 /2 from the Hartree-Fock
result found by Lopatin and Vinokur in Ref. �4� with a theory
coming from the normal phase above Tc. The result of Ref.
�4� has been recently confirmed by Zobay in Ref. �6� by
means of a one-loop Wilson renormalization-group calcula-
tion. This latter method approaches the critical point from
above as well but takes into account critical fluctuations
which are nonperturbative in the interaction. The numerical

solution of the renormalization-group equations shows that
the critical fluctuations lead only to small corrections with
respect to the result of Ref. �4�. Note, however, that in con-
trast to Refs. �4,6�, our TMB-matrix theory approaches the
critical point from below. In our theory, the condition for the
spectrum to be gapless below the critical temperature is en-
sured by extending the prescriptions of the Popov method in
the presence of disorder. Therefore, assuming the phase tran-
sition as continuous, it is likely that the structure of the equa-
tion of state �65� is responsible for the different result. In
order to obtain a better understanding, it would be interesting
to derive the equation of state from the vertex function cal-
culated in a gapless approximation beyond the TMB matrix
developed here. However, this is a nontrivial task and is left
for a separate study. On the other hand, if this discontinuity
of the critical temperatures calculated from above and from
below would be confirmed, it would indicate the occurrence
of a first-order phase transition �5,23�.

The many-body T-matrix approximation is also useful to
understand the dependence on the disorder of the superfluid
transition Ts. Equation �51� can be rewritten as

n � n� Ts

T c
0�3/2

−
2

3
�n0TMB�1/2

m3/2kBTs

2��3 +
4

3
R0�n0

aT

m2

8�3/2�4 .

�68�

Equation �68� together with Eqs. �62� and �65� evaluated at
T=Ts constitute a set of closed equations for Ts, n0�T=Ts

and
aT�T=Ts

. The self-consistent solution of the three coupled
equations is shown in Fig. 3. When R0�� �na3�1/6, we have
that Ts lies well below T c

0 in the domain, where the many-
body T matrix is given essentially by the temperature inde-

� � �

�

�

�

�

�
�

�

�

�
�

�� � 	� � 
� � �� � ��

�

� � 	

� � 


� � �

� � �

�

FIG. 2. The lower and the upper dashed lines describe the con-
densate density n0 and the scattering length aT obtained by solving
self-consistently Eqs. �62� and �65� in absence of disorder, i.e.,
when R=0. In this case, both quantities vanish at T=T c

0 and no
shift of the critical temperature is induced �7,20�. The gas parameter
of the Bogoliubov theory has been chosen the same as in Fig. 1. The
solid lines show the solution for finite disorder. We see that the
temperature at which they vanish is shifted with respect to the criti-
cal temperature of the ideal gas. In order to make clearly visible the
effect we have considered in the figure the case R0�=0.5. However,
for such a value the condensate depletion due to the disorder at zero
temperature is already �0.4 of the total density. Note also that, in
contrast with Popov theory, for each value of R0� the curve for n0

obtained from the many-body T-matrix approximation exhibits a
second-order phase transition.
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pendent T2B matrix. In that limit Ts is given by Eq. �53� of
the Popov theory. However, when R0�� �na3�1/6, one expects
Ts�T c

0 and the temperature effects on the quasiparticles
scattering become important. In that case, we can use the
expansion of the many-body T matrix near the critical point
given in Eq. �64�. From Eq. �68� to the lowest order in the
disorder and in the normal interaction this leads to Ts�T c

0

�1−4� /3�, which is smaller than the critical temperature Tc
given in Eq. �67� due to the factor 4 /3.

Therefore, we find that the presence of disorder shifts the
critical temperature for the superfluid transition below the
line of the Bose-Einstein condensation temperature. The shift
increases monotonically as a function of the disorder
strength R0. For R0�� �na3�1/6 the shift is linear in R0. At
larger values of the disorder strength, where R0�� �na3�1/6, it
becomes quadratic in R0. The crossover between the two
regimes is described accurately in Fig. 3. Note that, in that
figure, the results obtained in the region R0��1 have to be
considered as an extrapolation to the more complicate re-
gime of strong disorder �23,24�.

Moreover, the superfluid density can be calculated from
the relation ns=n−nn with the normal density given by the
right-hand side of Eq. �68� evaluated at temperatures T�Ts.
In contrast with the Bogoliubov approach of Ref. �1�, our
theory includes important finite-temperature correlations be-
tween quasiparticles and we find that the superfluid density
decreases monotonically as function of the temperature. This
result is in agreement with the diagrammatic theory based on
the replica method developed in Ref. �4�.

Here, we have not discussed the damping of the sound
due to the impurity scattering. This damping has so far been
studied only at zero temperature in Refs. �2,4�. The many-
body T-matrix theory developed here, neglects the finite life-
time of the quasiparticles and cannot describe damping phe-
nomena for this reason.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have extended in this paper the pertur-
bative approach developed by Huang and Meng in Ref. �1�
for a homogeneous superfluid dilute Bose gas in the presence
of weak disorder. We have shown that such an extension to
finite temperatures is achieved via a suitable combination of
the mean-field Popov approximation and the many-body
T-matrix approximations. In particular this allows to make
contact with results of second-order perturbation theory at
finite temperature developed in Ref. �4� by means of the
replica method. For example, the shifts of the two different
critical temperatures for the appearance of a condensate den-
sity and of a superfluid density have here been calculated
when coming from the low-temperature side.

The theory could have other interesting applications. Us-
ing the notion of the quasi-condensate �18�, Andersen et al.
�19� have shown that the many-body T-matrix theory can
describe the thermodynamics of a clean two-dimensional
Bose gas near the Kosterlitz-Thouless superfluid transition,
and it seems plausible that this continues to be true also for
weak disorder. Therefore, the approach presented here could
be useful in order to study the long-standing problem con-
cerning the disorder-induced shift on the superfluid transition
temperature in a two-dimensional Bose gas.
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