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Ground-state properties of trapped Bose-Einstein condensates:
Extension of the Thomas-Fermi approximation
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We derive general approximate formulas that provide with remarkable accuracy the ground-state properties
of any mean-field scalar Bose-Einstein condensate with short-range repulsive interatomic interactions, confined
in arbitrary cylindrically symmetric harmonic traps. Our formulation is even applicable for condensates con-
taining a multiply quantized axisymmetric vortex. We have checked the validity of our formulas by numeri-
cally solving the three-dimensional Gross-Pitaevskii equation.
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I. INTRODUCTION

Since the experimental realization of the first dilute Bose-
Einstein condensates (BECs) of trapped atomic gases [1-3]
there has been great interest in the study of the physical
properties of ultracold quantum gases [4]. Under the usual
experimental conditions, these systems can be accurately de-
scribed by the Gross-Pitaevskii equation (GPE) [5], a mean-
field equation of motion governing the behavior of the con-
densate wave function ¢(r). In the stationary case the GPE is
given by the nonlinear Schrédinger equation

ﬁZ
(— o V2+V<r)+gN|w|2>¢=w, (1)
m

where w is the chemical potential, N is the number of atoms,
g=4mh*a/m is the interaction strength, determined by the
s-wave scattering length a, and V(r) is the trap potential.

In this work we shall concentrate in the usual case of
condensates with repulsive interatomic interactions (a>0),
confined in cylindrically symmetric harmonic traps, V(r)
=im(w’ > +w’z?). To obtain the condensate ground-state
properties one has to solve the nonlinear differential equation
(1). No explicit analytical solutions are known, so that, in
general, this has to be done numerically. However, solving
numerically the three-dimensional (3D) GPE is a nontrivial
computational task, especially for highly asymmetric trap ge-
ometries, where large basis or gridpoint sets can be required
to guarantee convergence. Fortunately, approximate analyti-
cal solutions can be found in certain limiting cases. In the
Thomas-Fermi (TF) regime, which essentially occurs for
condensates with a large number of atoms, the kinetic energy
can be neglected to a good approximation. In this case the
GPE reduces to a simple algebraic equation and one can
obtain explicit analytical expressions for the condensate
ground-state properties [6]. This approximation, however,
cannot reproduce correctly the decay of the wave function at
the boundary of the atomic cloud, a region where the kinetic
energy has a decisive influence. Corrections to the TF ap-
proximation have been proposed to account for the proper
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behavior of the density cloud at the condensate surface
[7-9]. In the (ideal gas) perturbative regime, when the num-
ber of atoms in the condensate is sufficiently small, explicit
analytical expressions can also be obtained by treating the
interaction energy term in Eq. (1) as a weak perturbation.

Another approximation scheme that has proved to be use-
ful in the characterization of dilute BECs is that based on
variational techniques [6]. This approximation method has
the additional interest that it can be equally applied to the
study of the condensate dynamics [10,11]. By using appro-
priate variational trial wave functions, the ground-state prop-
erties of trapped Bose-condensed gases have been studied
beyond the two analytically solvable regimes, for both iso-
tropic [12] and highly anisotropic condensates [13]. For this
purpose semiclassical approximations (£ — 0) have also been
considered [14,15]. These approximate methods can be ap-
plied to the study of vortex states as well [16—18].

Particular attention has been devoted to the physical prop-
erties of quasi-1D [19-23] and quasi-2D [24,25] conden-
sates, systems so tightly confined in the radial or the axial
dimension, respectively, that the corresponding dynamics is
restricted to zero-point oscillations. In a previous work, by
modifying the usual TF approximation conveniently, we de-
rived very accurate approximate analytical expressions for
the ground-state properties of trapped spherical, cigar-
shaped, and disk-shaped condensates with an arbitrary num-
ber of atoms in the mean-field regime [26]. In this work we
extend our previous results and derive general approximate
formulas that provide with remarkable accuracy the ground-
state properties of any mean-field scalar Bose-Einstein con-
densate with short-range repulsive interatomic interactions,
confined in arbitrary cylindrically symmetric harmonic traps,
and even containing a multiply quantized axisymmetric
vortex.

II. MODEL

We consider a BEC with an axisymmetric vortex line of
topological charge g, and confined in a harmonic trap char-
acterized by oscillator lengths a,=Vh/mw, and a,
=vVh/mw,. The trap aspect ratio is given by A=w./w,. In
this work we shall distinguish between ground and vortex
states only through the value of the vortex charge. Accord-
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ingly, we shall refer to the lowest-energy state of the conden-
sate compatible with an axisymmetric vortex of charge ¢ as
the ground state with a charge-g vortex. This terminology
will permit us to make a unified treatment in which the actual
ground state of the condensate is simply a particular case
corresponding to g=0.

For condensates with a sufficiently small number of atoms
the mean-field interaction energy can be treated as a weak
perturbation. In this perturbative regime the condensate wave
function that minimizes the energy functional is given, to the
lowest order, by

lﬁq(rL’Z’ 0) = eXP(lCI 0) Qoq(ri)(ﬁ(z)s (2)
with

@ (r) = (wai|q| !)_l/z(ri/ai)lq‘ exp(— ri/Zai), (3)

P(2) = (ma2) " exp(- 212a7). (4)

Using this result one obtains the following analytical expres-
sion for the chemical potential:

1
p=ho + (gl + Do, +gi, (5)
where fi=c,N/(2m)*?a’ a, is the mean atom density and the
coefficient ¢, is a functlon of the vortex charge that takes
values in the interval [1,0) and accounts for the dilution ef-
fect that the centrifugal force associated with the vortex has
on the condensate mean density

(2lq))!

€= 20l g 1 (©)

For g=0 one has ¢,=1, and the usual results for the ground-
state properties of a BEC in the perturbative regime are re-
covered. For a unit charge vortex the dilution coefficient
takes the value 1/2, and, in general, for lg|>1, it decreases
slowly as 1/+|q].

In the Thomas-Fermi regime, for condensates in the
ground state (¢=0) and with a sufficiently large number of
atoms, one can neglect the kinetic energy in comparison with
the interaction energy, and the stationary GPE leads to

,u,—%mwz +;merl+gN|¢(rl 2% (7)

In the presence of a vortex of charge g # 0 the above
equation is no longer a good approximation. In this case
neglecting the kinetic energy amounts to neglecting the vor-
tex itself. However, for a large N, the condensate density
cloud outside the vortex core is still given, to a very good
approximation, by the Thomas-Fermi profile. We thus shall
assume the above TF expression to be valid up to a lower
cutoff radius

L =\2(g| + Da, (8)

determined from the condition that, in the presence of a vor-
tex, the contribution from the radial harmonic oscillator en-
ergy cannot be smaller than (|g|+1)Aw , i.e.,
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1
5ol ()P =(lgl+ Dho, . ©)

Likewise, the contribution from the axial harmonic oscillator
energy should not be smaller than the corresponding zero-
point energy. To account for this fact we introduce a second
cutoff z;, defined through the condition
lmwzz2 =~-hw (10)
2 750 2 z°

which yields the axial cutoff
Zp=4ay. (1 1)
This leads us to consider the TF expression (7) applicable in
a volume Vj; that corresponds to the usual TF ellipsoidal
density cloud truncated at both r, =7 and |z|=z,
> 20}
(12)

Vy= {(rl,z):ri/R%F+ ZZ/Z?FF <1,r > r(i Alz

In the above equation Rpp=\2u/hw,a, and Zg
n e
=\2ul/hw,a, are the usual TF values for the condensate
radius and axial half-length, respectively. In our approach,
however, the condensate radius and axial half-length do not
coincide with the above TF expressions. Because of the cut-
offs we have introduced they are given instead by

R=\2ultw, —\a,, (13)

Z=\2ultiw,—2(q| + 1)/\a,. (14)

However, when u> (|g|+1)%iw,, then Z becomes indistin-
guishable from Zpg. This is true, in particular, whenever A
>2(|g|+1). Likewise, if 4> 3fiw., then R— Ry

More generally, for condensates with u> (|g|+1)hw,,
which occurs whenever A >2(|g|+1), the relative contribu-
tion to the condensate properties coming from the region
< r(i becomes negligible. The same occurs with the rela-
tive contribution from the region corresponding to |z|<z,
when the chemical potential is much larger than the axial
zero-point energy, which occurs whenever A <<1. It is then
clear that when the number of atoms is sufficiently large that
u>(lg|l+ Ao, +3he. the dominant contribution comes
from the V3 volume introduced above.

Only for condensates with u=(|g|+1)%w, is the contri-
bution from the region r l$r(i the most significant one.
These are condensates with the transverse dynamics frozen
in the lowest energy state compatible with a charge-¢g axi-
symmetric vortex. In this case the condensate wave function
can be factorized as ,(r | ,z, 0)=exp(iq6) @,(r ) $(z), with
(pq(r 1) given by Eq. (3). After substituting this wave function
in the stationary GPE, multiplying by w , and integrating
over the radial dynamics, one obtains

1

Emwfzz+(|q|+1)ﬁwi +g1DN|¢(Z)|2=,U~ (15)
where gp=c,g/ 2ma’ > and we have neglected the axial ki-
netic energy (~-ﬁw ) against (|g|+1)%w, . It is convenient to
rewrite g;p as gKllnz, where ,=1/m(r")?=1/[2ma> (|q|
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+1)] is a uniform mean density per unit area normalized to
unity in the region r | < r(i, and

w7 = (lgl+ De, (16)

is the appropriate renormalization factor. The important point
is that the effect of the vortex can be incorporated in an exact
manner into a localized uniform mean density n, with a
renormalized interaction strength gK,_l. We shall assume that,
to a good approximation, this still remains true for conden-
sates with an arbitrary chemical potential.

On the other hand, the contribution from the region |z|
=<7z, is the most significant one only for condensates with
,u,:%ﬁwz. In this case the axial dynamics is restricted to
zero-point oscillations, and the wave function of such
quasi-2D condensates can be written as #,(r,,z,6)
=exp(iq6)o(r ) P(z), where now ¢(z) is given by Eq. (4).
Substituting into the stationary GPE and integrating out the
axial dynamics one obtains

1 1

Jho:+ Jmolrl +gpNe(r )P =, (17)
where g,p=g/ V’Emz, and now we have neglected the radial
kinetic energy against the axial zero-point energy, which is a
good approximation as long as ,u,:%ﬁwz. As before, it is
convenient to rewrite g,p in terms of a uniform mean density
per unit length normalized to unity in the volume |z <zp.To
this end we introduce a renormalization factor «;' =2/
and rewrite g,p as gkglﬁ | with i7;=1/2a,. This indicates that
the contribution from the axial zero-point oscillations, which
is the dominant contribution in these quasi-2D condensates,
can be properly accounted for by simply introducing a local-
ized uniform mean density per unit length with a renormal-
ized interaction strength. Again, we shall assume this to be
also valid for condensates with an arbitrary chemical poten-
tial. One finds, however, that somewhat more accurate results
are obtained when one lets the renormalization factor ;' to
approach unity in the TF regime [26]. Since the final results
are little sensitive to the specific functional form of Kgl, we
propose one of the simplest possibilities [26]

15" (x2) = 2/ + O (x, - 0.1)

Ryp(x,=0.1)
Rrg(x2)

where O(x) is the step function, x,=Na/N?a., and Rg(x»)
=(15x,)"3a, is the TF radius.

Motivated by the above ideas and the fact that there exists
a direct relation between the number of atoms and the size of
a trapped BEC, we propose the following ansatz for the
ground-state properties of any mean-field scalar Bose-
Einstein condensate with an axisymmetric vortex of charge
g, confined in an arbitrary axisymmetric harmonic trap:

X(l—\'%)<1— ) (18)

1 1
Emwgzz + Emwiri + gN|4,b(rl,z)|2 =u, reVs,
1

1
Eﬁwz+ Emwiri + g5 ' Nitylo(r )*=u, reV,,
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1
Emwizz +afiw) + gk '\Nity| p(2) > =, r eV,

1
Ehwz+ afiw, + gKalﬁ(): Mm, T EV,

with =0 elsewhere. In the above equations a,=(|g[+1)
and k= K| k,, with k; and k, defined by Egs. (16) and (18),
respectively. As already seen, i1;=1/2a, and n,=1/ 271'612L a,,
whereas 7, is an effective mean density (per unit volume)
localized in V|, and defined in terms of u through the above
expressions. Note that Kal is exactly the renormalization con-
stant required to make the latter of the above equations com-
patible with the other ones as well as with the perturbative
result (5). The outer volume Vj is defined by Eq. (12) while
the remaining inner volumes are defined by

Vo ={(r, 2" <r, <RAlz <z}
Vi={(r,,2:r, < r(i rp <zl =7},

Vo=A{(r.2)r, <7 Al <z}

The ansatz we have just introduced represents a direct
generalization of our previous proposal in Ref. [26] and ex-
tends the applicability of the approach to mean-field conden-
sates confined in axisymmetric harmonic traps with an arbi-
trary geometry, and containing an axisymmetric vortex of
charge ¢g. As we shall see, in the appropriate limits the results
obtained in the present work reduce to those previously ob-
tained in Ref. [26].

From Eq. (14) the chemical potential can be written in

terms of the dimensionless axial half-length Z=Z/a, as

J N P |
—==Z"+—(q|+ 1). 19
ho, 2 )\(|4| ) (19)
As usual, the condition that the condensate contains N par-
ticles determines the precise value of u. After a straightfor-
ward calculation one obtains

1 - _ _
ﬁ__zS_l_ézﬁl_i_Eq.Z:’)

MR 15 8 3\
+l(é‘1§_é>22_l<é‘]§_§)’ (20)

2\ A 2 2\ A 4
where B =« (lg|+1)=1/c,, &=(k,—1/n) with n
=1,3,5,..., and we have defined the dimensionless interac-
tion parameter y, as
Xo = Nalay, (21)

with ay=(a? a,)'® being the mean oscillator length. From
Egs. (13) and (14) one also finds the following expression for

the condensate radius R=R/a
R*=NZ>-1)+2(q| +1). (22)

The mean-field interaction energy per particle ¢,
=E,, /N is defined by e€,=(1/2)fgN|y(r)[*dr, where
N||? represents the local density in each region and g, de-
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notes the corresponding renormalized interaction strength.
After some calculation one obtains

i_g[iz7+ézﬁ+%zs+(&é_é>z4

ho, 8x,| 105 6 15\ N2
2(@56_)2@56_” )
A 4 N6

Finally, the kinetic and potential energies can be readily
obtained in terms of the previous results by using the exact
relations [4]

€kin = Ekin/N= ,LL/2 - (7/4)E1nt/N’ (243.)

€por = Epo/ N = /2 = (1/4)E;p/N. (24b)

Equations (19)—(24) provide the ground-state properties
we are looking for. All that is needed is to solve the quintic
polynomial equation (20). This is a general equation that

provides the axial half-length Z of any mean-field scalar con-
densate as a function of only three parameters: the interac-
tion parameter Y, the trap aspect ratio \, and the vortex
charge g. In certain particular cases it is possible to find
useful approximate analytical solutions. However, in general,
Eq. (20) has to be solved numerically. It is important to note
that this is a trivial computational task that can be done
immediately with the built-in capabilities of symbolic
computational software packages such as MATHEMATICA or
MATLAB. In fact, to obtain the roots of a polynomial one
simply has to type in a single instruction and the answer is
instantaneous.

III. LIMITING CASES

The above formulas simplify considerably in two limiting
cases that, essentially, correspond to condensates confined in
disk-shaped traps satisfying A>2(|g|+1) and cigar-shaped
traps satisfying A < 1. We have already found these two lim-
iting cases before. As mentioned above, in the first case the
relative contribution to the condensate properties coming
from the inner cylinder r | < r(i becomes negligible, while, in
the second case, it is the relative contribution from the inner
disk |z| <z, that becomes negligible. Under these circum-
stances we shall be able to find approximate analytical solu-
tions of the polynomial equation (20).

A. Disk-shaped traps

Taking into account that B,/\ < (|g[+1)/\, it follows that

in the limit A>2(|g|+1) Eq. (20) reduces to
los &z &5 &
=—720+ 27 - =724+ =2, 25
RZs” TR T4 T @5)
where x,=Na/\a, is now the only relevant physical pa-
rameter. Using Eq. (22) one can easily see that for g=0 the
above equation coincides exactly with that obtained previ-
ously in Ref. [26]. This is true in general (i.e., for any g)
whenever A >2(|¢|+1). Under these circumstances the con-
tribution of the vortex can be neglected to a good approxi-
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mation and we can use the analytical solution found in Ref.
[26]

Z2=1+[(1/15x) %" + (ko/8x2) 2T 4. (26)

From this result one immediately obtains the chemical po-
tential using Eq. (19)

o1,
—==Z". 27
ho, 2 @7)

Z

On the other hand, in the limit we are considering, the
interaction energy (23) becomes

U8 & b &
Sint _ —(—z7+ S0 Sz, 55 é) (28)
hw, 8x,\105 6 2 2 6

As before, it is not hard to see that this equation is the same
as that obtained previously in Ref. [26].

Another relevant physical quantity in the characterization
of disk-shaped condensates is the condensate density per unit
area, defined as n,(r,) =N [dz|(r ,z)|>. Outside the vortex
core (r, > r(i), which we are neglecting in this limit, a
straightforward calculation leads to

&2pm(r) - 1]

4maa,

[2a(r )P -1
6maa,

ny(ry) = ’ (29)

where n,(r; >R)=0 and u.(r,)=pu.(r,)/ho, is given by
_ 11 - r
n(r)) = 5+5(R/\)\)2<1 —P>, (30)

with R2=\(Z>-1) [Eq. (22)]. Again, this result coincides
with that derived in Ref. [26]. In fact, in general, in the limit
A>2(|g|+1) the formalism proposed in the previous section
becomes independent of both A and ¢ and reduces to that
developed in Ref. [26].

It can be easily verified that w.(r,) is nothing but the
local chemical potential, defined as w.(r,)=pu—3imw’r*
[15]. Equation (29) is a cubic equation in ﬂ;’z which has
only one real solution. Solving this equation, after some al-
gebra one finds the following expression for the local chemi-
cal potential as a function of the condensate density per unit
area [27]:

1 I =%
Re(r i) = g[(ﬂ"' V7 =)+ (=N = &) - 6T,

(31

where 7=4+6¢ - & +24maan,(r,). In the TF regime (x,
> 1 —aan,> 1), the above equation reduces to

i (r,) =[BaN2)aany(r )PP, (32)

which coincides with the expression that can be obtained
directly from the 3D Gross-Pitaevskii equation in this re-
gime. In the quasi-2D perturbative limit (y,<1—aa,n,
<1), Eq. (31) reduces to
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nr)=1/12+ 2\rEmazn2(rl). (33)

This is again the correct result, as follows from the perturba-
tive solution of the GPE in this limit.

Equations (29)—(31) permit us to derive a general formula
for the (local) radial (first) sound velocity c,p of a disk-
shaped condensate, which is defined by

aJ
p=2ke, (34)
m on,
From Eq. (29) one immediately obtains
3 _ _
2 SEREC) -1+ RaC -1
2D
= 35
ho, 3¢ +3[2.(r )] )
This equation in the TF regime (y,> 1) reduces to
2 213
mc 2 _ 21
ﬁLjD =) = (V—gaaznz(rl)) : (36)
4

while in the quasi-2D perturbative regime (y, << 1), it reduces
to

2
mcy)p

1 —
P n(r) - 5= 2\2maan,(r ). (37)

These are the correct limits as follows from the substitution
of Egs. (32) and (33) into Eq. (34). In fact, it is not hard to
see that all the analytical formulas derived in this section
reduce to the correct expressions in both the TF and the
perturbative regimes [26].

For the particular case of a homogeneous disk-shaped
condensate (no radial confinement and n, constant) the au-
thors of Ref. [23] obtained an expression for the radial sound
velocity that interpolates between the above two regimes.
Such expression leads to the correct perturbative result and
reproduces to a good approximation the TF result. Even
though this expression is analytic, it is too complicated to be
written in a useful compact way and the authors of Ref. [23]
do not provide an explicit analytical formula in their work.

B. Cigar-shaped traps
In the A<<1 limit Eq. (20) reduces to

1 - 1 —

xi= (A2 + 28,2, (38)
15 3

with y;=ANa/a . In this limit the formalism becomes in-

dependent of \ and the vortex contribution enters in a rather

simple way through the parameter

224l(|g|1)?
7 (2lg)!

This fact will permit us to find an approximate analytical
solution.

Given a polynomial equation P(x)=y, we define the re-
sidual error associated with the approximate solution x, as
[P(x.)—x]/x [26]. We have explicitly verified that the ex-
pression

(39)
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—— 1 1 1 -1/4

+ +
(155" + 1 57x+345  (Bxi/B)*"?
3

(40)

satisfies Eq. (38) with a residual error smaller than 3.2% for
any x; €[0,%) and 0<|g|=<10. In fact, as seen in Ref. [26],
in the absence of vortices (g=0) the above solution is some-
what more accurate and the error is less than 0.75%.

From Eq. (19) the chemical potential is given now by

M
hwi

=(lq|+1)+ %(&Z)z. (41)

In the A <1 limit the interaction energy becomes

€int 1 1 INEY ING 5:|
—=—|z(V\Z INZ)” |. 42
ho, - 15y, {7(\ )"+ B,(\\Z) (42)

On the other hand, the condensate density per unit length,
n(z)=NJ2mr dr |(r, ,z)|, is

(VAZ)>2 7
4a = ?

——
= 2 -2 43
n(z) =B, * oa 7 (43)
with n,(z)=0 for |z|>Z.
The local chemical potential, defined as u, (z)=pu
—mw’z? [15], is given by
2

£i@) _ale 1)+ %(\KZV(l - ;) (44)

ho |

The above analytical formulas generalize those obtained in
Ref. [26] to the case of condensates containing an axisym-
metric vortex. This is particularly interesting because, in this
case, the usual TF approximation does not lead to explicit
analytical formulas for the condensate properties. In the ab-
sence of vortices B,— 1 and one recovers the results of Ref.
[26].

Substituting Eq. (44) into Eq. (43) and solving for
A, (z)=w, (z)/ho, one obtains the local chemical potential
as a function of the condensate density per unit length

B ()= (gl + 1)+ VB, +4an,(z) - B, (45)

This equation in the absence of vortices takes the simple
form

&, (2) = V1 +4an(z). (46)

In the TF regime (x;>1-—an;>1) the above expression
reduces to

i, (z)= 2V”anl (2), (47)

which is the well-known result that can be obtained directly
from the GPE in this regime [22]. In the mean-field quasi-1D
limit (x; <1—an,<1) Eq. (46) reads

iy (z)=14+2an(z). (48)

This is again the correct result that follows from the pertur-
bative solution of the GPE in this limit [22]. In fact, it can be
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FIG. 1. (Color online) Theoretical prediction for the ground-
state properties (in units of 7w,) of arbitrary condensates with ¢
=0 in different trap geometries \ (solid lines). The open circles are
the exact numerical results.

easily verified that all the analytical formulas derived in this
section have the correct limits in both the TF and the pertur-
bative regimes [26].

From the above results one can derive a general formula
for the (local) axial (first) sound velocity c¢;p of a cigar-
shaped condensate, defined by

2 _ﬂaﬂﬂ

= . 49
€ID m dn, (49)

Substitution of Eq. (45) in Eq. (49) leads to

mc%D _ / 4a2n%(z) (50)
how, ,83+4an1(z).

In the absence of vortices and in the TF regime (8,=1,
x1>1) the expression above reduces to

me?

— 1
- 2 = an,(z) = =, (2). (51)
(J)J_ 2

This result is in agreement with the formula obtained by
Zaremba for the sound velocity of a homogeneous cigar-
shaped condensate in the TF regime [28].

In the quasi-1D mean field regime with no vortices (x;
<1, B,=1) Eq. (50) reduces to
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N w A~ O o N 0

0 25 50 750 60 120 180
Xo Xo

FIG. 2. (Color online) Theoretical prediction for the ground-
state properties (in units of Ziw,) of arbitrary condensates with a g
=1 vortex in different trap geometries N (solid lines). The open
circles are the exact numerical results.

mC%D
th

=2an,(z)=pm,(z) -1, (52)

which is also the correct result as follows from the substitu-
tion of Eq. (48) into Eq. (49).

For the particular case of a homogeneous cigar-shaped
condensate (no axial confinement and n; constant) the au-
thors of Ref. [23] have obtained an analytical expression for
the axial sound velocity that reproduces correctly the pertur-
bative result and, to a good approximation (with a relative
error less than 3%), also the TF result, interpolating between
these two regimes. This expression has been obtained using
an approach different from that used here and, in fact, it
exhibits a functional dependence on an, that is very different
from that in Eq. (50). However, particularizing Eq. (50) for
an axially homogeneous condensate one finds that, in this
case, both expressions are in quantitative agreement within
3.75%.

IV. NUMERICAL RESULTS

To verify the predictions of our model we have numeri-
cally solved the stationary Gross-Pitaevskii equation (1) by
using a pseudospectral method evolving in imaginary time.
Figure 1 shows the ground-state properties of condensates
with ¢=0 and an arbitrary number of particles (y,) in differ-
ent trap geometries (\). The open circles are exact numerical
results obtained from the Gross-Pitaevskii equation. The
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Ein g
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FIG. 3. (Color online) Same as Fig. 2 for arbitrary condensates
with a g=2 vortex.

solid lines are the theoretical predictions (in units of Ziw.)
obtained from Egs. (19)-(24). We have solved the polyno-
mial equation (20) by using a symbolic software package. As
already said, this is a trivial computational task that only
requires one to type in a single instruction.

As is evident from Fig. 1, the agreement is very good in
all trap geometries (typically better than 1%). In particular,
although our formalism is cylindrically symmetric it can de-
scribe accurately the properties of spherical condensates (A
=1). For trap anisotropies higher than those considered in
Fig. 1 one can make use of the analytical solutions (26) and
(40) found above. These cases will be examined below (Fig.
3).

In Figs. 2-4 we show the ground-state properties of con-
densates containing an axisymmetric vortex of charge g=1,
2, and 4, respectively. As before, the solid lines are the the-
oretical results obtained from Egs. (19)—(24). These figures
show that, regardless of the number of particles (x,) and trap
geometry (\), our model, despite its simplicity, can also re-
produce very accurately the physical properties of conden-
sates containing an axisymmetric vortex. This is remarkable
because, rather crudely, we have incorporated the effect of
the vortex into a uniform mean density 7z, (with a renormal-
ized interaction strength gK[l) localized in the inner cylinder
r, $r(i. In turn, the radius r(i follows from Eq. (9), which
cannot account for the effect of the mean-field interaction
energy. However, for condensates of intermediate size, the
interaction energy is no longer negligible in comparison with
the kinetic energy. In fact, it plays an important role in de-
termining the size of the vortex core, which decreases as N
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FIG. 4. (Color online) Same as Fig. 2 for arbitrary condensates
with a g=4 vortex.

increases. Equation (9) cannot incorporate this correction,
which is proportionally more important for a high ¢ and an
intermediate number of particles (for a sufficiently large N
the overall contribution of the vortex becomes negligible).
Thus, one expects the formulas above to be less accurate as g
increases. This can be appreciated from Fig. 4, which shows
that for condensates with a g=4 vortex and a y, sufficiently
large that €,,> €, the theoretical predictions are slightly
less accurate than those corresponding to a g=1 or a g=2
vortex.

Next, we consider the ground-state properties of conden-
sates confined in disk-shaped traps satisfying A>2(|g|+1)
and cigar-shaped traps satisfying A <<1. As already seen, in
these limiting cases the theoretical results become indepen-
dent of N and can be directly obtained from explicit analyti-
cal formulas. In Fig. 5 we show the chemical potentials and
interaction energies obtained from Egs. (26)—(28) and (40)-
(42), along with exact numerical results. The corresponding
kinetic and potential energies follow immediately from Eqs.
(24).

As Fig. 5(a) reflects, the chemical potential increases with
the vortex charge, a consequence of the larger kinetic and
potential energies associated with multiply quantized vortex
states. However, as shown in Fig. 5(b), the opposite occurs
with the mean interaction energy, which decreases as ¢ in-
creases because of the dilution effect that the centrifugal bar-
rier produced by the vortex has on the mean condensate den-
sity. The small errors that can be appreciated in Fig. 5(b) are
due, in part, to the fact that, for ¢ # 0, the approximate solu-
tion (40) incorporates a residual error of order 2-3 %. The
exact solution of the polynomial equation (38) leads to some-
what better results.
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FIG. 5. (Color online) (a),(b): Theoretical prediction for the
ground-state properties (in units of Zw ) of arbitrary cigar-shaped
condensates with N <1 and different vortex charges ¢ (solid lines).
The open circles are exact numerical results obtained with A=0.1.
(c),(d) Theoretical prediction for the ground-state properties (in
units of Aw,) of arbitrary disk-shaped condensates with A>2(|q]
+1) and different vortex charges g (solid lines). The open symbols
are exact numerical results obtained with A=100.

On the other hand, Figs. 5(c) and 5(d) reflect the fact that
for highly asymmetric trap geometries satisfying \>2(|q]|
+1) the vortex contribution to the condensate properties be-
comes negligible. Figure 6(a) shows the condensate density
per unit length n,(z) of arbitrary cigar-shaped condensates
with N <1 [obtained from our analytical formulas (40) and
(43)], while Fig. 6(b) shows the condensate density per unit
area n,(r,) of arbitrary disk-shaped condensates with A\
>2(|g|+1) [obtained from Eqgs. (26) and (29)]. The good
agreement between theoretical and exact results demon-
strates that the formulas derived above are applicable for any
trap geometry.

V. CONCLUSION

In a previous work we derived very accurate approximate
analytical expressions for the ground-state properties of
trapped spherical, cigar-shaped, and disk-shaped condensates
with an arbitrary number of atoms in the mean-field regime
[26]. In this work we have extended our previous proposal
and have derived general approximate formulas that provide
with remarkable accuracy the ground-state properties of any
mean-field scalar Bose-Einstein condensate with short-range
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FIG. 6. (Color online) (a) Theoretical prediction for the conden-
sate density per unit length n,(z) of arbitrary y;=1 cigar-shaped
condensates with A <1 and different vortex charges g (solid lines).
The open symbols are exact numerical results obtained with A\
=0.1. (b) Theoretical prediction for the condensate density per unit
area ny(r,) of arbitrary y,=1 disk-shaped condensates with \
>2(|g|+1) and different vortex charges g (solid line). The open
symbols are exact numerical results obtained with A=100.

repulsive interatomic interactions, confined in arbitrary cy-
lindrically symmetric harmonic traps, and even containing a
multiply quantized axisymmetric vortex.

In the appropriate limits (corresponding to cigar-shaped
and disk-shaped condensates) the ground-state properties fol-
low from explicit analytical formulas that generalize those
obtained in Ref. [26]. In the general case, however, one has
to solve a quintic polynomial equation. In this regard, it is
important to note that while solving the GP equation can be
a complex computational problem (especially in highly
asymmetric trap geometries), solving a polynomial equation
is a trivial computational task. Using the built-in capabilities
of symbolic software packages such as MATHEMATICA or
MATLAB one obtains an instantaneous result after typing in a
single instruction.

The model presented in this work is essentially a conve-
nient approximation method motivated by two simple ideas:
(i) There exists a direct relation between the number of par-
ticles and the size of a trapped BEC and (ii) the contribution
from the harmonic oscillator energy to the chemical potential
cannot be smaller than the zero-point energy. Applying these
simple ideas one finds useful formulas of great generality
that provide the condensate ground-state properties in terms
of the correct physically relevant magnitudes. Moreover,
even though no freely adjustable parameters are introduced,
in all cases the formulas obtained reproduce simultaneously
with a remarkable accuracy the condensate chemical poten-
tial and the interaction energy and, as a consequence, the
kinetic and the potential energy as well. And this is true for
mean-field condensates with any number of particles,
confined in any axisymmetric harmonic trap, and even
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containing an axisymmetric vortex. Finally, note that the re-
sults of this work are applicable in general to any nonlinear
system characterized by the stationary nonlinear Schrédinger
equation (1).
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