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We study spontaneous symmetry breaking in a system of two parallel quasi-one-dimensional traps �cores�,
equipped with optical lattices �OLs� and filled with a Bose-Einstein condensate �BEC�. The cores are linearly
coupled by tunneling �the model may also be interpreted in terms of spatial solitons in parallel planar optical
waveguides with a periodic modulation of the refractive index�. Analysis of the corresponding system of
linearly coupled Gross-Pitaevskii equations �GPEs� reveals that spectral band gaps of the single GPE split into
subgaps. Symmetry breaking in two-component BEC solitons is studied in cases of the attractive �AA� and
repulsive �RR� nonlinearity in both traps; the mixed situation, with repulsion in one trap and attraction in the
other �RA�, is considered too. In all the cases, stable asymmetric solitons are found, bifurcating from symmet-
ric or antisymmetric ones �and destabilizing them�, in the AA and RR systems, respectively. In either case,
bistability is predicted, with a nonbifurcating stable branch, either antisymmetric or symmetric, coexisting with
asymmetric ones. Solitons destabilized by the bifurcation tend to rearrange themselves into their stable asym-
metric counterparts. In addition to the fundamental solitons, branches of twisted �odd� solitons in the AA
system, and twisted bound states of fundamental solitons in both AA and RR systems, are found too. The
impact of a phase mismatch, �, between the OLs in the two cores is also studied. It is concluded that
�=� /2 only mildly deforms the picture, while �=� changes it drastically, replacing the symmetry-breaking
bifurcations by pseudobifurcations, with the branch of asymmetric solutions asymptotically approaching its
symmetric or antisymmetric counterpart �in the AA and RR system, respectively�, rather than splitting off from
it. Also considered is a related model, for a binary BEC in a single-core trap with the OL, assuming that the
two species �representing different spin states of the same atom� are coupled by linear interconversion. In that
case, the symmetry-breaking bifurcations in the AA and RR models switch their character, if the interspecies
nonlinear interaction becomes stronger than the intraspecies nonlinearity.
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I. INTRODUCTION AND MODEL

Optical lattices �OLs�, i.e., periodic potentials induced by
the interference of counterpropagating coherent laser beams,
are a powerful tool that allows one to support various dy-
namical patterns in Bose-Einstein condensates �BECs� �1�. In
particular, OLs support gap solitons in BECs with repulsive
interaction between atoms �the general topic of BEC solitons
was reviewed in Ref. �2��. Gap solitons in BEC were pre-
dicted theoretically �3,4� and then created experimentally in
an effectively one-dimensional �“cigar-shaped”� trap
equipped with the OL in the axial direction �5�. In a self-
attractive medium, the periodic OL potential makes it pos-
sible to localize a soliton at a prescribed spot, and supports
multisoliton complexes, as was first demonstrated in a model
of spatial optical solitons in a planar waveguide with a peri-
odic transverse modulation of the refractive index �6�. Simi-
lar theoretical results were then reported for solitons in self-
attractive BECs �7�. In particular, in the limit case of a very
strong OL, the corresponding Gross-Pitaevskii equation
�GPE� �8� reduces to a discrete nonlinear Schrödinger �NLS�
equation �9�.

Another topic of great interest to BEC �10� and nonlinear
optics �13� is spontaneous symmetry breaking of nonlinear
fields trapped in dual-core traps �alias double-well poten-
tials�. In particular, the spontaneous transition from symmet-
ric solitons in the dual-core trap filled with self-attractive
condensate to asymmetric solitons is, in the first approxima-

tion, tantamount to the formation of asymmetric solitons in
dual-core nonlinear optical fibers �14�. In terms of nonlinear
optics, several other dual-core settings have been studied
theoretically, including ones with quadratic �11� and cubic-
quintic �12� nonlinearities.

Our objective is to explore symmetric, antisymmetric, and
asymmetric families of BEC solitons in the model of a dual-
core trap with cores coupled by linear tunneling and
equipped with OLs. We consider symmetric systems with
attractive or repulsive nonlinearity in each core �to be re-
ferred to as “attractive-attractive” �AA� and “repulsive-
repulsive” �RR��. In the AA system, the solitons originate in
the semi-infinite band gap of the OL’s linear spectrum, while
in the RR system there are gap solitons originating in finite
band gaps �we will consider the first two gaps, demonstrating
that the linear coupling between the cores splits them into
subgaps�. In some cases, soliton families extend into Bloch
bands separating the gaps, thus becoming embedded solitons
�15�.

In optics, spontaneous symmetry breaking in two-
component gap solitons was studied in models of dual-core
�16� and triple-core �17� fiber Bragg gratings �solitons in
triangular and planar triple-core optical waveguides without
gratings were considered in Ref. �18��. A mixed RA system,
with repulsion in one core and attraction in the other, will be
considered too �the sign of the interaction may be selectively
reversed by means of the Feshbach resonance �19��.

The basic model that will be dealt with in this work
amounts to the following system of linearly coupled normal-
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ized GPEs for the mean-field BEC wave functions in the two
cores, ��x , t� and ��x , t�:

i�t + �xx + � cos�2x�� + g1���2� + �� = 0,

i�t + �xx + � cos�2x + ��� + g2���2� + �� = 0, �1�

where � is the strength of the OL, g1,2= ±1 are signs of the
nonlinearity, � is the linear-coupling coefficient, accounted
for by the linear tunneling between the cores, and � takes
into regard a possible phase shift �mismatch� between the
OLs in the coupled cores. The above-mentioned symmetry
breaking takes place in the system with �=0; a change of the
symmetry-breaking bifurcations under the action of the mis-
match will be considered too.

In the limit of a very deep OL ��→��, arguments similar
to those applied to the single GPE �9� suggest that the sym-
metric version of Eqs. �1� reduces to a system of two linearly
coupled discrete NLS equations. In fact, a system of that
type was introduced in Ref. �20� as a model of a photonic-
crystal coupler for optical signals.

The use of Eqs. �1� in the effectively one-dimensional
�1D� form implies that both cores are subjected to tight trans-
verse confinement, thus allowing one to reduce the underly-
ing three-dimensional GPE to its counterparts in 1D, as
elaborated in several works �21�. Then, the temporal and
spatial variables in Eqs. �1� are related to physical time T and
axial coordinate X by

t � T��2�/md2�, x � �2�X/d , �2�

where m is the atomic mass, and d the OL period in physical
units. Further, the scaled 1D wave functions are related to
their 3D counterparts, 	 and 
, as follows:

�	�X,R,T�

�X,R,T� 	 = e−i��T� �

2�as�d2���x,t�
��x,t� 	exp
−

��m

2�
R2� ,

�3�

where �� and R are the transverse trapping frequency and
radial coordinate �around each core�, and as the s-wave scat-
tering length of atomic collisions �it is negative if the inter-
action is attractive�. Due to the normalizations, the lattice
strength is represented by �=E0 /Erec, where Erec
= ����2 / �md2� is the lattice recoil energy, and E0 is the depth
of the periodic potential in physical units.

For the experimental realization of the AA and RR sys-
tems, respectively, 7Li �22� and 87Rb �1� condensates are
appropriate. Results for solitons presented below are in the
ballpark of ��1 in Eqs. �1�. With regard to Eqs. �2�, the
corresponding tunnel-coupling time, which is tcoupl=� / �2��
in normalized units, translates, for d=1 �m, into physical
coupling time Tcoupl�10 and 100 �s, for lithium and ru-
bidium, respectively. As for the number of atoms in the soli-
tons, in the AA system and scales, in the normalized units,
between N2 and N15, see Fig. 3 below. As follows from
Eqs. �2� and �3�, this corresponds to the actual number of 7Li
atoms per soliton between 104 and 105, if experimentallyrel-
evant values are assumed, ��2�1 kHz and as
−0.15 nm �in the experiments without the OL, the number of
atoms in the solitons was up to 5000 �22��. Similarly, in the
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FIG. 1. Transformation of the linear spectrum with the increase
of the lattice strength �. Here and in other figures including the
spectrum, the shaded areas show Bloch bands. �a� The ordinary
�decoupled� Mathieu equation, i.e., each equation �4� and �5� with
�=0 and �b� the coupled system, with �=1 and �=0.
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FIG. 2. The transformation of the linear spectrum with the in-
crease of mismatch � for �=8, �=1.
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RR model the number of 87Rb atoms in gap solitons is ex-
pected to be �1000 �in the first experiments, it was 250
�5��.

Equations �1� may also be interpreted in terms of nonlin-
ear optics, describing spatial distribution of light in two par-
allel planar waveguides, with periodic transverse modulation
of the refractive index, i.e., as a linear-coupled pair of
waveguides considered in Ref. �6�. In that case, t is the
propagation distance, x is the transverse coordinate, while �
and � are amplitudes of the electromagnetic fields in the
planar cores.

Besides the model based on Eqs. �1�, we will also use a
modified one, which additionally includes nonlinear coupling
between � and �, see Eqs. �17� below. It pertains to a single-
core trap equipped with the OL that contains a BEC mixture
of two different spin states of the same atom �23�. The linear-
coupling term represents the linear interconversion between
the states induced by a spin-flipping electromagnetic wave
�24�. While various effects were predicted in the latter setting
�25�, the spontaneous symmetry breaking in two-component
solitons, that we consider in this work, was not studied be-
fore.

The paper is organized as follows. In Sec. II, we analyze
the linear spectrum of the coupled system. Methods used for

the analysis of soliton solutions are summarized in Sec. III.
Section IV reports results for fundamental �even� and twisted
�odd� solitons, as well as bound states of solitons, in sym-
metric systems, of both the AA and RR types. Results for
asymmetric systems �of the RA type, as well as in systems
with mismatched OLs� are collected in Sec. V, including a
newly found pseudobifurcation, in the system with �=�. A
summary of results obtained in the model which includes
nonlinear interaction between the coupled components is
given in Sec. VI, and Sec. VII concludes the paper.

II. LINEAR SPECTRUM

Our first objective is to examine how the linear coupling,
accounted for by coefficient � in Eqs. �1�, alters the spectrum
of the linear system �first, in the model with aligned lattices,
�=0�. We look for solutions to the linearized equations as
���x , t� ,��x , t��= ���x�±��x��e−i�t, with chemical potential
�. This leads to decoupled Mathieu equations �ME� with
eigenvalues �±�,

�� + � cos�2x���x� + �� + ����x� = 0, �4�
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FIG. 3. �Color online� Soliton families in the attraction-attraction model with �=1. In this figure and below, the results are displayed for
the dual-core model with aligned lattices ��=0�, unless a nonzero value of � is indicated. Presented are cases of relatively weak, �=1 ��a�
and �b��, and strong, �=8 ��c� and �d��, lattices. Here and below, stable and unstable branches are shown by solid and dashed lines, with
labels “s,” “an,” and “a” referring to symmetric, antisymmetric, and asymmetric solutions, respectively. �a� and �c� The total norm of the
soliton versus its chemical potential, �. �b� and �d� The asymmetry ratio �defined as per Eq. �9�� versus �, for families of asymmetric
solitons; the vertical line labeled �bif marks the bifurcation point. Note that the branch of antisymmetric solutions is completely unstable in
the weak lattice ��a� and �b��, and completely stable in the strong one ��b� and �d��.
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�� + � cos�2x���x� + �� − ����x� = 0, �5�

where the prime stands for d /dx. The ME spectrum gives
rise to the well-known band-gap structure. Note that, in the
model of two linearly coupled Bragg gratings �i.e., a system
of four equations for counterpropagating waves in two
cores�, the coupling leads to shrinkage or closure of the spec-
tral gap �16�. In the present case, the effect of the coupling is
more complex; given � belongs to a band gap in the present
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FIG. 4. �Color online� Properties of asymmetric solitons in the
attraction-attraction system. �a� The asymmetry ratio �defined as per
Eq. �9�� as a function of coupling coefficient � at �=5 and different
values of the soliton’s norm. �b� The value of � at the bifurcation
point versus the soliton’s norm at different values of the lattice
strength, �.
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FIG. 5. �Color online� The largest instability growth rates for
symmetric and antisymmetric solitons in the attraction-attraction
system, with �=1, �=1, are shown by the continuous and dashed
curves, respectively.
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FIG. 6. �Color online� Perturbation-induced transformation of
an unstable symmetric soliton into a stable asymmetric one in the
attraction-attraction model with a relatively weak lattice ��=1,
�=1�. The initial norm is N=5.6. Here and in Fig. 14 below, the
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for a fixed norm, N=10. The upper curve �squares� is, in fact, the
bifurcation line, i.e., the stability border of the symmetric solitons
�which are stable above the border� and existence border of stable
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model if � falls into one of the gaps in both equations �4�
and �5�. Further consideration demonstrates that, depending
on the values of � and OL strength �, each gap originating
from the ME spectrum either shrinks �or, sometimes, com-

pletely closes up�, similar to the situation in the above-
mentioned model of linearly coupled Bragg gratings, or
splits into pairs of subgaps. An example of the splitting of
the first two gaps �gap�1,2�→gaps��1a ,1b� , �2a ,2b��� under
the action of the linear coupling is displayed in Fig. 1.

Unlike Eqs. �4� and �5�, the linearized equations do not
decouple with ��0 in Eqs. �1�. A typical example of the
dependence of the spectrum on � is shown in Fig. 2. With
the increase of �, the subgaps �that have appeared as a result
of the coupling-induced splitting� shrink. At � close to � /2,
gap 2a disappears, which is followed by the disappearance of
gap 1a. At �=�, the entire spectrum qualitatively resembles
that of the ordinary ME.

III. ANALYSIS OF SOLITON SOLUTIONS

A. Symmetric, antisymmetric, and asymmetric solitons

Stationary solutions to Eqs. �1� look as �� ,��
= �u�x� ,v�x��e−i�t, with real functions u and v obeying the
equations
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FIG. 8. �Color online� Soliton families in the repulsion-
repulsion model with �=8 and �=1. Panels �a� and �b� have the
same meaning as in Fig. 3.
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FIG. 11. �Color online� The instability growth rate for antisym-
metric solitons in the first two �sub�gaps in the repulsion-repulsion
model with �=1 and �=8.
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�u + u� + � cos�2x�u + g1u3 + �v = 0,

�v + v� + � cos�2x + ��v + g2v
3 + �u = 0. �6�

First, we explore the symmetries of the system in the AA
�g1=g2= +1� and RR �g1=g2=−1� cases with aligned OLs,
�=0. To this end, we designate û0�x ;�� the solution of the
single-component GPE, i.e., either of two equations �6� with
�=�=0, corresponding to chemical potential �. Then, Eqs.
�6� give rise to symmetric and antisymmetric solitons,

u�x;�� = v�x;�� = û0�x;� + �� , �7�

u�x;�� = − v�x;�� = û0�x;� − �� . �8�

If the linear coupling splits the band gap into two subgaps as
outlined above, the shifts of the chemical potential as per

Eqs. �7� and �8�, �→�±�, displace the symmetric and an-
tisymmetric soliton to the lower and higher subgap, respec-
tively. In particular, in the coupled AA system, symmetric
solitons, which are generated by their counterparts belonging
to the semi-infinite gap in the single-component GPE with
attraction according to Eq. �7�, remain in the semi-infinite
gap, while the corresponding antisymmetric solitons may ei-
ther stay in the semi-infinite gap, or move to subgap 1a �in
the case shown in Fig. 1�, or even end up inside the Bloch
band separating the semi-infinite gap and subgap 1a. In the
latter case, the antisymmetric soliton becomes embedded
�into the continuous spectrum�, as defined in Refs. �15�.

The central issue to be considered below is a possibility of
spontaneous symmetry breaking, i.e., finding a bifurcation
point beyond which asymmetric solitons emerge. To quantify
the symmetry breaking, we define norms in the two cores,
and the asymmetry ratio, �, as

Nu,v � �
−�

+�

�u2�x�,v2�x��dx, � �
�Nu − Nv�
Nu + Nv

�9�

�Eqs. �1� conserve only the total norm, N�Nu+Nv�. The
bifurcation was found from a numerical solution of Eqs. �6�.
The results are reported in the next section for the models of
the AA, RR, and RA types.

B. Soliton stability

To tackle the stability problem, perturbed solutions are
taken as

���x,t�,��x,t�� = ��û�x;�� + �1�x�ei�t�,

�v̂�x;�� + �3�x�ei�t��e−i�t,

��*�x,t�,�*�x,t�� = ��û*�x;�� + �2�x�ei�t�,

�v̂*�x;�� + �4�x�ei�t��ei�t, �10�

where �û�x ;�� , v̂�x ;���e−i�t, with real functions û�x ;�� and
v̂�x ;��, are stationary solutions of Eqs. �6�. Perturbations �1,3

of fields � ,�, and their complex conjugates, �2,4, are for-
mally treated as independent functions. Substituting expres-
sions �10� in Eqs. �1� and linearizing, we arrive at an eigen-
value problem,

�L�û�x;��,�,g1,0� ��3

��3 L�v̂�x;��,�,g2,�� ���12

�34
� = ���12

�34
� ,

�11�

where �12���1 ,�2�T, �34���3 ,�4�T, the linear-stability opera-
tor for the single-component GPE is

L�f�x�,�,g,�� = � d2

dx2 + � cos�2x + �� + 2gf2�x� + ���3

+ igf2�x��2, �12�

and �3 and �2 are the Pauli matrices. In the single-
component GPE, families of fundamental solitons have been
shown to be stable �26�, i.e., all eigenvalues of the corre-
sponding operator L�û0�x ;�� ,� ,g ,0� are real.
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FIG. 12. �Color online� �a� Families of twisted �odd� solitons in
the attraction-attraction system, with �=8 and �=1. Symmetric
twisted solitons are stable up to the bifurcation point, beyond which
they are unstable, while the emerging twisted asymmetric solitons
are stable. Antisymmetric twisted solitons are stable everywhere
�actually, because the lattice is strong enough�, cf. Fig. 3�c�. �b� An
example of an asymmetric twisted soliton with Nu=5.3, Nv=0.7,
and ��−0.66. In this figure and in some figures below, shaded
vertical stripes depict the lattice potential which supports the
solitons.
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Equation �11� can be simplified for symmetric and anti-
symmetric solutions. Substituting, respectively, expressions
�7� and �8� �with �=0 and g1=g2�g�, we arrive at a reduced
eigenvalue problem for the symmetric soliton,

L�û0�x;� + ��,� + �,g,0��+ = ��+, �13�

L�û0�x;� + ��,� − �,g,0��− = ��− �14�

��±��12±�34�, and its counterpart for the antisymmetric one,

L�û0�x;� − ��,� + �,g,0��+ = ��+, �15�

L�û0�x;� − ��,� − �,g,0��− = ��−. �16�

Since Eqs. �13� and �16� are tantamount to the linear-
stability problem in the single-component GPE, the stability
of the soliton in the latter equation is a necessary condition

for the full stability of symmetric and antisymmetric solitons
in the coupled system. To identify the full stability conditions
for the symmetric and antisymmetric solitons, we solved the
additional eigenvalue problems, i.e., respectively, Eqs. �14�
and �15�. The stability of asymmetric solitons was inferred
from a numerical solution of the full eigenvalue problem,
based on Eq. �11�. The solution is stable if all respective
eigenvalues � are real.

IV. RESULTS (SYMMETRIC SYSTEMS)

A. Attraction-attraction model

Families of numerically found stationary soliton solutions
of Eqs. �6� for the AA system �g1=g2= +1� with zero mis-
match ��=0� are displayed in Fig. 3 for �=1, in the cases of
weak ��=1� and strong ��=8� OLs. We observe that a
branch of asymmetric solitons bifurcates from the symmetric
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one, while the antisymmetric solutions do not give rise to
any bifurcation. We also notice that the antisymmetric branch
extends through the Bloch band separating the semi-infinite
gap and the first finite band gap, 1a; as said above, the soli-
tons are embedded ones inside the band. Panels �b� and �d� in
the figure clearly show that the symmetry-breaking bifurca-
tion is supercritical �the bifurcating branch immediately goes
forward in −�, without turning backward, the latter being a
characteristic feature of the subcritical bifurcation—in par-
ticular, in the system of linearly coupled NLS equations of
the AA type without the lattice potential �14��. The present
situation is, generally, similar to that in the system of linearly
coupled Bragg gratings �16� �where the bifurcation is super-
critical too�.

The change of the bifurcation with variation of coupling
constant � is illustrated by Fig. 4. In particular, the critical
value of the coupling constant, �bif, at which the bifurcation
occurs is shown in panel �b� as a function of the soliton’s
total norm �note that in Fig. 3�a�, which pertains to �=1, the
bifurcation in the system with �=1 occurs at N�4, in com-
pliance with Fig. 4�b��. Naturally, �bif grows with N, as the
bifurcation is a result of the competition between the nonlin-
ear and linear properties of the system, accounted for by N
and �, respectively. On the other hand, the dependence of the
bifurcation point on the lattice’s depth � is quite weak, the
stronger lattice making the region of the existence of asym-

metric solitons somewhat larger �which can be easily under-
stood too, as the lattice tends to pin and thus stabilize any
localized pattern�.

The above results bear some implications for stability of
the solutions, as, in models of the NLS type with self-
focusing, a necessary stability condition is given by the
Vakhitov-Kolokolov �VK� criterion �28�. In the present no-
tation, it is dN /d��0. As seen in Fig. 3, all solution
branches satisfy this condition �however, as shown below,
not all of them are stable, as the VK criterion is not sufficient
for the stability�.

To investigate the stability of the symmetric and antisym-
metric soliton families presented in Fig. 3 in an accurate
form, we solved the reduced eigenvalue problem, based on
Eq. �14� or Eq. �15�, respectively, to identify the eigenvalue
with the largest imaginary part, Im���, i.e., the fastest grow-
ing unstable mode. Figure 5 shows the result for a relatively
weak OL, with �=1. We conclude that the symmetric soliton
is stable up to the bifurcation point, where the branch of the
asymmetric solitons emerges. Beyond this point, the sym-
metric solitons are unstable. On the other hand, the branch of
the antisymmetric solitons, which undergoes no bifurcation
in the AA system, is unstable in weak OLs, see Figs. 3�a� and
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5, but becomes stable in a stronger lattice, see Fig. 3�c�. In
fact, strong OLs give rise to bistability: the antisymmetric
soliton coexists, as a stable solution, with either the symmet-
ric or asymmetric one. Finally, the numerical solution of the
full eigenvalue problem, based on Eq. �11�, for the asymmet-
ric solitons demonstrates that they are stable whenever they
exist.

The predictions of the linear stability analysis have been
confirmed by direct numerical simulations of the underlying
equations �1�. In particular, Fig. 6 shows that unstable sym-
metric solitons evolve into stable asymmetric ones. It has
also been checked that antisymmetric solitons in sufficiently
strong OLs are stable indeed, while, in weak lattices, they are
completely destroyed by growing perturbations.

Results of the analysis are summarized in Fig. 7, in the
form of a diagram showing the stability regions of the sym-
metric, antisymmetric, and asymmetric solitons in the �� ,��
plane. To this end, we define, in addition to the above-
mentioned bifurcation value, �bif, which plays the role of the
instability border of symmetric solitons �they are unstable,
for given � and N, at ���bif, and stable at ���bif� and the
existence border of stable asymmetric solitons �they exist at

���bif�, a critical value which separates stable and unstable
antisymmetric solitons: they are stable at ���cr, and un-
stable at ���cr.

The stability analysis demonstrates that the branch of the
antisymmetric solitons changes its character from unstable to
stable as a whole, with the increase of � at fixed � �see Figs.
3�a� and 3�c��, or decrease of � at fixed �. In other words, a
situation has not been found when a part of the branch of
antisymmetric solitons would be stable, while its other part is
unstable. Note that the segment of the branch extending
through the Bloch band, where the antisymmetric solitons
are embedded ones, is stable too.

B. Repulsion-repulsion system

In the single-component GPE with repulsion, solitons
may only be found in finite band gaps, therefore they are
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called gap solitons �1,3�. In the coupled system with repul-
sion in both cores, symmetric and antisymmetric states may
be composed of single-component gap solitons as per Eqs.
�7� and �8�. Families of the solitons in the RR system, gen-
erated from the gap solitons belonging to the first and second
finite band gaps in the single-component GPE, are shown in
Figs. 8 and 9, along with families of asymmetric solitons
bifurcating from them. In particular, the symmetric branch in
subgaps 2a and 2b in Fig. 9 �which extends across the Bloch
band separating the two subgaps�, and the antisymmetric
branch in subgap 2b �it extends into the adjacent Bloch band�
may be regarded as continuations of the, respectively, sym-
metric branch in subgap 1b and antisymmetric one in subgap
2a, which are displayed in Fig. 8. On the other hand, the
origin of the stable branch of asymmetric solitons in subgap
2b in Fig. 8 is not clear, as numerical problems impede to
continue it in the direction of decreasing � and N.

On the contrary to the situation in the AA model �cf. Figs.
3�a� and 3�c��, in the present case the symmetric branch does
not undergo any bifurcation, while asymmetric solitons bi-
furcate supercritically from the antisymmetric branch �simi-
lar to what is known about �nonsoliton� bifurcations in the
double-well model �10��. Dependences of asymmetry ratio �
on �, and of the bifurcation value, �bif, on N�Nu+Nv for
asymmetric solitons in the RR system are quite similar to

those in its AA counterpart, which were shown above in Fig.
4 �therefore, the dependences for the RR system are not dis-
played here�. A typical shape of the asymmetric soliton is
presented in Fig. 10. It is worthy to note that both symmetric
and antisymmetric soliton branches, but not asymmetric
ones, may become embedded, crossing Bloch bands which
separate the subgaps.

Similar to what was reported above for the AA model, the
reduced eigenvalue problem based on Eqs. �14� and �15� was
solved numerically to determine the stability of symmetric
and antisymmetric gap solutions in the RR system �the VK
criterion is irrelevant for self-defocusing models�. The analy-
sis demonstrates that the families of symmetric solitons pre-
sented in Figs. 8 and 9 are completely stable if the OL is
strong enough, but symmetric solitons may be unstable in a
weak lattice �for instance, at �=1�. This property is reminis-
cent of the AA system, where the antisymmetric solitons are
unstable at �=1, and stable at large �, see Figs. 3, 5, and 7.
Further, antisymmetric solitons are stable before the
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�anti�symmetry-breaking bifurcation, i.e., at ���bif, and,
quite naturally, unstable at ���bif �even if the antisymmet-
ric branch does not seem to be continuously connected to the
bifurcation point, see Fig. 9�. In the latter case, the instability
growth rate for the antisymmetric solutions is shown in Fig.
11.

Asymmetric solitons bifurcating from the antisymmetric
ones are stable whenever they exist, which was checked by
solving the full eigenvalue problem for them, based on Eqs.
�11�. As well as in the case of the AA system, these results
imply bistability, provided that the OL is strong enough. In-
deed, the symmetric solitons are then stable, and, along with
them, either antisymmetric solitons or asymmetric ones �be-
low or above the bifurcation, respectively� are stable too.

The predicted stability and instability of symmetric, anti-
symmetric, and asymmetric solitons has been verified by di-
rect simulations. In particular, the antisymmetric solitons, if

unstable, tend to rearrange themselves into their stable asym-
metric counterparts.

C. Twisted solitons and bound states

Twisted �alias odd� solitons, which feature two out-of-
phase amplitude peaks in one period of the underlying lat-
tice, were found and shown to be stable in the single-
component GPE with attractive nonlinearity �26� �unlike
formally similar subfundamental gap solitons in the model
with self-repulsion, which are unstable �27��.

We have studied spontaneous symmetry breaking of
twisted solitons in the AA system. Families of twisted soli-
tons in this system are shown in Fig. 12�a�. The behavior is
generally similar to that of the fundamental solitons in the
same �AA� model: a stable asymmetric branch bifurcates
from the symmetric one, leaving it unstable; however, it is
worthy to note that, in the case shown in Fig. 12�a�, the
bifurcation occurs in the finite �sub�gap, 1b, while the similar
bifurcation of fundamental solitons was observed, in Figs.
3�a� and 3�c�, in the semi-infinite gap. The entire antisym-
metric branch of the twisted solitons is stable, provided that
the lattice is strong enough, or unstable otherwise. A typical
example of the asymmetric twisted soliton is shown in Fig.
12�b�.

Bound states of �-out-of-phase fundamental solitons,
which also feature the odd parity, but include peaks separated
by an empty lattice site, have been found too, in the AA and
RR systems alike �in the single-component GPE with the
repulsive nonlinearity, the presence of an empty site between
the peaks is a necessary condition for the existence of a
stable bound state of two out-of-phase fundamental gap soli-
tons �27,29��. Families of the bound states of this type are
shown in Fig. 13, being quite similar to fundamental-soliton
families, cf. Figs. 3 and 8. A difference is observed in the
evolution of symmetric and antisymmetric solitons destabi-
lized by the bifurcation: rather than rearranging into asym-
metric solitons, they give rise to persistent breathers, as
shown in Fig. 14.

V. ASYMMETRIC SYSTEMS

As said in the Introduction, the two-core system can be
made asymmetric by either assuming that the signs of the
scattering lengths are opposite in the parallel-coupled traps,
or by admitting a mismatch between the two OLs. Both cases
are considered in this section.

A. Repulsion-attraction system with aligned lattices

In the RA system �we set g1=−1, g2=1, assuming oppo-
site signs but equal absolute values of the nonlinear coeffi-
cients in the components�, the numerical solution of Eqs. �6�
reveals two soliton families, viz., ones with a dominant re-
pulsive component �Nu�Nv� residing in subgap 1b, or with a
dominant attractive component �Nu�Nv� in the semi-infinite
band gap �solitons in two-core RA systems, but without the
lattice, were considered in Ref. �30��. Generic examples of
such families are presented in Fig. 15, and typical examples
of the respective soliton shapes are displayed in Fig. 16
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The computation of the eigenvalues for perturbation
modes demonstrates that both families are completely stable.
Note that the stability of the attraction-dominated solutions,
with Nu�Nv, is also suggested by the VK criterion, if ap-
plied to dependence N��� in Fig. 15�a� �for the repulsion-
dominated solutions, with Nu�Nv, the VK criterion is irrel-
evant, as mentioned above�.

B. Bifurcations and pseudobifurcations in systems with
mismatched lattices

To consider effects of the mismatch between the OLs in
the two cores, we will here focus on Eqs. �1� with �=� /2
and � �the latter value corresponding to the largest mis-
match, similar to a system of parallel Bragg gratings with the
maximum mismatch, that was recently considered in Ref.
�31��. For all types of the nonlinear interactions in the cores,
at �=0 the solitons in the decoupled shifted lattices were
taken as u�x�= û0�x� ,v�x�=0, where û0�x� is the correspond-
ing soliton in the single-component GPE. At this point, the
asymmetry ratio defined in Eq. �9� is at its maximum, �=1.
As the linear-coupling coefficient, �, increases, the solution
becomes less asymmetric.

Figure 17 displays soliton families found in the AA sys-
tem. As in Ref. �32�, which treated a mismatched system of

parallel-coupled Bragg gratings, we distinguish between
asymmetric and quasisymmetric �QS� solitons �a branch of
quasiantisymmetric �QAS� solutions was found too but is not
shown, as it is completely unstable, cf. Fig. 3�. QS solitons
have equal norms in both components, i.e., �=0, and feature
similar, although not identical, profiles of the components.
The bifurcation chart for the AA system with �=� /2 is very
similar to the one for the same system with aligned OLs
��=0�, the symmetric solutions being replaced by their QS
counterparts. In particular, the asymmetric branch bifurcates
from the QS one.

At first glance, it may seem that, in the AA system with
�=�, the branch of asymmetric solitons also bifurcates from
the QS one. However, this is not the case. A blowup �inset in
Fig. 17�b�� shows a pseudobifurcation, which means that
asymmetric and QS branches gradually approach each other
to a point where they seem indistinguishable, but they never
merge, therefore the QS solutions always remain �strictly
speaking� unstable, while the asymmetric ones are always
stable �the stability is discussed in more detail below�. In
Fig. 18, we display an example of a comparison between
shapes of asymmetric and QS solitons with equal norms,
N=3.5, when they are very close to each other, the asymmet-
ric one having ��10−4 �its QS counterpart has � exactly
equal to zero�. Note that the centers of the two components
in the QS soliton are slightly separated, while in the asym-
metric soliton they exactly coincide.

Figure 19 additionally illustrates the difference between
the true quasisymmetry-breaking bifurcation in the AA sys-
tem with �=� /2, and the pseudobifurcation in the system
with �=�. In the latter case, the branches closely approach
but never merge, cf. Fig. 17.

Typical shapes of strongly asymmetric solitons in the mis-
matched AA model are displayed in Fig. 20. Naturally, the
solitons are more asymmetric at �=�.

Families of solitons found in the mismatched RR system
are presented in Fig. 21. The QS branch is called this way
only in the sense that peak amplitudes of the two compo-
nents have the same sign. In fact, profiles of the components
in the QS soliton may be very different, as insets show in
Fig. 21. The quasiantisymmetry-breaking bifurcation in the
RR system and respective pseudobifurcation are illustrated
by Fig. 22, and a set of typical profiles of the solitons is
displayed in Fig. 23.

Stability of the solitons in the mismatched AA and RR
systems was studied in direct simulations of Eqs. �1� over a
wide range of values of N and �. In either case �as in the
aligned system�, the asymmetric solitons were found to be
stable whenever they exist, and the branch which gives rise
to the bifurcation is stable before the bifurcation and unstable
afterwards. Further, QAS and QS solitons in the AA and RR
system, respectively, are unstable at small � and stable at
larger �. When QS solitons are unstable in the AA system,
they evolve into their stable asymmetric counterparts. Simi-
larly, in the misaligned RR system, QAS solitons which were
destabilized by the bifurcation �or which are unstable due to
the pseudobifurcation� transform themselves into stable
asymmetric solutions.

Soliton families in the mismatched system of the RA type
were investigated too. It was found that the corresponding
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picture is quite similar to that presented for the RA system
without mismatch in Fig. 15.

VI. BINARY MIXTURES WITH LINEAR COUPLING

In this section we consider the model of a binary BEC in
the single-core trap equipped with an OL. As explained in
Introduction, the two components of the mixture �� and ��
represent two different spin states of the same atom, and the
linear coupling between them is induced by a spin-flipping
electromagnetic wave. The corresponding system of the nor-
malized GPEs for wave functions � and � takes the form

i�t + �xx + � cos�2x�� + �g1���2 + g12���2�� + �� = 0,

i�t + �xx + � cos�2x�� + �g2���2 + g12���2�� + �� = 0

�17�

�in the single trap, there may be no mismatch between the
lattice-potential terms in the two equations�. As the interac-

tion between atoms may be both attractive and repulsive, in
this section we consider two basic cases: when all three non-
linear terms are attractive, i.e., g1=g2�1, g12�0 �AAA�,
and when they all are repulsive, with g1=g2=−1, g12�0
�RRR�.

Bifurcation diagrams for the AAA and RRR systems are
shown in Fig. 24. In the former case �AAA�, stable asym-
metric solitons bifurcate, as before, from symmetric ones if
0�g12�1. However, if the interspecies nonlinear interac-
tions dominate, i.e., for g12�1, the character of the bifurca-
tion changes, and asymmetric solitons bifurcate from anti-
symmetric ones. In the RRR system, a similar transition is
observed: the asymmetric solitons are generated, as above,
by the bifurcation from antisymmetric solitons if 0�−g12
�1, but, for −g12�1, antisymmetric solitons bifurcate from
symmetric ones. In the Manakov’s case, �g12�=1 �33�, no bi-
furcation was found. Note that linearly coupled equations
�17� without the lattice potential ��=0�, but with the linear
coupling present, ��0, are equivalent to the Manakov’s in-
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tegrable system with �=0 �34�, therefore the absence of the
bifurcation in this case is not surprising.

Direct simulations of the AAA system demonstrate that
the asymmetric solitons, whenever they exist, are stable, and,
as usual, the bifurcation destabilizes the solitons from which
the asymmetric ones emerge. In the RRR system, the stabil-
ity situation is more complex. While asymmetric solitons
bifurcating from the symmetric ones in the RRR system, i.e.,
in the case of �g12��1, are always stable, the asymmetric
solitons bifurcating, in the same system, from the antisym-
metric branch �at 0� �g12��1� may be both stable and un-
stable. We did not try to identify a border between the stable
and unstable asymmetric solitons in the latter case in an ac-
curate form; however, the asymmetric solitons in the RRR
system are definitely stable for �g12�→0 �which complies
with the results reported above for the RR system with g12
=0�, and they are unstable for �g12� close to �but smaller than�

1. In that case, direct simulations demonstrate that unstable
asymmetric solitons transform into persistent breathers �not
shown here�. We did not systematically study the stability of
the nonbifurcating families, i.e., antisymmetric and symmet-
ric ones in the AAA and RRR systems, respectively.

VII. CONCLUSION

In this work, we have studied families of soliton states in
a symmetric set of two effectively one-dimensional traps
�cores� equipped with OLs �optical lattices�, filled with self-
attractive or self-repulsive BEC, and coupled by linear tun-
neling �the same model may be also realized in terms of
spatial solitons in two parallel planar optical waveguides,
which carry lattices in the form of a transverse modulation of
the refractive index�. Asymmetric systems, with a phase shift
� between the two OLs, as well as with opposite signs of the
nonlinearity in the BEC confined in the different traps, were
considered too. In the spectrum of the dual-core system, the
linear coupling between the cores splits finite band gaps in-
duced by the single OL into subgaps, or partly closes them.
Influence of mismatch � on the spectrum was considered
too, with a conclusion that large � tends to make the spec-
trum qualitatively similar to that in the single-core model. In
the full nonlinear model, families of symmetric and antisym-
metric solitons, as well as asymmetric solitons generated by
symmetry-breaking bifurcations, have been constructed. This
was done in the case of attraction or repulsion in both cores
�AA and RR systems�, as well as in the mixed �RA� system.
Deformation of the soliton families in the AA and RR system
under the action of mismatch � between the two OLs was
investigated too.

In the AA and RR systems, asymmetric solitons bifurcate
supercritically from symmetric and antisymmetric ones, re-
spectively. In the former case, symmetric and asymmetric
fundamental solitons were found only in the semi-infinite
gap, while antisymmetric solitons were also discovered in
the first finite subgap, as well as in the Bloch band separating
it from the semi-infinite band �in the latter case, the antisym-
metric solitons have the character of embedded ones�. In the
RR system, solitons are located in finite band gaps, and,
additionally, antisymmetric and symmetric solitons were
found as embedded ones inside Bloch bands. In both systems
�AA and RR�, the asymmetric solitons are always stable,
while the branch which gives rise to them is stable before the
bifurcation, and unstable afterwards. The nonbifurcating
branches, i.e., antisymmetric and symmetric solutions in the
AA and RR systems, respectively, are unstable or stable as a
whole in weak and strong OL, respectively. The correspond-
ing stability region was identified in a complete form for the
AA system, in the parameter plane of coupling coefficient �
and OL strength �. In the systems of both AA and RR types,
bistability regions were found, in which the stable asymmet-
ric solitons coexist with either antisymmetric or symmetric
ones, respectively. If the symmetric soliton in the AA system,
or the antisymmetric soliton in the RR system was destabi-
lized by the bifurcation, its evolution tends to transform it
into a stable asymmetric soliton, in either system. In the RA
system, two soliton families were found, dominated by either
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the self-attractive or repulsive component, both being en-
tirely stable.

In the AA system, we have also studied families of
twisted �odd� solitons, featuring two out-of-phase peaks in a
cell of the OL. The behavior of these families is, generally,
similar to that of the fundamental solitons, including the bi-
furcation of the symmetric branch into an asymmetric one,
and bistability; however, unlike the situation with the funda-
mental solitons, the symmetry-breaking bifurcation of the
twisted solitons occurs in a finite band gap. In addition,
�-out-of-phase bound states of fundamental solitons were
constructed in both the AA and RR systems. Their behavior
too is quite similar to that of the respective fundamental
solitons, with a difference that, past the bifurcation, an un-
stable bound state tends to arrange itself into a persistent
breather �rather than into a stationary bound state of the
asymmetric type�.

The study of the systems with the mismatch, �, between
the OLs in the two cores demonstrates that former symmetric
and antisymmetric solitons turn into QS �quasisymmetric�
and QAS �quasiantisymmetric� ones. For �=� /2, the defor-
mation is mild, and the behavior of various soliton families
remains qualitatively the same as in the system with �=0; in
particular, well-defined bifurcations which generate asym-
metric solitons from QS or QAS ones, in the mismatched AA
and RR system, respectively, occur despite the presence of
the mismatch �in a system of mismatched parallel-coupled
Bragg gratings, similar observations were recently made in
Ref. �32��. However, when the mismatch attains its maxi-
mum, �=�, the situation becomes different: instead of the
bifurcations, both the AA and RR systems demonstrate
pseudobifurcations when the branch of asymmetric solutions
does not really bifurcate from that of QS or QAS solutions,
but rather goes very close and only asymptotically merges
into it. Thus the asymmetric branch always exists and is
stable in the latter case, while its QS or QAS counterpart is

always unstable �although the instability is extremely weak
when it approaches the stable asymmetric branch�. The
present work reports an example of the pseudobifurcation in
a mismatched binary system �in a system of mismatched
Bragg gratings, no such effect was observed �32��.

Finally, we have considered a model of the single-core
trap, equipped with the OL and filled with a binary mixture,
assuming both the nonlinear interaction between the two spe-
cies, and linear coupling between them, induced by a reso-
nant spin-flipping field, if the species correspond to different
spin states of the same atom. In this case, we have found that
the bifurcations generating asymmetric solitons from sym-
metric and antisymmetric ones are qualitatively similar to
their counterparts in the model without the nonlinear inter-
action between the species, if this interaction is weaker than
the intraspecies nonlinearity; otherwise, the bifurcations
switch their character, so that the asymmetric solitons
emerge from antisymmetric and symmetric ones in the AA
and RR systems, respectively.

A very natural extension would be to consider a two-
dimensional version of the models introduced in this work,
which may also directly apply to BEC in a dual-core
pancake-shaped trap, or to a binary mixture in a single-core
nearly flat trap. The work in this direction is currently in
progress, and results will be reported elsewhere. It may also
be possible to consider the spontaneous symmetry breaking
in a degenerate fermion gas filling a dual-core trap, using a
relatively simple description of the fermion gas based on the
Thomas-Fermi �alias mean-field-hydrodynamic� approxima-
tion, which was developed, for various settings, in Ref. �35�.
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