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We establish that the ability of a localized trapping potential to bind weakly interacting bosons is dramati-
cally enhanced in the vicinity of the threshold of formation of the single-particle bound state of the trap.
Specifically, for repulsive particles and a superthreshold trapping potential the equilibrium number of bound
bosons and the size of the ground state diverge upon approaching the single-particle threshold from above. For
attractive interactions and a subthreshold trap, a collective bound state always forms for a sufficiently large
number of bosons, despite the inability of interparticle attraction alone to form a two-body bound state.
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I. RESONANT BINDING

It is empirically known that a surprisingly large number of
short-range interactions operating in Nature have resonant
character: the two-particle attraction is either barely suffi-
cient to form a two-body bound state or misses the binding
threshold by a small amount. In nuclear physics, prominent
examples include the neutron-nucleon and neutron–� par-
ticle attractions, which are nearly binding �1�. In atomic
physics the same is true for interactions between the atoms of
3He �2� and those of the spin-polarized hydrogen family �3�.
At the same time two 4He atoms form a weakly bound dimer
whose binding energy is four orders of magnitude smaller
than the depth of the 4He-4He potential well �4�.

The proximity to the two-body binding threshold can be
quantified by the s-wave scattering length, whose magnitude
significantly exceeds the range of interparticle forces, thus
implying an effectively long-range interaction �1�. This re-
gime is fundamentally interesting because systems consisting
of resonantly interacting particles may exhibit a series of
effects that are independent of the microscopic details of the
interaction between the constituents. One such phenomenon
is the well-understood Efimov effect �5�, which occurs in a
system of three bosons where resonant two-body forces trig-
ger formation of an arbitrarily large number of loosely bound
levels in a three-particle system. Conclusive experimental
observation of the Efimov physics became possible only re-
cently in an ultracold gas of Cs atoms �6� because, in con-
trast to other nearly resonant systems found in Nature, the
two-body scattering length and thus interparticle interactions
in a cold gas can be precisely controlled by using Feshbach
resonances �7�. This allowed the measurement of the depen-
dence of the three-body recombination rate on the two-body
scattering length, which contains signatures specific to the
Efimov effect �8�.

The goal of this paper is to establish the existence of a
resonant effect which may also be observed in a cold bosonic
gas: we will demonstrate that the number of particles bound
by a nearly resonant potential well increases as the well is
made more shallow, diverging exactly at the single-particle
threshold. The fact that such an effect might exist is implied
by variational analysis given in our previous work �9�. Simi-
lar to the Efimov effect, the ultimate origin of this counter-

intuitive behavior is an effectively large attraction range of
the potential well. Whereas the Efimov effect requires an
attractive part of the physical potential to bind three par-
ticles, the phenomenon discussed below takes place in the
presence of interparticle repulsion.

In the laboratory, attractive wells have been realized using
the optical dipole force �10�, in which atoms are attracted to
the intense region of a focused laser beam. Strong confine-
ment in three dimensions can be obtained at the intersection
of two beams, each typically having diameter of about
15 �m �11�. The binding properties of such traps can be
tuned by adjusting the laser power. Even tighter traps can be
achieved by using holographic techniques �12,13�, optical
superlattices �14�, and near-field �15� and white-light tech-
niques �16�.

Additionally, tuning the parameters of such a localized
potential placed next to the classical edge of a Bose-Einstein
condensate might allow manipulation of a well-defined num-
ber of particles �9�; it also provides an additional context for
studying the quantum many-body problem, as this involves
the states of an interacting boson system. The experimental
feasibility of such a setup was discussed in Ref. �9�, as well
as reasons why a tightly focused potential is needed.

II. MODEL

We consider n interacting bosons of mass m in the pres-
ence of a well-localized attractive potential U�r�. We assume
a system of sufficiently low density so that the range of in-
teractions between particles need not be included as a param-
eter. Therefore we study the Gross-Pitaevskii �GP� energy
functional �17�

E = n� d3x� �2

2m
����2 + U�r��2 +

g�n − 1�
2

�4� �1�

subject to the normalization condition

� �2d3x = 1. �2�

Here we have assumed that the many-body wave function
can be written as a product of the single-particle functions
��r�. The parameter g represents the short-ranged interaction
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between the particles. The external potential U�r� will be
chosen in the form of an attractive “shell” of radius a:

U�r� = − aV��r − a� , �3�

because this is a simple form that will bind particles without
having singular behavior in the wave function at the origin.
The case of more realistic potentials will be discussed in Sec.
VI. For the case of one particle, there is a single bound state
for V�Vc=�2 /2ma2, and this condition will continue to be
relevant for the many-body problem.

III. RESULTS FROM AN APPROXIMATE WAVE
FUNCTION

The ground-state wave function minimizes the energy
functional �1�. We can deduce its general form from inspec-
tion. If the ground state is to be bound, it will have to be
relatively large in the well-localized region where U�r� is
nonzero. At sufficiently large distances it is decreasing more
rapidly than 1/r, to ensure normalizability. It will pass from
large to small in a way that keeps the gradient term small;
this suggests ��1/r at intermediate distances. The effect of
the interparticle repulsion �the last term in Eq. �1�� will be to
suppress large values of �.

In a previous paper �9� these considerations led us to
study the two-parameter trial wave function such that �=C
for r�a, and ��r�=Ca exp�−�r+�a� /r for larger r. We will
briefly recapitulate the results. The form of the wave function
for larger r is the exact wave function for a bound state of
noninteracting particles, and will remain a good approxima-
tion to the interacting wave function at large r, where �4 will
be negligibly small. The wave function extends to a distance
of order 1 /�, which will be large for large n and also for V
close to Vc. Thus we are particularly interested in the case of
small �. Integration of Eq. �2� gives

4	� 1

2�
+

a

3
�a2C2 = 1. �4�

We note that for small � this reduces to C2�� /a2, rather
than �3 �i.e., the reciprocal of the “volume” of the wave
function�. This implies that the two length scales a and 1/�
both play roles; the limit a→0 cannot be taken. Equation �1�
leads to

E

4	na3 = �Vc − V +
1

2
�aVc�C2 +

2

3
g�n − 1�C4

− 2g�n − 1��ae4�aE1�4�a�C4, �5�

where E1�x� is the exponential integral �18�.
Using Eq. �4� to eliminate mention of �, the leading terms

of Eq. �5� are

E

4	na3 = �Vc − V�C2 + 	�a3Vc +
2

3	
g�n − 1��C4. �6�

Minimizing this expression with respect to C gives an esti-
mate for the energy. Assuming g�0 �i.e., the particles repel
each other� gives for V
Vc

E = −
n�V − Vc�2

Vc + 2g�n − 1�/3	a3 . �7�

For large n this becomes independent of n, and the corre-
sponding value of � is small. The energy at n→� is greater
or less than the energy at n=1, depending on whether g is
greater or less than gc=3	a3Vc /2. For g less than gc, this
would seem to indicate that the potential can bind an infinite
number of particles �with a very swollen wave function�;
however, including the last term of �5� gives a shallow mini-
mum for g�gc, and then for large n the state is unstable
against the unbinding of particles �i.e., it is within the con-
tinuum of a state with smaller n�. Our main goal is to estab-
lish whether this minimum is real, and if this is the case,
what is its behavior as the single-particle threshold is ap-
proached from above, V→Vc+0.

The two regimes for the interparticle strength �the cases
g�gc and g�gc� are in essence a small-n effect. The
ground-state energy for two particles is greater or less than
the energy for one, depending on whether the interaction
parameter is large or small.

This shows that for V�Vc there is an n-body bound state;
however, the total energy for large n becomes independent of
n, so that the chemical potential decreases to zero. This oc-
curs because for small � the single-particle wave functions
extend to large distances from the attractive center, making it
correspondingly unlikely that two particles will be at the
same place, so that the interparticle interactions can be effec-
tively made as small as one likes �by tuning ��. The effect
depends on the way the size of the ground state scales with
the number of bound bosons, and does not occur in lower
dimensions �9�.

IV. GROSS-PITAEVSKII EQUATION

The approach just outlined has the advantage that the
mathematics is transparent, and yields results for the energy
and wave function in which the role of the various param-
eters in the problem is explicit. It is a robust method that
gives an upper bound on the exact ground-state energy. How-
ever, the results are only as good as the trial wave function.
Therefore we will find the true minimum of Eq. �1� by nu-
merical means. This gives the best possible wave function
that can be written as a simple product of single-particle
wave functions. In the process it verifies that the simple
variational function is qualitatively correct, and puts the
theory of resonant binding on a solid footing. Additionally
we will show that nontrivial cooperative bound states also
form for a subcritical well in the presence of a weak inter-
particle attraction.

In what follows we will choose a=1 and Vc=�2 /2ma2

=1, which set the length and energy scales for the problem.
Taking a variational derivative of Eq. �1� gives the GP

equation �17�

−
1

r

d2

dr2 �r�� − V��r − 1�� + ��3 = � , �8�

where �=g�n−1�. Unlike the case of the linear Schrödinger
equation, the eigenvalue  for which the GP equation �8� has
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a normalizable solution is not directly proportional to the
minimum value of Eq. �1�; however, they are related by

E = n −
1

2
gn�n − 1�B , �9�

B = �
0

�

�44	r2dr . �10�

We solved Eq. �8� by integrating from r=0 with initial
conditions �=1, d� /dr=0 and chosen values for V, �, and .
The integration was in the form of a power-law representa-
tion of ��r� for r�1, which avoided the problems coming
from the singular form of the GP equation at small r and
gave accurate values for � and its derivative at r=1; there-
after, we used second-order Runge-Kutta integration with
equal-sized steps in the variable y=	r. In general this gave a
function that diverged to plus or minus infinity at large r. By
tuning  we could find the case for which � remained small
at chosen large values of r. This condition defines the eigen-
value  to high accuracy. Once a normalizable solution had
been found, it was rescaled to satisfy the normalization con-
dition �2�. This also changes the value of �, but not V or ;
only at the end of the calculation do we find what value of
the particle number n the solution corresponds to.

Figure 1 shows how the ground-state energy varies with
the number of bosons n, and compares the numerical solu-
tion of the GP equation, Eqs. �8� and �9�, to the variational
result �the minimum value of Eq. �5��. The parameter V
=1.5 and g=2,4 ,6 , . . . ,20. The GP solution is always below
the variational prediction, because it uses a better wave func-
tion.

Although the variational results differ quantitatively from
the solution to the GP theory, qualitatively they are similar.
We offer the following observations.

�a� The energy is negative for all n, so that the attractive
potential has a bound state with an infinite number of par-
ticles.

�b� For g�gc, the energy has a very shallow minimum as
a function of the number of particles. This implies that it will
be difficult to attach a definite number of particles to a well
by placing it in tunneling contact with a source �such as a
condensate droplet�: there is no equilibrium at all, or the
number of particles bound will be large and very susceptible
to small perturbations. The minimum in E�n� is even less
pronounced in the GP solution than it is in the variational
result. We have indicated the apparent position of the
minima, using the � graph marker.

�c� For g�gc, the energy increases with the number of
particles. Thus it is possible to bind a well-defined number of
particles by letting the system equilibrate with a source.
However, this scheme will work well only for a small num-
ber of particles: the plateau at large n will make the system
insensitive to the number of particles.

In the variational study, we found a counterintuitive be-
havior for the value nx at which the minimum of the total
energy occurs: when g is below the critical value gc, nx be-
comes large, diverging as V approaches the binding thresh-
old. This means that an arbitrarily large number of particles
can be stably bound by making the potential weak. We have
verified that this behavior is also exhibited by the solution to
the GP theory. Here it is useful to observe that we are trying
to find the minimum of the total energy both with respect to
the parameter n and the normalized wave function �. Impos-
ing the condition that the derivative of Eq. �1� with respect to
n �with � fixed� is zero, and, combining the outcome with
Eq. �9�, we obtain a relationship

g = 2

/B . �11�

Imposing this condition proved to be easier than trying to
minimize E over n. We constructed Fig. 2 by finding normal-
ized solutions to the GP equation �8� for various values of �,
and iterating until Eq. �11� holds.

Although our work demonstrates the existence of the ef-
fect of resonant binding only within the GP approximation,
we expect that it is also present in the exact theory. As a
nearly resonant well is made more shallow on approaching

FIG. 1. Dependence of the ground-state energy on the number
of particles n, for superthreshold well, V=1.5, and various values of
the interaction parameter g=2,4 ,6 , . . . ,20 �bottom to top�. The
solid line is the numerical solution to Eq. �8� substituted into Eq.
�9�; the dotted line is the minimum value of Eq. �5�. Dimensionless
variables defined in the main text are used.

FIG. 2. Variation of nx, the value of particle number n that
minimizes the energy, with the strength V of the binding potential.
The interaction parameter was taken to be g=2. The dotted line
corresponds to the variational result.
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the single-particle binding threshold, the effective range of
the central attraction increases, and the well binds an increas-
ingly larger number of bosons. Therefore the microscopic
details of the well are not expected to be of qualitative sig-
nificance. The large range is responsible for the survival of
the effect in the presence of weak short-range repulsion be-
tween the bosons because it allows the particles to take ad-
vantage of the central attraction while minimizing mutual
contact interactions �19�. The interactions become more im-
portant as the well is made deeper, thus explaining the exis-
tence of the minimum in Fig. 2. For a sufficiently deep well
the number of bound particles nx increases as the well deep-
ens, which is the normally expected behavior.

Additionally, we argue that our results are immune to the
effects of correlations neglected in the GP approximation.
Indeed, the GP theory can be viewed as a variational method.
Therefore the exact energy will be lower than our calcula-
tions indicate. What they do show is that near resonance the
wave function can accommodate an unexpectedly large num-
ber of particles, because each particle manages to sample the
attractive well without interacting with the other particles too
strongly. The effect of correlations would be that the par-
ticles evade each other more effectively, and thus enhance
the effect we predict.

The issue of validity of the GP theory was also addressed
in Ref. �9�, where the same problem was studied in general
dimensions. Specifically, in one dimension a version of the
problem in question was solved exactly by using Bethe an-
satz methods, and the results were compared with the GP
solution. Although the exact ground-state wave function is
indeed not of the product �Hartree� type, in the limit of large
particle number the exact ground-state energy turns out to be
nearly identical to its GP counterpart. This example repre-
sents “the worst case scenario” as the effect of correlations is
expected to be strongest in one dimension. Therefore we
conclude that it is very likely that the GP theory is fully
adequate in three spatial dimensions.

V. WEAKLY ATTRACTING PARTICLES

The variational analysis also predicts an interesting phe-
nomenon for the case of weakly attracting particles in the

presence of a potential that is too weak to bind a single
particle �g�0 and V�1�. The second term of Eq. �6� is
negative for sufficiently large n, pointing to the existence of
a many-body bound state. For the particular case V=1, the
critical value of the number of particles needed is given by
nc=3	 /2
g
. When V�1, the minimum energy can be posi-
tive �indicating a metastable state�, but becomes negative for
sufficiently large n. The possibility of a cooperatively bound
state of this sort was first pointed out by Migdal �20�.

Figure 3 shows the results of numerical solution of the GP
theory for the case of weakly attracting particles in the pres-
ence of a V�1 potential. In agreement with the variational
argument, collective bound states are seen to form for a suf-
ficiently large number of bosons. Specifically, the farther
away the binding threshold, the larger the number of bosons
required to form a bound state.

VI. BEYOND THE MODEL

The �-shell potential cannot be achieved experimentally.
Thus one may ask how our results are relevant to the real
world.

The variational results are quite general for a localized
external potential. Since the trial wave function is constant
for r�a, the external potential enters only through its aver-
age value

a2V = − �
0

�

U�r�r2dr . �12�

The solution to the GP equation will be affected slightly. We
can anticipate the effects by comparing the �-shell problem
to that of the attractive square well U�r�=−W for r�a. Out-
side the well the GP equation is the same for the square well
and the � shell, and so the solutions �for given � and � are
the same; the only question is how the value for W corre-
sponds to that for V. The condition that relates them is that
the values of the logarithmic derivatives of the wave func-
tions should be the same at r=a. For the � shell, the solution
to Eq. �8� �for �=0� is �=C sinh�	

r� /r, and is very nearly
constant for the cases of interest; however, for the square
well the solution inside �again for noninteracting particles�
has the form �=C sin�	W− 

r� /r. The logarithmic deriva-
tive of this function takes on all values and there is an infi-
nite set of values of W for which the match can be achieved.
The effect of the particle interactions will be to somewhat
suppress the accumulation of particles �places where � is
large� and to push the consecutive bound states to larger
values of W.

However, the feature of interest in the resonantly bound
system is the number of particles that can be bound, and this
is a property of the wave function at large distances. Thus we
can expect that the differences between different external
potentials can be absorbed into the definitions of Vc and g.

VII. CONCLUSIONS

To summarize, our work demonstrates that a superthresh-
old localized trapping potential can bind an unexpectedly

FIG. 3. Ground-state energy of weakly attractive bosons as a
function of their number n, for various values of the binding poten-
tial amplitude V. The curves are all for the case g=−0.1, and the
successive curves from left to right are for V=1.00,0.98,0.96,
0.94,0.92,0.90.
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large number of weakly repulsive bosons while a subthresh-
old trap can trigger formation of a cooperative bound state of
weakly attractive bosons even when the two-body attraction
is insufficient to form a two-body state. These effects are
insensitive to the microscopic details of the trapping poten-
tial and have their origin in the large effective range of the

nearly resonant trapping potential. We hope that these results
will be experimentally tested in the near future.

ACKNOWLEDGMENT

This work was supported by the Thomas F. Jeffress and
Kate Miller Jeffress Memorial Trust.

�1� V. Efimov, Comments Nucl. Part. Phys. 19, 271 �1990�.
�2� R. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T.

McConville, J. Chem. Phys. 70, 4330 �1979�.
�3� W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 �1965�;

R. D. Etters, J. V. Dugan, and R. W. Palmer, ibid. 62, 313
�1975�.

�4� R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt,
T. Köhler, and M. Stoll, Phys. Rev. Lett. 85, 2284 �2000�, and
references therein.

�5� V. N. Efimov, Yad. Fiz. 12, 1080 �1970� �Sov. J. Nucl. Phys.
12, 589 �1971��; Phys. Lett. 33B, 563 �1970�.

�6� T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B.
Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, and
R. Grimm, Nature �London� 440, 315 �2006�.

�7� E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47,
4114 �1993�; S. Inouye, M. R. Andrews, J. Stenger, H.-J.
Miesner, D. M. Stamper-Kurn, and W. Ketterle, Nature �Lon-
don� 392, 151 �1998�.

�8� E. Braaten and H.-W. Hammer, Phys. Rep. 428, 259 �2006�.
�9� E. B. Kolomeisky, J. P. Straley, and R. M. Kalas, Phys. Rev. A

69, 063401 �2004�.
�10� R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, Adv. At.,

Mol., Opt. Phys. 42, 95 �2000�.
�11� C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S.

Chu, Phys. Rev. Lett. 74, 3577 �1995�; T. Ido, Y. Isoya, and H.
Katori, Phys. Rev. A 61, 061403�R� �2000�; Y. Takasu, K.
Honda, K. Komori, T. Kuwamoto, M. Kumakura, Y. Taka-

hashi, and T. Yabuzaki, Phys. Rev. Lett. 90, 023003 �2003�.
�12� T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm,

Science 299, 232 �2003�.
�13� R. Newell, J. Sebby, and T. G. Walker, e-print arXiv:physics/

0211038; D. McGloin, G. C. Spalding, H. Melville, W. Sibbett,
and K. Dholakia, Opt. Express 11, 158 �2003�.

�14� G. Wasik and R. Grimm, Opt. Commun. 137, 406 �1997�; A.
Görlitz, T. Kinoshita, T. W. Hänsch, and A. Hemmerich, Phys.
Rev. A 64, 011401�R� �2001�.

�15� Y. I. Shin, M. Heo, J. W. Kim, W. Shim, H. R. Noh, and W.
Jhe, J. Opt. Soc. Am. B 20, 937 �2003�.

�16� C. A. Sackett and B. Deissler, J. Opt. B: Quantum Semiclassi-
cal Opt. 6, 15 �2004�.

�17� L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 �1961� �Sov.
Phys. JETP 13, 451 �1961��; E. P. Gross, Nuovo Cimento 20,
454 �1961�.

�18� Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun �Dover, New York, 1972�, p.
228.

�19� This is similar to the argument due to V. F. Weisskopf, Con-
temp. Phys. 22, 375 �1981�, which explains why screened
Coulomb repulsion between the electrons in metals does not
destroy Cooper pairing �the Debye screening length is much
smaller than the coherence length�. We thank C. L. Henley for
this observation.

�20� A. B. Migdal, Yad. Fiz. 16, 427 �1972� �Sov. J. Nucl. Phys.
16, 238 �1973��.

INTERACTING BOSONS IN A NEARLY RESONANT… PHYSICAL REVIEW A 75, 063421 �2007�

063421-5


