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A gauge invariant formulation of the so-called intense-field Keldysh-Faisal-Reiss �KFR� approximations in
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I. INTRODUCTION

Investigations of atomic, molecular, and optical processes
in intense laser fields are currently being pursued most vig-
orously. The so-called strong-field Keldysh-Faisal-Reiss
�KFR� approximations �1–3� have provided fruitful insights
into a wide range of highly nonperturbative processes in in-
tense fields �e.g., �4��. However, the strong-field approxima-
tions in the “velocity” and “length” gauges differ and appar-
ently constitute two distinct models. In the last several
decades many authors have discussed the problem of gauge
invariance of the KFR approximations, and various argu-
ments have been advanced to justify the use of one or the
other approximation in practice. In this paper we derive ex-
plicit expressions of the strong-field transition amplitudes in
the velocity and length gauges and demonstrate their equiva-
lence, term by term, in all orders, exactly. It provides an
infinite series representation of the gauge-invariant KFR
transition amplitude �cf �8��.

II. QUANTUM MECHANICAL GAUGE
TRANSFORMATION

A. Form invariance

According to the minimal coupling scheme, the
Schrödinger equation of an electron interacting with an elec-
tromagnetic field, is given by

�i�
�

�t
− eA0����t�� =

�pop −
e

c
A�2

2m
���t�� , �1�

where A0	A0�r , t� is the scalar and A	A�r , t� is the vector
potential. The quantum mechanical gauge transformation
consists in changing the potentials by a scalar function
�=��r , t�, which leaves the electromagnetic field strengths
unchanged and simultaneously changing the wave function
by the gauge factor e−i�e/�c��,

A0 → Ã0 = A0 +
1

c

��

�t
,

A → Ã = A −
��

�r
,

���t�� → ��̃�t�� = e−i�e/�c�����t�� . �2�

Substituting Eq. �2� in Eq. �1� and performing the simple
calculations, one obtains in the new gauge

�i�
�

�t
− eA0

˜ ���̃�t�� =
�pop −

e

c
Ã�2

2m
��̃�t�� . �3�

Thus, the essence of the gauge transformation in quantum
mechanics is the invariance of the form of the Schrödinger
equation with respect to the potentials in the old and in the
new �tilde� gauges, as it is immediately apparent from the
form of Eqs. �1� and �3�. This ensures the requirement of
physical invariance of the transition probabilities �and the
expectation values of Hermitian observables� in the old and
the new gauges. Furthermore, the gauge invariance of the
�transition� probabilities implies that the transition ampli-
tudes must also be the same to with in a constant phase
factor, in the two gauges.

B. Total Hamiltonians: Velocity gauge and length gauge

The minimal coupling Schrödinger equation �1� in the di-
pole approximation �when A�t� becomes a function of t only�
defines the total Hamiltonian H�t� in the so-called velocity
gauge

H�t� =

pop −

e

c
A�t��2

2m
+ V �velocity gauge� , �4�

where we have set eA0	V for the binding potential. Using
the gauge function in the dipole approximation ��r , t�
=A�t� ·r, and the gauge transformation equations �2�, one
immediately calculates

A0
˜ = A0 +

1

c
Ȧ�t� · r ,

Ã = A − A ,

=0. �5�

Thus, from Eq. �3�, we get the total Hamiltonian in the new
�the so-called length� gauge
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H̃�t� =
pop

2

2m
+ V +

e

c
Ȧ�t� · r ,

=
pop

2

2m
+ V − eE�t� · r �length gauge� , �6�

where we have used the definition E�t�
=− 1

c Ȧ�t�.

III. TIME-DEPENDENT GREEN’S FUNCTION
AND TRANSITION AMPLITUDE

A. Time-dependent Green’s function

Let the Schrödinger equation of the interacting system
with a total Hamiltonian H�t� be


i�
�

�t
− H�t�����t�� = 0. �7�

We define the Green’s function �or propagator� G�t , t0� asso-
ciated with H�t�, by the inhomogeneous equation


i�
�

�t
− H�t��G�t,t0� = ��t − t0� . �8�

The solution of the Schrödinger equation �7� which satisfies
the general initial condition

���t�� = 0, t � t0,

���t�� = ��i�t0��, t = t0
�+�, �9�

where ��i�t0�� is the initial state of the system prepared at t
= t0, is given by

���t�� = i�G�t,t0���i�t0�� . �10�

The solution �10� of Eq. �7� is readily verified by operating
on Eq. �10� with �i� �

�t −H�t��, using Eq. �8�, and noting that
due to the resulting delta function, Eq. �7� is fulfilled for all
t not equal to t0. For t= t0, an integration in the immediate
neighborhood of the singularity reproduces the initial condi-
tion �9�.

We use a convenient expression of the total propagator G
of the system, in terms of the partial propagators G0 and Gf
associated with the partial Hamiltonians H0 and Hf, defined
by the two partitions of the total Hamiltonian H�t�=H0�t�
+V0�t� and H�t�=Hf�t�+Vf�t�, respectively. Then for any t
between the initial-time t0 and the final-time tf, we have a
convenient series expansion of G�t , t0� in the form �see Refs.
�4� or �5��,

G�t,t0� = G0�t,t0� + �
t0

tf

dt1Gf�t,t1�V0�t1�G0�t1,t0�

+ �
t0

tf �
t0

tf

dt2dt1Gf�t,t2�Vf�t2�Gf�t2,t1�V0�t1�G0

��t1,t0� + ¯ . �11�

B. “Prior series” of transition amplitude

The probability amplitude of a transition from a �nonin-
teracting� initial state ��i�t0��, prepared at t= t0, to a final
state �� f�tf�� at t= tf, is given by

Sif = � f�tf����tf�� = i�� f�tf��G�tf,t0���i�t0�� , �12�

where in the second line we have used Eq. �10�. To obtain a
systematic expansion of transition amplitudes of interest, we
substitute Eq. �11� for G�t , t0� in Eq. �12�, and obtain the
“prior series” �see �4,5�� for the transition amplitude between
the initial state ��i�t0�� and the final state �� f�tf�� to any
desired order:

Sif = �
n=0

	

Sif
�n� �13�

with

Sif
�0� = i�� f�tf��G0�tf,t0���i�t0�� �14�

Sif
�1� = i�� dt1� f�tf��Gf�tf,t1�V0�t1�G0�t1,t0���i�t0��

�15�

Sif
�2� = i�� dt2dt1� f�tf�

��Gf�tf,t2�Vf�t2�Gf�t2,t1�V0�t1�G0�t1,t0���i�t0��
�16�

¯ = ¯

Sif
�n� = i�� dtndtn−1 ¯ dt2dt1� f�tf��Gf�tf,tn�Vf�tn�

�Gf�tn,tn−1�Vf�tn−1� ¯ Gf�t2,t1�V0�t1�

�G0�t1,t0���i�t0�� , �17�

where � stands for the �multiple� integrations in the same
range t0 to tf. For the sake of simplicity, in the sequel we
shall assume the usual dipole �or long-wavelength� approxi-
mation in which the vector potential A�t� and the electric

field strength E�t�	− 1
c Ȧ�t� become functions of t only. The

gauge function, �, can be chosen explicitly to be ��r , t�
=A�t� ·r.

C. Field-free conditions

For a dynamic transition process, it is important to ensure
the initial and the final conditions, including that of the laser
pulse, to define the unique physical transition process in the
laboratory, in both the gauges unambiguously. We assume as
usual that, in the laboratory, the initial state is “prepared” at
t0 before the interaction, and the final state is “observed” at tf
after the interaction with the laser pulse, e.g.,

A�t0� = 0. �18�
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IV. TRANSITION AMPLITUDE
IN VELOCITY GAUGE

A. Initial-state partition

We partition the total Hamiltonian �4�, as usual, as H�t�
=H0�t�+V0�t�, where

H0�t� =
pop

2

2m
+ V �19�

and

V0�t� = −
e

mc
A�t� · pop +

e2

2mc2A2�t� . �20�

The exact solutions of interest of Eq. �19� are

�� j�t�� = e−�i/��Hat�� j� , �21�

where �� j� form a complete set of orthonormal eigenfunc-
tions of the “atomic” Schrödinger equation

Ha�� j� = � pop
2

2m
+ V��� j� = Ej�� j� , �22�

for all index j �discrete and continuous�. They satisfy the
orthonormal condition

� j��t��� j�t�� = � j�,j , �23�

and form a complete set

�
j

�� j�t��� j�t�� = 1 . �24�

Thus, the propagator G0�t , t0� associated with H0�t�, that sat-
isfies an equation analogous to Eq. �8� with H�t� replaced by
H0�t� �similar equations hold for the other propagators de-
fined below�, can be easily written down,

G0�t,t0� = −
i

�

�t − t0��

j

�� j�t��� j�t0�� , �25�

where the symbol � j stands both for the sum over the dis-
crete and the integration over the continuous indices.

B. Final-state partition

Next, we introduce the final-state partition H�t�=Hf�t�
+Vf�t�, where

Hf�t� =

pop −

e

c
A�t��2

2m
, �26�

Vf�t� = V . �27�

The final reference propagator Gf�t , t�� associated with the
Hamiltonian �26� can be written in terms of the complete set
of the well-known Volkov wave functions in the velocity
gauge �e.g., �6��,

��p�t�� = L−3/2�p�exp�−
i

�
�t 
p −

e

c
A�t���2

2m
dt�� , �28�

where L3 is the normalization volume, lim L→	; �p� is a
plane-wave of momentum p: r �p�=e�i/��p·r. The Volkov
states satisfy the orthogonality condition

�p��t���p�t�� = �p�p �29�

and the completeness relation

�
p

��p�t���p�t�� = 1 . �30�

Hence, the Volkov propagator in the velocity gauge can be
written as

Gf�t,t�� = −
i

�

�t − t���

p
��p�t���p�t��� . �31�

C. All order amplitudes: Velocity gauge

To obtain the intense-field transition amplitudes in the ve-
locity gauge, we need only to substitute the explicit expres-
sions of V0, G0, Vf, and Gf, given by Eqs. �20�, �25�, �27�,
and �31�, respectively, in the general S-matrix terms, Eqs.
�14�–�17�, and simplify the algebra. To this end, first, we
note the effect of operating with G0�t1 , t0� on the initial state
��i�t0��	e−�i/��Eit0��i�:

i�G0�t1,t0���i�t0�� = 
�t1 − t0��
j

�� j�t1��� j�t0���i�t0��

= ��i�t1��, t1 � t0, �32�

where, we have used Eq. �21�, and noted that � j ��i�=�ij.
Next, from the equal-time orthonormality of the Volkov
states, Eq. �29�, and the Volkov propagator, Eq. �31�, we get

�pf
�tf��Gf�tf,t�� = −

i

�

�tf − t��pf

�t�� = −
i

�
�pf

�t��, t � tf .

�33�

Thus, using Eqs. �32� and �18�, for the zeroth order ampli-
tude �see Eq. �14�� we find

Sif
�0� = i��pf

�tf��G0�tf,t0���i�t0�� = �pf
�tf���i�tf�� . �34�

In a similar way, using Eqs. �32�, �33�, �20�, and �18�, we
find for the first order amplitude �Eq. �15��
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Sif
�1� = �

t0

tf

dt1�pf
�t1��V0�t1�G0�t1,t0���i�t0��

= �−
i

�
��

t0

tf

dt1�pf
�t1��V0�t1���i�t1��

= �−
i

�
��

t0

tf

dt1�pf
�t1��

��−
e

mc
A�t1� · pop +

e2

2mc2A2�t1����i�t1�� , �35�

where in the last line we have used Eq. �20� for V0�t�. We
may note, parenthetically, that the above amplitude corre-
sponds to the “prior form” of the well-known KFR amplitude
in the velocity gauge �2,3�.

Proceeding in a similar way as above, for the second or-
der amplitude �see Eq. �16�� we get

Sif
�2� = �−

i

�
��

t0

tf �
t0

tf

dt2dt1�pf
�t2��VGf�t2,t1�V0�t1���i�t��

= �−
i

�
�2�

t0

tf �
t0

tf

dt2dt1
�t2 − t1��
p

�pf
�t2��V��p�t2��

� �p�t1��V0�t1���i�t1��

= �−
i

�
�2�

t0

tf

dt2�
t0

t2

dt1�
p

�pf
�t2��V��p�t2��

� �p�t1���−
e

mc
Ȧ�t1� · pop +

e2

2mc2A2�t1����i�t1�� .

�36�

Continuing in an analogous manner, for the nth order am-
plitude in the velocity gauge �see Eq. �17�� we get the gen-
eral result

Sif
�n� =� dtndtn−1 ¯ dt2dt1�pf

�tn��Gf�tn,tn−1�

�V ¯ Gf�t2,t1�V0�t1���i�t��

= �−
i

�
�n

�
pn−1,. . .,p1

�
t0

tf

dtn�
t0

tn

dtn−1 ¯ �
t0

t3

dt2�
t0

t2

dt1

��pf
�tn��V��pn−1

�tn�� � �pn−1
�tn−1��V ¯ ��p1

�t2��

� �p1
�t1���−

e

mc
Ȧ�t1� · pop +

e2

2mc2A2�t1����i�t1�� .

�37�

V. TRANSITION AMPLITUDE IN LENGTH GAUGE

A. Initial-state partition

We rewrite the total Hamiltonian H̃�t� in the length gauge
�Eq. �6�� by the addition of zero, i.e., by adding and subtract-
ing a term

Ṽ0�t� = − 
 e

mc
A�t� · pop +

e2

2mc2A2�t�� �38�

as

H̃�t� =
pop

2

2m
+ V +

e

c
Ȧ�t� · r + �− Ṽ0�t� + Ṽ0�t��

= �
pop +
e

c
A�t��2

2m
+ V +

e

c
Ȧ�t� · r� + Ṽ0�t�

= H̃0�t� + Ṽ0�t� , �39�

where the reference Hamiltonian is now given by

H̃0�t� =

pop +

e

c
A�t��2

2m
+ V +

e

c
Ȧ�t� · r �40�

and the interaction Hamiltonian by Ṽ0�t� above.
We consider the solution of the Schrödinger equation

i�
�

�t
��̃ j�t�� = H̃0�t���̃ j�t�� , �41�

where H̃0�t� is defined by Eq. �40�. The exact solutions of
interest are

��̃ j�t�� = e−i�e/�c�A�t�·re−�i/��Hat�� j� , �42�

where, �� j� form a complete set of orthonormal eigenfunc-
tions of the “atomic” Schrödinger Eq. �22�. The validity of
our solutions �42�, can be readily verified by direct substitu-
tion in Eq. �41�, and simplifying the algebra using


pop +
e

c
A�t����̃ j�t�� = 
pop +

e

c
A�t���e−i�e/�c�A�t�·r��� j�t��

= �e−i�e/�c�A�t�·r��pop��� j�t�� , �43�

where �� j�t��=e−�i/��Hat�� j�=e−�i/��Ejt�� j�. Note that the ��̃ j�t��
are associated one-to-one with the �� j�, and thus they too
satisfy the orthonormal condition

�̃ j��t���̃ j�t�� = � j�,j , �44�

and form a complete set

�
j

��̃ j�t���̃ j�t�� = 1 , �45�

where j runs over all discrete and continuous indices. Hence,

the propagator G̃0�t , t0� associated with H̃0�t�, that satisfies

an equation analogous to Eq. �8� with H�t� replaced by H̃0�t�,
can be easily written down as

G̃0�t,t0� = −
i

�

�t − t0��

j

��̃ j�t���̃ j�t0�� . �46�
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B. Final-state partition

Next, we introduce the final-state partition H̃�t�= H̃f�t�
+ Ṽf�t�, where

H̃f�t� =
p2

2m
+

e

c
Ȧ�t� · r �47�

and

Ṽf�t� = V . �48�

The well-known Volkov solutions in the length gauge

�e.g., �6��, associated with H̃f�t�, are

��̃p�t�� = L−3/2�
p −
e

c
A�t���

�exp�−
i

�
�t 
p −

e

c
A�t���2

2m
dt��

= e−i�e/�c�A�t�·r��p�t�� , �49�

where ��p�t�� is the Volkov solution in the velocity gauge
�28�. Therefore, the Volkov propagator in the length gauge

G̃f�t , t�� can be written in terms of the Volkov propagator in
the velocity gauge Gf�t , t��, Eq. �31�:

G̃f�t,t�� = −
i

�

�t − t����̃p�t���̃p�t��� ,

=e−i�e/�c�A�t�·rGf�t,t��e+i�e/�c�A�t��·r. �50�

C. All order amplitudes: Length gauge

To obtain the transition amplitudes in successive orders in
the present case, we need simply to substitute the tilde quan-

tities �length gauge� G̃0, Ṽ0, G̃f, and Ṽf, defined above, in
place of the respective nontilde quantities, in the formal ex-
pressions for the amplitudes �14�–�17�, and simplify the al-
gebra. To this end, first, we note the effect of operating with

G̃0�t1 , t0� on the initial state ��̃i�t0��= ��i�t0��=e−�i/��Eit0��i�:

i�G̃0�t1,t0���̃i�t0�� = 
�t1 − t0��
j

��̃ j�t1���̃ j�t0���̃i�t0��

= 
�t1 − t0��
j

��̃ j�t1���ij

= ��̃i�t1��, t1 � t0. �51�

In the second line above we have used Eq. �18� and noted
that � j ��i�=�ij.

Next, from the equal-time orthonormality of the Volkov
states �49� and the Volkov propagator �50� we get

�̃pf
�tf��G̃f�tf,t�� = −

i

�

�tf − t��̃pf

�t��

= −
i

�
�pf

�t���e+i�e/�c�A�t�·r�, t � tf .

�52�

Thus, using Eqs. �51� and �49�, we find for the zeroth order
amplitude �see Eq. �14��

S̃if
�0� = i��̃pf

�tf��G̃0�tf,t0���̃i�t0�� = �pf
�tf���i�tf�� = Sif

�0�,

�53�

where; the last equality follows from a comparison with Eq.
�34�.

Similarly, from the definition of the first order amplitude
�15� we get

S̃if
�1� = �

t0

tf

dt1�̃pf
�t1��Ṽ0�t1�G̃0�t1,t0���̃i�t0��

= �−
i

�
��

t0

tf

dt1�pf
�t1��ei�e/�c�A�t1�·rṼ0�t1���̃i�t1��

= �−
i

�
��

t0

tf

dt1�pf
�t1��
−

e

mc
A�t1� · pop +

e2

2mc2A2�t1��
���i�t1�� = Sif

�1�, �54�

where we have used the identity

ei�e/�c�A�t�·rṼ0�t�e−i�e/�c�A�t�·r

= ei�e/�c�A�t�·r�− 
 e

mc
A�t� · pop +

e2

2mc2A2�t���
�e−i�e/�c�A�t�·r

= �−
e

mc
A�t� · pop +

e2

2mc2A2�t��
= V0�t� . �55�

The last equality in Eq. �54� follows from a comparison with
Eq. �35�.

Next, we consider the higher order amplitudes in the
length gauge. Using Eqs. �51� and �52� in the second order

amplitude �16� and remembering that Ṽf�t�=V, we get
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S̃if
�2� = �−

i

�
� � dt2dt1�̃pf

�t2��Ṽf�t2�G̃f�t2,t1�Ṽ0�t1���̃i�t��

= �−
i

�
�2�

t0

tf �
t0

tf

dt2dt1
�t2 − t1��
p1

�pf
�t2��V��p1

�t2�� � �p1
�t1��ei�e/�c�A�t1�·rṼ0�t1���̃i�t1��

= �−
i

�
�2�

t0

tf

dt2�
t0

t2

dt1�
p1

�pf
�t2��V��p1

�t2�� � �p1
�t1��ei�e/�c�A�t1�·rṼ0�t1�e−i�e/�c�A�t1�·r��i�t1��

= �−
i

�
�2�

t0

tf

dt2�
t0

t2

dt1�
p1

�pf
�t2��V��p1

�t2�� � �p1
�t1��V0�t1���i�t1��

= �−
i

�
�2�

t0

tf

dt2�
t0

t2

dt1�
p1

�pf
�t2��V��p1

�t2��

� �p1
�t1��
−

e

mc
A�t� · pop +

e2

2mc2A2�t1����i�t1�� = Sif
�2�, �56�

where we have used Eq. �42� and the identity �55� in the
equations above and the last equality follows from a com-
parison with Eq. �36�.

Continuing in an analogous way, and using Eqs. �51� and
�52� in the nth order amplitude �Eq. �17��, we get, first,

S̃if
�n� = �−

i

�
� � dtndtn−1 ¯ dt2dt1�̃pf

�tn��Ṽf�tn�G̃f�tn,tn−1�

�Ṽf�tn−1� ¯ G̃f�t2,t1�Ṽ0�t1���̃i�t1�� . �57�

This expression can be further reduced using successively
the identity

�̃pj
�tj��Ṽf�tj�G̃f�tj,tj−1�

= −
i

�

�tj − tj−1��

pj−1

�pj
�tj��V��pj−1

�tj��

� �pj−1
�tj−1���ei�e/�c�A�tj−1�·r� , �58�

where j=2,3 , . . . ,n and pn	p f, which is readily established
from Eqs. �48�–�50�. Thus, noting the presence of the theta
functions �associated with the propagators� which determine
the integration intervals, and applying the identity �58� to the
nth order amplitude �57�, we finally deduce,

S̃if
�n� = �−

i

�
�n

�
pn−1,. . .,p1

�
t0

tf

dtn�
t0

tn

dtn−1 ¯ �
t0

t3

dt2

��
t0

t2

dt1�pf
�tn��V��pn−1

�tn�� � �pn−1
�tn−1�� . . .

�V��p1
�t2���p1

�t1��ei�e/�c�A�t1�·rṼ0�t1���̃i�t1��

= �−
i

�
�n

�
pn−1,. . .,p1

�
t0

tf

dtn�
t0

tn

dtn−1 ¯

��
t0

t3

dt2�
t0

t2

dt1�pf
�tn��V��pn−1

�tn��

� �pn−1
�tn−1��V ¯ ��p1

�t2���p1
�t1��V0�t1���i�t1��

= �−
i

�
�n

�
pn−1,. . .,p1

�
t0

tf

dtn�
t0

tn

dtn−1 ¯ �
t0

t3

dt2

��
t0

t2

dt1�pf
�tn��V��pn−1

�tn��

� �pn−1
�tn−1��V ¯ ��p1

�t2���p1
�t1��

��−
e

mc
A�t1� · pop +

e2

2mc2A2�t����i�t1��

= Sif
�n�. �59�

The last equality, which follows from a comparison with Eq.
�37�, establishes the desired gauge invariance of the intense-
field approximations, in the velocity and length gauges, in all
orders, exactly.

VI. REMARKS AND SUMMARY

A. Remarks

Before concluding we observe the following.
�a� The gauge-equivalent KFR transition amplitude de-

rived above is given by the infinite series representation, be-
ginning with the leading terms �53� �n=0� and �54� �n=1�,
and followed by Eq. �59�, for all successive terms �n2� of
the series. Using an alternative partition of the total Hamil-
tonian one can obtain the gauge-invariant KFR amplitude in
terms of an alternative infinite series �7�, presented elsewhere
�8�. At present little rigorous is known about the domains of
convergence of the gauge-invariant KFR series. It is useful,
however, to note that additional representations of the gauge-
invariant amplitude may be constructed using a Shank’s
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transformation �9�, that could, in practice, provide a more
rapid estimate of the series than their direct partial sums.

�b� For a long �or adiabatic� laser pulse, it is often conve-
nient to Fourier transform the periodic part of the integrand
with respect to tn, in any order n=1,2 ,3 , . . ., and to carry
out the final dtn integration analytically between the limits
t0→−	 and tf →	, to obtain

Sif
�n� = −

2�i

L3/2�
s

Ts
�n��p f� � �� pf

2

2m
+ �Ei� + Up − s���,

s = 0, ± 1, ± 2, ± 3, . . . , �60�

where Ts
�n��p f� is the sth Fourier component of the periodic

part of the nth order amplitude. This allows one immediately
to determine the bound-free transition probability per unit
time, or the fundamental rate of the process, from the �gen-
eralized Fermi golden� rule

d��p f� =
2�

�
�

ss0
��

n

Ts
�n��p f��2

��� pf
2

2m
+ �Ei� + Up − s��� d3pf

�2���3 , �61�

where s0	��pf
2/2m+�Ei�+Up�

��
�

int+1, Up	
e2F0

2

4m�2 is the so-called

ponderomotive energy, � is the carrier frequency, and F0 is
the peak field strength.

�c� For an ultrashort laser pulse, when a steady rate of the
transition �i→ f , i� f� might be absent, one can simply take
the absolute square of the sum of the time-dependent ampli-
tudes �35�–�37� to obtain the transition probability of interest
directly.

B. Summary

To summarize, a theory of intense-field transition ampli-
tudes in “velocity” and “length” gauges is presented which
explicitly demonstrates their equivalence, term by term, in
all orders. Our results thus overcome an apparent long stand-
ing gauge discrepancy between the strong-field KFR ampli-
tudes in the velocity and the length gauges.
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