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Approximate momentum distributions of Rydberg electrons in static electric fields have been obtained using
an improved impulsive momentum retrieval �IMR� technique. An imaging detector enables the measurement of
half-cycle pulse �HCP� ionization probability across the spatial profile of a focused half-cycle pulse beam. By
modulating the HCP amplitude we directly measure the derivative of the ionization vs HCP impulse curve,
enabling the recovery of momentum distributions with better resolution than previously demonstrated with
IMR. For example, for Stark states with small dipole moments, we observe predicted fine-structure in the
projection of the momentum distribution along the Stark field axis. We use a semiclassical model to simulate
the effect that the nonzero HCP duration has on our measurements. Good agreement between simulated and
measured momentum distributions is obtained.
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Atomic ionization by impulsive kicks provides a time-
resolved method to monitor the evolution of electron wave-
packets. Indeed, in several experiments �1–8� nearly unipolar
“half-cycle” electric field pulses �HCPs� have been used to
probe time-dependent changes in the momentum space prob-
ability distributions of evolving wavepackets. A more com-
plete view of electron motion is available through impulsive
momentum retrieval �IMR�, a technique that allows the re-
covery of the full electronic momentum distribution pro-
jected along any Cartesian axis �1,9–12�. In IMR, ionization
probability, I, is measured as a function of HCP “kick”

strength or impulse A� =−�F� HCP�t�dt. Unless otherwise noted,
atomic units are used throughout. In the instantaneous kick
limit, the ionization probability I�A� for a given electron
binding energy E��0� and impulse A is equal to the prob-
ability that the electron’s momentum in the kick direction
exceeds a critical value �1,2,11�

pc = �E −
1

2
A2�� A . �1�

Therefore, the electron’s momentum distribution along the
kick axis, at the instant of the impulse

D�p� =
dI

dp
=

dI

dA
	 dA

dpc

pc=p �2�

can be obtained using Eq. �1� and a measurement of dI /dA
�1,11�.

Since its introduction, IMR has been successfully applied
to obtain approximate electronic momentum distributions of
eigenstates and wavepackets, in the latter case providing a
time-resolved view of coarse changes in the momentum dis-
tribution �1,9–11�. In principle, IMR is capable of resolving
fine details of the momentum-space probability distribution,
even nodal structure that reflects the quantum mechanical
wave nature of the electron �12�. However, the full utility of
IMR for measuring nuances of the probability distribution
requires �i� a very short pulse and �ii� an accurate measure-
ment of the slope of I�A�. As discussed further below, it is
the electron acceleration distribution, not simply the ratio of
the HCP duration to the characteristic electron period, that

determines whether or not the short pulse criterion is met �9�.
To satisfy the second criterion, we utilize an amplitude
modulated HCP field to directly measure dI /dA �11�. We
note that numerical differentiation of measured I�A� curves
greatly amplifies experimental noise, rendering this straight-
forward approach considerably less accurate.

Here we describe measurements of the momentum distri-
butions of Rydberg Stark eigenstates �13,14� that serve as
benchmarks for an improved amplitude modulated �AM�
IMR technique. The experiments utilize an imaging detector
and exploit the spatial variation in field strength across the
HCP beam profile to simultaneously measure the HCP-
ionization yield over a continuous range of impulses �see
Fig. 1�. The method eliminates the need for lengthy scans of
HCP field strength, reducing errors associated with various
experimental drifts. Though not explicitly demonstrated in
the experiments described here, the technique can also be
used for time-resolved measurements.

HCP ionization of Stark eigenstates has been studied pre-
viously �13,15–17�. These states provide useful benchmarks
for exploring the effectiveness of electronic momentum mea-
surement techniques. Indeed, Wetzels et al. �14� demon-
strated a different electronic momentum recovery method on
Rydberg Stark states in Xe. In their method, a short HCP
ionizes a Rydberg electron, primarily affecting its momen-
tum distribution in kick direction only. A velocity map imag-
ing spectrometer is then used to measure the transverse mo-
mentum distribution of the continuum electron, and thereby
infer the momentum distribution of the initial bound state. In
that method, the momentum resolution and accuracy of the
measurement are determined by the spectrometer resolution
and the validity of the impulse approximation in the ioniza-
tion step.

Stark eigenstates are useful for testing our AM-IMR
method for several reasons. First, eigenstates have well-
defined energies, so there is no “blurring” of the momentum
distribution due to the uncertainty in the electron binding
energy which is problematic in measurements of nonstation-
ary states �1,12�. Second, direct comparison with theory is
possible since the momentum-space wave functions are
readily calculated from Coulomb wave functions R�r�
�18,19�,
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�n,k,m�p,�,�� = �
n�,l

�− i�lan,k,m;n�,l,mYl,m��,��

��
0

�

r2Rn�,l�r�jl�pr�dr , �3�

where Ylm�� ,�� is a spherical harmonic function of angular
coordinates in momentum space; jl is a spherical Bessel
function; an,k,m;n�,l,m is an admixture coefficient giving the
angular momentum eigenstate amplitude in each Stark eigen-
state; n, l, and m are the principal, angular momentum, and
magnetic quantum numbers; and k is the parabolic quantum
number which is proportional to the dipole moment 
z� of the
Stark state k=2
z� /3n. In general, the an,k,m;n�,l,m can be com-
puted by numerical diagonalization of the Stark+Coulomb
Hamiltonian �20�. For hydrogenic systems, in weak static
fields the eigenenergies shift linearly with the applied electric
field F

En,k = −
1

2n2 +
3

2
Fnk �4�

and the an,k,m;n�,l,m, which are non-negligible only if n�=n,
can be expressed as Clebsch-Gordon coefficients �19,21�.
Lastly, for 
k
�n, the z projection of the electronic momen-
tum distribution exhibits a small local minimum at its center.
The visibility of this fine structure in the measured momen-
tum distributions is a good indicator of the accuracy and
resolution of the momentum retrieval method.

In the experiments, shown schematically in Fig. 1, two
5-ns dye lasers excite Ca atoms in a thermal beam from the
4s4s ground state, through a 4s4p intermediate level, into

Stark eigenstates 4snk, with n=27 or 28, k=−n+ 
m
+1,
−n+ 
m
+3, . . ., or n− 
m
−3, n− 
m
−1, and magnetic quan-
tum number m= ±1. The first dye laser pulse is polarized
vertically �ẑ� and the second is polarized horizontally �ŷ�.
The atom and laser beams counter propagate along the x̂ axis
between two parallel aluminum plates that are separated by
2.0 cm. A constant voltage of 210 V is applied to the
lower field plate, creating a static uniform electric field
F� =105 V/cm ẑ in the laser-atom interaction region. At this
field strength, the Stark shifts of the 4s27k and 4s28k are
approximately linear, the manifolds of Stark states associated
with adjacent n levels do not overlap, and neighboring k
states within the n=27,28 manifolds are separated by
�0.4 cm−1 �19�. The second dye laser, which has a band-
width �	�0.15 cm−1, is frequency tuned to selectively
populate individual Stark states. Given the linear Stark shifts
and the fact that the numerically calculated admixture
parameters an,k,m,n,l,m are very similar to those for hydrogen
�21�, we label the states using hydrogenic 
nkm� notation.
However, unlike in hydrogen, m=1 electrons in Ca rapidly
ionize at energies greater than the saddle-point energy in the
combined Coulomb and static fields, 
=−2�F. Therefore,
when applying Eq. �1� in the momentum retrieval method,
the appropriate binding energy is E=−En,k+
.

Approximately 20 ns after their creation, the Stark atoms
are exposed to a HCP �22,23� whose duration �HCP=0.5 ps is
much less than the classical Kepler period of the Rydberg
electron �K=2�n3 �=2.99 and 3.34 ps at n=27 and 28, re-
spectively�. The HCP is polarized along the ẑ axis and is
generated by illuminating a biased 2 cm�2 cm GaAs wafer
with a 100 fs, 780 nm, �40 
J /cm2 pulse from a Ti:Sap-
phire laser �22�. The peak electric field in the HCP is propor-
tional to the bias voltage on the GaAs wafer. A parabolic
mirror directs the HCP beam along the y axis, weakly focus-
ing it to a �1 cm waist at the intersection of the laser and
atomic beams beneath the slit in the upper capacitor plate
�see Fig. 1�. The confocal parameter of the HCP beam is
�1 cm. Since the laser beam diameters ��0.1 cm� are much
smaller than the diameter and confocal parameter of the HCP
beam, there is negligible change in the HCP field across the
lasers �i.e., in the yz plane�. However, the HCP field varies
from its maximum value to zero along the laser propagation
axis �x̂�. Thus, Rydberg atoms at different locations along the

slit experience different HCP impulses A� �x�=−�F� HCP�x , t�dt.
We exploit this position dependence to simultaneously mea-
sure the HCP ionization yield over a continuous range of
HCP kick strengths.

Ions produced by the HCP are pushed by the static electric
field through a narrow slit that lies along the x axis in the
upper capacitor plate. Ions passing through the slit are pro-
jected onto an imaging detector consisting of a microchannel
plate stack backed by a phosphor screen �24�. The position-
dependent HCP ionization signal I�x� is mapped onto the
fluoresence intensity distribution on the phosphor screen and
captured by a charged-coupled device �CCD� camera on each
laser shot. The position-dependent impulse A�x� is deter-
mined by measuring HCP ionization probability curves for
Ca Rydberg d states as a function of x and GaAs bias volt-
age, and comparing these to previously calibrated ionization

Dye Lasers
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HV Bias

100 fs
780 nm

Parabolic Mirror

FIG. 1. �Color online� Schematic diagram of experiment �top
view�. The HCPs are produced by illuminating a high-voltage bi-
ased GaAs wafer. The HCP beam is focused across the beam of
laser-excited Stark atoms beneath a slit in the upper of two parallel
capacitor plates.
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vs impulse curves �9,25�. With this calibration, we can obtain
an entire ionization versus HCP impulse curve I�A� in a
single laser shot, without scanning the wafer bias voltage
�see Fig. 2�.

The brief duration and predominant unipolar nature of the
HCP are critical for implementing IMR. We utilize a second,
unbiased GaAs wafer �W2� as a transient attenuator to con-
firm that the temporal characteristics of the HCP do not vary
significantly across its beam profile �22,26�. For these tests,
the HCP passes through W2 prior to entering the laser-atom
interaction region. W2 is also illuminated by a time-delayed
100 fs, 780 nm laser pulse which serves as a fast shutter,
decreasing the transmittance of W2 by roughly a factor of
10. The imaging detector is used to measure the ionization
probability across the HCP beam profile as a function of the
delay between the HCP and the shutter. We find that delay
dependence of the ionization signal is essentially indepen-
dent of transverse position within the beam.

Although I�A� can be obtained in a single laser shot, an
accurate derivative dI /dA is required to construct the desired
momentum distribution D�pz� �see Eq. �2��. Unfortunately,
direct numerical differentiation of a measured ionization
curve is problematic even with an excellent experimental
signal to noise ratio. While data smoothing prior to differen-
tiation can reduce the derivative noise levels significantly, it
can also severely limit the achievable momentum resolution.
Instead, we combine imaging detection with a HCP ampli-
tude modulation technique �11� to measure the dI /dA curve
with considerably higher accuracy. The basic AM-IMR
method has been described in detail elsewhere �11�. In the
current implementation, the spatially dependent ionization
signal is measured as the impulse undergoes small oscilla-
tions about its nominal value A�x , t�=A�x��1+� cos 2�f0t�,
where ��0.01 and f0=0.080 Hz are the fractional modula-
tion depth and the modulation frequency, respectively. The
impulse modulation is achieved by adding a small ac com-
ponent to the GaAs bias voltage. The precise value of f0 is
not critical. It is chosen to be much less than the 15 Hz laser
repetition rate so that there are many laser shots per impulse

modulation cycle. I�x , t� is recorded over several thousand
laser shots, converted to I�A , t� and Fourier transformed with
respect to time. The Fourier amplitude I�A , f� evaluated at
f = f0 is immune to experimental noise at all other frequen-
cies, and for ��1, is proportional to the desired curve dI /dA
�11�.

The accuracy and completeness of the momentum distri-
butions is improved further by combining data sets acquired
using positively and negatively polarized HCPs, respectively.
The ionization probability curves produced with either polar-
ity HCP rise from zero as the impulse is increased and
asymptotically approach unity for very large impulses

�13,23�. Consider a positive impulse A� =Aẑ. The initial rise
of I�A� is due to the ionization of electrons that have large,
positive z momentum which contribute to the positive wing
of the momentum distribution �see Fig. 3�. The slow satura-
tion of I�A� for large impulses reflects the ionization of elec-
trons with large, negative z momentum which represent the
negative wing of the distribution. Thus, while the positive
momentum half of the distribution can be obtained using
relatively weak positive impulses for which I�A��0.5, re-
covery of the complete negative momentum portion of the
distribution using positive impulses would require infinitely
strong kicks �10,11�. Fortunately, with negative impulses, the
negative momentum half of the distribution can be obtained
using weak kicks for which I�A��0.5. Therefore, we cir-
cumvent the need for very strong pulses by constructing the
positive and negative momentum halves of the distributions
using relatively weak impulses Amax��2E in the ±ẑ direc-
tions, respectively �10,11�. As discussed in more detail be-
low, by avoiding the use of very strong impulses we also
reduce errors associated with the noninstantaneous change in
the electron’s momentum in a real HCP and its affect on the
motion of the electron in the Coulomb potential �9,27�. Each
distribution is assembled from multiple measurements with
oppositely polarized pulses, collected alternately in rapid
succession �every few minutes� to minimize experimental
drifts between runs. Good overlap of the two halves of the
distributions near pz=0 is obtained.

Figure 3 shows a set of experimentally determined mo-
mentum distributions. Each represents the average of several
different data sets, collected on different days. In principle,
the AM-IMR method ensures proper normalization of the
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FIG. 2. �Color online� Spatial distribution of HCP ionization
probability for n=28, k=−26 Ca atoms irradiated by roughly half of
the transverse spatial profile of the HCP beam. The x-position axis
�top� is relative to the HCP beam center �0 mm�. The impulse axis
�bottom� is calibrated using the variation in the on-axis ionization
signal as the bias voltage on the GaAs wafer is scanned. The curve
shown is the average result from seven laser shots.
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FIG. 3. �Color online� Measured �solid line� z-momentum dis-
tributions for various Stark eigenstates. Each curve represents the
average of several measurements. The largest variance of the
sample mean is shown as an error bar in each figure. The z projec-
tion of the momentum distributions calculated from Eq. �3� are
shown as dotted curves. The results �dashed curves� of a numerical
calculation �see text� of the expected momentum distributions D�p̄z�
retrieved using a 500 fs HCP are overlaid for comparison.
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distributions �D�pz�dpz=1, provided that � and f0 are
known, and the impulse at the 50% ionization point has been
correctly calibrated. In practice, we find that the normaliza-
tions typically differ from unity by a few percent, due pri-
marily to uncertainties in determining the precise signal
magnitudes corresponding to 100% ionization in the impulse
calibration scans. The amplitudes of the distributions in Fig.
3 have been individually adjusted �within a few %� to
achieve unit normalization for better comparison between
experimental and calculated results.

The distribution for the small dipole moment state k=−6
is the most distinct, with relatively small wings and a clear
local minimum, or notch, at pz=0. It is worth noting that this
notch has a classical physics origin, however, a full descrip-
tion of the effect is beyond the scope of this paper �28�. The
visibility of this notch indicates an experimental resolution
of better than �p�0.005 atomic momentum units, or �12%
of the full width at half maximum �FWHM� of the distribu-
tion. In our current apparatus, the best achievable resolution
is approximately 5% of the distribution FWHM ��0.002 a.u.
for n=28� due to the spatial resolution of the imaging spec-
trometer. Of course, the widths of the momentum distribu-
tions and the impulsive ionization curves scale as 1

n �13�.
Thus, with an appropriately scaled maximum HCP field,
our current apparatus affords a momentum resolution
0.05/n��p�0.15/n for Rydberg states with principal quan-
tum number n. By comparison, the best reported resolution
��p�0.001 a.u. at n=34� for Rydberg Stark state momentum
measurements was achieved using HCP ionization followed
by velocity map imaging detection �14�. That report, how-
ever, provides no explicit information on how �or if� this
resolution scales with principal quantum number.

Two additional sets of curves are plotted with the experi-
mental distributions in Fig. 3. The dotted lines show the the-
oretical momentum distributions, computed directly from the
momentum space wave functions �see Eq. �3��. The dashed
curves are the results of a numerical calculation, described in
more detail below, that uses a semiclassical approximation to
simulate the effect of the nonzero HCP duration on the re-
covered momentum distributions. In general, the experimen-
tal curves are more sharply peaked than the “exact” theoret-
ical curves, with greater amplitude near the center of the
distribution and lower amplitude in the wings. This differ-
ence is particularly obvious for states 
k
�n which have
large dipole moments and are preferentially aligned along the
z axis. Apparently, the observed discrepancies are not caused
by the finite experimental resolution which tends to broaden
the measured distributions. Instead, the primary differences
between the theoretically predicted and measured curves can
be attributed to the nonzero duration of the HCP.

Consider a classical atomic electron exposed to a HCP.
The energy transferred to the electron is equal to the work

done by the HCP, �E=−�F� HCP�t� · p��t�dt. Ionization occurs if
this energy transfer exceeds the electron’s initial binding en-

ergy �E�E. We can write p� = p�a�t�+A� �t�+�p��t�, where p�a�t�
is the momentum of the electron in the absence of the HCP,

A� �t� is the partial impulse delivered to a free electron at time
t during the pulse, and �p��t� is an impulse-dependent correc-
tion to p�a�t�. �p��t� takes into account the difference in the

electron’s position in the presence of the HCP relative to its
position in the absence of the pulse. After performing the
integral over the pure impulse term, the ionization condition
is

E −
1

2
A� 2 � −� F� HCP�t� · �p�a�t� + �p��t��dt , �5�

where A� is the net impulse delivered by the HCP. For a
rectangular HCP with constant amplitude for 0� t��HCP,
Eq. �5� becomes

E −
1

2
A� 2 � A� · �p� + �p�̄� , �6�

where p� and �p� are the time-averaged values of p�a�t� and
�p��t� during the pulse. For nonrectangular pulses, Eq. �6�
remains a good approximation provided the effective dura-
tion, �HCP��K.

The term �p� vanishes as �HCP→0 or A� →0 and is a small
correction to the purely atomic momentum contribution for
the short ��HCP��K� and weak �Amax��2E� kicks used in
our experiments. If we neglect this higher order term, we
recover an ionization condition that is identical in form to
that obtained in the instantaneous kick limit �see Eq. �1��.
Specifically, ionization occurs if the component of p� in the
direction of the kick exceeds a critical value

p̄c � �E −
1

2
A2�� A . �7�

Accordingly, we can define an average momentum distribu-
tion D�p̄� in analogy to D�p� from Eq. �2�. For real, nonin-
stantaneous HCPs, the IMR method enables the recovery of
momentum distributions which approximate D�p̄�. The simi-
larity between D�p̄� and D�p� depends on both the duration
of the HCP and the form of the momentum distributions to
be measured.

To qualitatively assess how momentum averaging affects
the various experimental distributions shown in Fig. 3, we
first consider the approximately one-dimensional motion of a
classical electron in a Stark atom with a large dipole moment
along the z axis. The large-momentum wings of the elec-
tron’s probability distribution reflect the high-velocity mo-
tion of the electron near the nucleus �r�n2� where its accel-
eration has the greatest magnitude. Here, even in the absence
of the HCP field, the electron’s momentum changes substan-
tially during a time interval �HCP. For example, an electron
moving at high speed away from the nucleus at t=0 has a
much lower speed at a time, t=�HCP later. In a more extreme
situation, an electron moving very rapidly toward the nucleus
can pass around the ion core and actually reverse its momen-
tum during the time interval �HCP �15–17�. In either case, the
magnitude of p̄z can be considerably smaller than the mag-
nitude of the initial momentum pz. Thus, we expect that in
our experimental implementation of the IMR method, prob-
ability from the highest-momentum wings of the actual dis-
tributions D�pz� will be aliased to lower momentum in the
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recovered distributions D�p̄z�. This is indeed observed in the
distributions for the larger dipole moment states shown in
Fig. 3.

In Stark atoms with small dipole moments, the electron
spends a large fraction of its time with high angular momen-
tum, so very high speed �and highly accelerated� motion near
the nucleus is forbidden �29�. Accordingly, the high-
momentum wings of the distributions for these states are
suppressed in comparison to those for states with larger di-
pole moments. Thus, as observed, we expect less aliasing of
probability from high to low momentum in the recovered
distributions. Apparently, D�p̄z�, is an accurate representation
of D�pz� for the small 
k
 states.

Rather than attempting a precise numerical simulation of
the experiment that, if done correctly, would simply repro-
duce the measured distributions, we utilize an approximate
computational method that allows us to better assess the va-
lidity of the classical analysis leading to Eq. �7�. Specifically,
we use a semiclassical approximation to construct an effec-

tive wave function �̄�r�� whose z-momentum distribution is
D�p̄z�. We compare these simulated distributions to the ex-
perimental results �see Fig. 3�.

Before describing the computational procedure, we note
that for a given Stark eigenstate 
E ,k�, an equivalent classical
electron positioned at a point �x ,z� has a momentum in one
of four momentum quadrants �±px , ± pz�, each associated
with motion toward or away from the nucleus in two distinct
orbits. The average momentum of an electron on any of these
trajectories can be calculated from the classical equations of
motion, by following the electron’s trajectory during a time
interval �HCP. We use an analogous procedure to approximate

�̄�x ,z� and D�p̄z� for a quantum mechanical eigenstate.
First, the stationary wave function for a given initial Stark

state is computed on a Cartesian coordinate grid. We note
that because of cylindrical symmetry about the z axis, it is
only necessary to compute the effective, momentum-
averaged wave function in the xz plane. The full three-

dimensional wave function �̄�r�� can then be constructed
from this two-dimensional slice. Next, a Fourier transform
filter is used to re-express the stationary wave function in
terms of four, orthogonal, component wave functions
��x ,z�=� j=1

4 � j�x ,z�, each with momentum constrained to
one of four momentum quadrants �+px , + pz�, �+px ,−pz�,
�−px , + pz�, �−px ,−pz�, for j=1–4, respectively. Each grid
element within each � j�x ,z� is considered to be the starting
point of a classical trajectory where the electron’s initial mo-
mentum is set equal to the expectation value of momentum
within that grid element. That initial momentum is used to
calculate the position change of the electron during a small
time interval. The expectation value of momentum within the
grid element corresponding to the electron’s new position is
then used to find the next point on the trajectory, etc. �30�.
The path of the electron is followed over a time interval �HCP

and we compute the time-average phase �̄ j�x ,z� of the com-
ponent wave function � j�x ,z�= 
� j�x ,z�
ei�j�x,z� along that
path.

The effective wave function �̄�x ,z� is then obtained using
a semiclassical approximation �31�. Specifically, we exploit

the fact that the magnitude of each component wave func-
tion, 
� j�x ,z�
 is a slowly varying function of position,
changing negligibly over distances comparable to the elec-
tron DeBroglie wavelength. Thus, the change in the elec-
tron’s momentum over any trajectory is determined almost
entirely by the variation in the wave function phase ��x ,z�.
Therefore, we construct effective component wave functions

�̄ j�x ,z�= 
� j�x ,z�
ei�̄j�x,z� by replacing the the initial wave
function phase � j�x ,z� with the trajectory averaged phase

�̄ j�x ,z� at each point. Since only the phase of the wave-
packet is modified, normalization is precisely maintained.

The component wavefunctions �̄ j�x ,z� are Fourier trans-
formed into momentum space, and their respective
z-momentum distributions are added to produce D�p̄z�. The
simulated distributions shown in Fig. 3 were obtained assum-
ing �HCP=500 fsec, and have been smoothed to the instru-
mental resolution of the imaging spectrometer ��0.002
atomic momentum units� to allow more direct comparison
with experiment. As expected, for the largest dipole moment
states �k=−26 and −24 in Fig. 3�, probability from the high-
momentum wings of the “exact” distributions has been
aliased to lower momentum in the simulated and measured
distributions. In all cases, the experimental distributions are
more accurately reproduced by the simulations than by the
“exact” distributions.

Figure 4 shows calculated distributions D�p̄z� obtained us-
ing several different HCP durations, for two different n=28
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FIG. 4. �Color online� Simulated momentum distribtutions for
�a� the n=28,k=−26 eigenstate and �b� the n=28,k=−6 eigenstate
using various HCP durations. For �HCP=1 fsec the recovered mo-
mentum distribution is indistinguishable from that computed di-
rectly from Eq. �3�. A 500 fs probing window obtains the best
agreement with the measurement, consistent with previous mea-
surements of the HCP duration �22�.
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Stark states. For the small dipole moment state, in which the
electron has little probability of traveling near the nucleus
with high velocity and high acceleration, D�p̄z� accurately
approximates D�pz� for HCP durations up to 500 fsec or
more. However, similar accuracy is only achieved for the
large dipole moment state if �HCP�100 fsec.

In summary, we have used an improved impulsive mo-
mentum retrieval technique to measure approximate
z-momentum distributions of Rydberg electrons in a static
electric field. The visibility of predicted fine-structure within
the n=28,k=−6 distribution confirms the high resolution of
the method. We use a classical analysis to show that for
HCPs with nonzero durations, the IMR method enables the

recovery of the probability distribution for the electronic mo-
mentum, time averaged over the HCP duration. We incorpo-
rate this notion in a semiclassical calculation to simulate the
experimental results. Reasonable agreement between simu-
lated and measured distributions is obtained. The simulations
further indicate that this improved AM-IMR method is espe-
cially well suited for viewing subtle changes in the time-
dependent electron momentum distributions of wavepackets
with predominantly higher angular momentum content. In-
terestingly, these higher angular momentum wavepackets
cannot be easily probed using other techniques.
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