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A formulation for the high-order harmonic generation �HHG� amplitude �M. V. Frolov et al., Phys. Rev. A
75, 063407 �2007�, preceding paper� is employed to provide analytical results for HHG rates within our
recently developed time-dependent effective range �TDER� theory �for time-dependent problems involving
weakly bound electron systems�. Exact and approximate �including quasiclassical� TDER HHG rates are
employed to analyze the accuracy of common approximate methods for HHG calculations. For various specific
negative ions with s and p outer electrons, numerical results for HHG spectra are presented over a wide interval
of laser frequencies �extending from the tunneling to the multiphoton regimes�. The role of initial bound state
symmetry effects on the HHG spectra is also analyzed. Finally, Coulomb corrections to TDER results for HHG
rates are introduced and discussed.
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I. INTRODUCTION

The ab initio formulation of high-order harmonic genera-
tion �HHG� rates in our preceding paper �1� �hereafter re-
ferred to as paper I� in terms of the complex quasienergy is a
very general one that is applicable to any atomic system. In
practice, this formulation requires a manageable expression
for the complex quasienergy of a system regarded as a func-
tion of two fields: a strong fundamental field of frequency �
and a weak probe field having harmonic frequency N�. As
we show in the present paper, this formulation allows one to
obtain essentially analytical results for HHG rates within the
time-dependent effective range �TDER� theory of strong la-
ser processes �2,3�, which is appropriate for the description
of an electron bound in a short-range potential.

Direct numerical solutions of the time-dependent
Schrödinger equation are time consuming and do not allow
one to trace in detail the features of strong laser-atom phe-
nomena over a wide range of laser parameters. On the other
hand, classical and semiclassical theories as well as exactly
solvable quantum models have proved to be effective for
analyzing qualitative features of laser-atom interactions in
the strong-field regime �see, e.g., the review �4��. The sim-
plest exactly solvable quantum model is the zero-range po-
tential �ZRP� model, in which it is possible to obtain the
exact quasistationary, quasienergy state �QQES� or Floquet
wave function of a weakly bound electron in a strong laser
field �5�. �For some applications of the ZRP model to strong
field processes, see the reviews �6,7�.� As discussed in Ref.
�4�, the use of ZRP or finite-range potential wave functions
gives unexpectedly good qualitative agreement with experi-
mental results for strong field plateau features �with quanti-
tative differences corresponding mainly to the height of such
plateaus, which may be attributed to Coulomb effects�. HHG
calculations employing the ZRP QQES wave function were
presented in Refs. �8–15�. TDER theory represents the next-
level analytical model in intense laser-atom physics. It con-
tains the ZRP model as a special limiting case and general-
izes the ZRP model to the case of an electron with nonzero

angular momentum that is bound in a short-range potential.
Exactly solvable quantum models allow one to clarify some
key aspects of the theory of strong field processes �such as
the quantum origin of high-energy �rescattering� plateaus in
terms of the exact wave function of an initially bound elec-
tron subjected to a strong laser field �15�� and also allow one
to justify the use of the length gauge for the laser-atom in-
teraction in approximate �gauge-dependent� analyses
�2,15,16� �see also Refs. �17,18��. In addition, TDER theory
provides quantitatively accurate predictions for strong-field
effects involving negative ions having s and p state outer
�weakly bound� electrons �see, e.g., a recent finite-range po-
tential Floquet-Sturmian treatment of above-threshold de-
tachment for H− and F− ions in Ref. �19�, the results of which
agree with ZRP and TDER theory results�.

This paper is organized as follows. In Sec. II we apply the
formulation of the HHG amplitude in terms of a system’s
complex quasienergy to TDER theory �2,3� in order to ex-
tend the latter theory to the description of HHG. In Sec. III
we examine various approximations to the exact TDER HHG
amplitudes. In Sec. IV we present numerical results of TDER
theory for HHG by various negative ions, examining the role
of initial state symmetry on HHG spectra. We also compare
our exact TDER theory results with those of more approxi-
mate approaches. In Sec. V we consider the scaling of our
results for negative ions to the case of neutral atom targets.
In Sec. VI we summarize the key results of this paper and
present some conclusions. Some complicated analytical for-
mulas and their mathematical derivations are presented in
two Appendixes.

II. HARMONIC GENERATION AMPLITUDE IN TDER
THEORY

A. TDER theory for a bichromatic field with commensurate
frequencies

We use the quasienergy �or Floquet� approach to treat the
electric-dipole interaction, V�r , t�, of a strong monochro-
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matic laser pulse with a bound electron, whose complex
quasienergy, �, and QQES wave function, ���r , t�, satisfy the
following eigenvalue equation �cf. Eq. �7� in paper I�,

Ĥ�r,t����r,t� = ����r,t� ,

Ĥ�r,t� � −
�2

2m
�2 + U�r� + V�r,t� − i�

�

�t
. �1�

Here U�r� is a short-range potential confined to the sphere,
r�rc. It supports a shallow bound state, �0�r�
=��lm�r�Ylm�r̂�, having energy E0=−����2 / �2m� ��rc	1�
and angular momentum l. For this case, the complex
quasienergy, �, corresponding to the unperturbed energy, E0,
as well as the analytical solution of Eq. �1� for ���r , t� for
r
rc can be obtained within the framework of TDER theory
�2�. In brief, the effective range theory represents a generali-
zation of the ZRP model �20� in two main ways. First, in
addition to the binding energy �E0�, which is the only param-
eter within the ZRP model, it introduces a second parameter,
the coefficient C�l of the known asymptotic form of ��lm�r�
for a finite-range potential U�r�,

��lm�r � �−1� � C�lr
−1 exp�− �r� , �2�

thus providing a more precise, two-parameter description of
atomic systems having a valence electron in a bound s state.
Second, the effective range theory allows one to extend a
ZRP-like analysis to weakly bound valence electron states
having nonzero angular momentum, l. Note that the param-
eters �E0� and C�l are simply related to the usual parameters
of effective range theory for low-energy collisions, the scat-
tering length, al, and the effective range, rl. The correspon-
dence between the two pairs of parameters, �al ,rl	 and
�� ,C�l	, is given by the following relations �21,22�:

2�C�l
−2 + rl�

1−2l = �− 1�l�2l + 1� ,

al
−1 + rl�

2/2 = �− 1�l�2l+1. �3�

Our extension of effective range theory to time-dependent,
QQES problems is based on known applications of this
theory to time-independent problems involving the analysis
of quasistationary �or resonance� states of a weakly bound
particle having nonzero l �22,23�.

For distances r
rc �i.e., outside the atomic core poten-
tial�, the QQES wave function, ���r , t�, in TDER theory is
expressed in terms of the Volkov Green function G�V� �for
which we use the known Feynman form in terms of the clas-
sical action; see, e.g., Eqs. �A3�–�A5� in paper I� �15�:

���r,t� = −
2��2

m
lim
r�=0

Ylm��r��



−�

t

G�V��r,t;r�,t��f��t��ei��t−t��/�dt�, �4�

where Ylm��r�� is a differential operator having the form of a
solid harmonic, Ylm�r��rlYlm�r̂�, with the substitution r
→�r �e.g., for l=1: Y10��r�=�3/ �4��� /�z, Y1,±1��r�
= ��3/ �8���� /�x± i� /�y�; for the explicit form of ���r , t�
in Eq. �4� for s and p states, see Ref. �3��. The periodic
function f��t� �f��t�=�kfk exp�−i2k�t�� satisfies a one-
dimensional eigenvalue equation for � �cf. Eqs. �8� and �9�
below�, which follows from matching ���r , t� in Eq. �4� to
the boundary condition for ���r , t� at small r, rc�r	�−1

�which is thus independent of the shape of U�r��,

���r,t� = �
s

�s�r�e−is�t

= Ylm�r̂��
k

�r−l−1 + ¯ + Bl�� + 2k���

�rl + ¯ ��fke
−i2k�t, �5�

where the coefficient Bl��+2k��� is related to the effective
range parameters by �24�

�2l − 1�!!�2l + 1�!!Bl�� + 2k��� = − 1/al + rlk̄
2/2,

k̄2 = 2m�� + 2k���/�2. �6�

Although the TDER approach was formulated orig-
inally in Ref. �2� for a monochromatic field, F�t�
=F Re�e exp�−i�t�� �e ·e*=1�, the basic equations of TDER
theory, �4� and �5�, are valid also for the more general case of
a multifrequency field with commensurable frequencies
�� ,2� , . . . � provided that G�V��r , t ;r� , t�� in Eq. �4� is the
Green function for a free electron in the multicolor field. We
consider below the case of a two-color, linearly polarized
field,

V�r,t� = − d · F̃�t�, d = er, F̃�t� = ezF̃�t� ,

F̃�t� = F cos �t + Fh cos �t, � = N� , �7�

which is appropriate for the analysis of both the HHG am-
plitude �AN

��m��� and the HHG rate �RN� �for details, see Sec.
III in paper I�.

A key advantage of the TDER approach is that it reduces
the four-dimensional eigenvalue equation �1� to a one-
dimensional, integro-differential equation for f��t� and �. The
explicit form of this equation depends on the spatial symme-
try of the initial state �0�r�. For an s state �0�r�, it has the

following form �cf. Ref. �15� for the case F̃�t�=F�t��:

�E0� +
�r0

2
��̃ − E0�� f̃ �̃�t� + i�

�r0

2

df̃ �̃�t�

dt
=���E0�

4�i



0

� d�

�3/2 �e�i/����̃�+S�t,t−��� f̃ �̃�t − �� − f̃ �̃�t�� , �8�
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where S�t , t−���S�r=0, t ;r�=0, t−�� is the classical action for an electron in the field F̃�t�. �The tilde symbol over a quantity

a, i.e., ã, marks quantities corresponding to the two-color field F̃�t�.� For a p-state �0�r�, the equation for f̃ �̃
�m��t� is more

complicated, both because of the differentiations in Eq. �4� and also because of its dependence on the magnetic quantum
number, m=0, ±1, of the QQES ���m�,m

�r , t� being considered,

�E0� +
r1

2�
��̃ − E0�� f̃ �̃

�m��t� + i�
r1

2�

df̃ �̃
�m��t�

dt
= −

3

4
� i�3

��E0�
�L� f̃ �̃

�m��t�� + i�m,0L� f̃ �̃
�m��t��	 , �9�

where the integral terms L� f̃ �̃
�m��t�� and L� f̃ �̃

�m��t�� are

L�f�t�� = 

0

� e�i/����̃�+iS�0,t;0,t−���f�t − �� − �1 + �i/���̃��f�t� + �df�t�/dt

�5/2 d� , �10�

L�f�t�� =
e2

m�



0

� e�i/����̃�+iS�0,t;0,t−���

�3/2 R�t� − R�t − ��
�

−
dR�t − ��

dt
�R�t� − R�t − ��

�
−

dR�t�
dt

� f�t − ��d� ,

R�t� =
F cos��t�

�2 +
Fh cos��t�

�2 . �11�

For practical calculations of the complex quasienergy �̃�m�,
it is convenient to rewrite the eigenvalue integro-differential
equations �8� and �9� in an alternative form: as an infinite
system of linear homogeneous equations for the Fourier co-

efficients, f̃ k, of f̃ �̃�t�. �For the case of a p state �0�r� and a
monochromatic field F�t�=ezF cos �t, these matrix equa-
tions can be found in Ref. �2�; see also Eq. �20� below.� The

system of matrix equations for f̃ k and �̃�m� for both s and p
states may be written in the following form:

�
k�

M̃k,k�
�m� ��̃�m�� f̃ k�

�m� = 0, �12�

where

M̃k,k�
�m� ��̃� = M̃k,k�

�m� ��̃� − Rl��̃ + 2k���k,k�, �13�

Rl��̃ + 2k�� = �− �̃ − 2k��1/2+l − 1 + �− 1�l rl

2
�1 + �̃ + 2k�� ,

�14�

and where the subscript l in Rl is equal to 0 �1� for an s �p�
state �0�r�. The matrix elements M̃

k,k�
�m� ��̃�m�� may be ex-

pressed explicitly in terms of one-dimensional integrals in-
volving Bessel functions. Note that while we do not present
these general expressions for the bichromatic field case here,
we do present in Appendix A results for the case Fh=0,

M̃
k,k�
�m� �Fh=0��M

k,k�
�m� , which turn out to be the ones required

in our HHG calculations.
In Eqs. �12�–�14� as well as in the rest of this paper we

use the following scaled units �unless otherwise indicated�:
The field amplitudes are measured in units of F0
=�2m�E0�3 / �e��; energies and �� in units of �E0�, and
lengths in units of �−1, where �=�2m�E0� /�.

B. TDER theory formulation for the HHG amplitude

The TDER theory Eqs. �8�–�14� are quite general and al-
low for a nonperturbative treatment of both the laser and
harmonic fields. For calculations of both the HHG ampli-
tude, AN

��m��, and the HHG rate, RN �in scaled units�, we use
the following basic equations in terms of the complex
quasienergy �cf. Secs. III and V in paper I�:

d̃N�
��m�� = − 4

����m�

�Fh
* = �̃N

��m����,F�ez, �15�

AN
��m�� = e�* · d̃N�

��m�� = �̃N
��m����,F��e�* · ez� , �16�

RN =
��N��3

8�

1

2l + 1�
m

��̃N
��m����,F��2, �17�

where �=1/137, ���m� is the linear in Fh correction to the
complex quasienergy ��m� in a strong linearly polarized laser

field F�t�, d̃N�
��m�� is the Fourier component of the dual dipole

moment d̃�t� for the harmonic frequency �=N�, and
�̃N

��m���� ,F� is the generalized nonlinear susceptibility.
To obtain an explicit expression for ���m�, we expand the

matrix elements M̃
k,k�
�m� ��̃�m�� in Eq. �12� in a series in Fh �up

to terms linear in Fh� and in the small parameter ���m��Fh:
���m�= �̃�m�−��m�, where ��m� is the complex quasienergy at
Fh=0, i.e., in the laser field F�t�. The system of matrix equa-
tions �12� may then be written as follows:
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�
k�
�Mk,k�

�m� ���m�� + ���m�
d

d�̃
Mk,k�

�m� ��̃��
�̃=��m�

+
Fh

4
�dN;k,k�

�m� ���m��

+ d−N;k,k�
�m� ���m���� f̃ k�

�m� = 0, �18�

where

Mk,k�
�m� ��̃� = Mk,k�

�m� ��̃� − Rl��̃ + 2k���k,k�. �19�

Explicit forms for the matrix elements M
k,k�
�m� ��̃� and

d
±N;k,k�
�m� ���m�� in terms of one-dimensional integrals involving

Bessel functions are given in Appendix A.
In order to obtain ���m� to lowest nonvanishing order in

Fh, we first multiply Eq. �18� by f̃ k
�m� and sum over k. �The

coefficients f̃ k
�m� are assumed to be normalized by the condi-

tion f̃0
�m�=1.� Then we rewrite f̃ k

�m� as f̃ k
�m�� fk

�m�+�fk
�m�,

where �fk
�m��Fh, and make use of Eq. �18� for Fh=0 �cf. Eq.

�12��,

�
k�

Mk,k�
�m� ���m��fk�

�m� = 0. �20�

In this way, one thus obtains

���m� = −
Fh

4

�
k,k�

fk
�m��dN;k,k�

�m� + d−N;k,k�
�m� �fk�

�m�

�
k,k�

fk
�m� d

d�̃
Mk,k�

�m� ��̃��
�̃=��m�

fk�
�m�

. �21�

�Note that terms involving d
N;k,k�
�m� ���m�� and d

−N;k,k�
�m� ���m�� in

this equation correspond to terms involving e�* and e� in Eq.
�25� of paper I for ��.�

According to Eq. �15�, the nonlinear susceptibility
�̃N

��m���� ,F� is given by the term involving d
N;k,k�
�m� in Eq. �21�,

�̃N
��m����,F� = N�m��

k,k�

fk
�m�dN;k,k�

�m� ���m��fk�
�m�, �22�

where N�m� is a dimensionless “normalization factor,”

�N�m��−1 = �
k,k�

fk
�m�fk�

�m� d

d�̃
Mk,k�

�m� ��̃��
�̃=��m�

. �23�

Then AN
�m� and RN may be calculated using Eqs. �16� and

�17�, respectively. Note that for zero laser field, we have
fk

�m�=�k,0, M0,0
�m���̃�→−Rl��̃�, and ��m�=E0=−1, so that the

field-free value of the normalization factor equals �N�F
=0��−1= �2l+1− �−1�lrl� /2 or, in absolute units, �N�F
=0��−1= �2l+1− �−1�lrl�

1−2l� /2. According to Eq. �3�, N�F
=0� is simply related to the asymptotic coefficient in Eq. �2�:
N�F=0�= �−1�lC�l

2 �−1 �=�−1�lC�l
2 , in scaled units�. As shown

in Table I for H− ��E0�=0.755 eV, C�0=2.304 �25�� and F−

��E0�=3.4 eV, C�1=1.188 �26��, the numerical values of N�m�
for ��1,F�1 differ only slightly from N�F=0�.

In our derivations of ���m� and �̃N
��m���� ,F� in Eqs. �21�

and �22� we have not used the concept of dual QQES wave

functions �̃��r , t� �cf. Eqs. �13� and �14� in paper I� at all, but
instead have employed only the exact equations �8� and �9�
for the complex quasienergy within TDER theory. As dis-
cussed above, our motivation was to derive HHG rates with-
out the necessity of knowing the system’s wave function
over all space. However, for s states, the QQES wave func-
tion �4� is indeed valid over the whole space, 0�r��, and,
at zero effective range, r0=0, coincides with that for the ZRP
model �2� upon substituting C�l=�2 �C�l=�2� in absolute
units�. This wave function may thus be normalized by the
procedure described in detail in paper I �cf. Eqs. �13� and
�14� in paper I� �for a similar treatment for the ZRP model,
see Refs. �6,7��. Consequently, it may be used for direct cal-

culations of the dual dipole moment, d̃�t�= ��̃��t��d����t��,
and its Fourier components d̃N� �cf. Eqs. �15� and �16� in

paper I� in terms of ���r , t� and �̃��r , t�. We do not present
these alternative derivations here, but emphasize that the re-
sult coincides exactly with that in Eq. �22� for an s state
�0�r� and also, for r0=0, with the result for a ZRP model,
presented in the Appendix of paper I, which is obtained by

direct calculation of the matrix element ��̃��t��d����t��. This
self-consistency provides strong justification for using the
dual dipole moment to correctly define the HHG amplitude
for a nonstable atomic system.

III. APPROXIMATE VERSIONS OF THE TDER THEORY
HHG AMPLITUDE

We analyze here how some common approximate treat-
ments for the HHG amplitude may be obtained as approxi-

TABLE I. Normalization factor �−1�lN�m� �cf. Eq. �23�� for H− and F− for three values of F and �. Note that �n��10n.

Ion
�=0.098

F=0.1
�=0.203

F=0.3
�=0.456

F=0.6

H−a 5.319− i7.724�−6� 5.263− i7.479�−3� 5.204+ i1.496�−1�
F−�m=0�b 1.410− i1.082�−4� 1.397− i7.295�−3� 1.375+ i2.591�−2�
F−��m � =1�b 1.410− i3.621�−8� 1.410− i3.481�−4� 1.406+ i4.649�−3�
aField-free value, N�F=0�=C�0

2 =5.308 �25�.
bField-free value, −N�F=0�=C�1

2 =1.411 �26�.
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mations to the exact TDER theory HHG amplitude formu-
lated in Sec. II B. We first consider an approximation
equivalent to that in the well-known Keldysh theory for the
ionization amplitude �27,28�, i.e., replacing the final state in
the exact result for the ionization amplitude by a Volkov
wave function. We then analyze semiclassical approxima-
tions to the Keldysh approximation �KA� result for the HHG
amplitude, similarly to the quasiclassical �low frequency, or
stationary phase� analyses of the KA ionization amplitude in
the tunneling limit.

A. Keldysh approximation for HHG in TDER theory

In order to obtain both an approximate TDER result for
the HHG amplitude and also an interpretation of the exact
expression �22�, we note that, as shown in Eq. �5�, the coef-
ficients fk determine the “population” of Floquet �or QES�
harmonics, �s�r�, of the QQES wave function,

���r,t� = e−i�t���r,t� = �
s

�s�r�e−i��+s��t, �24�

near the origin, where only even �s=2k� QES harmonics are
nonzero �15�. Moreover, in terms of these coefficients, the
exact wave function ���r , t� in Eq. �4� at r
rc may be rep-
resented �in a form alternative to �24�� as a sum of quasien-
ergy “KA harmonics,” ��+2k�

KH �r , t� �cf. Ref. �15��,

���r,t� = �
k=−�

�

fk��+2k�
KH �r,t� . �25�

�Note the 2� spacing of the KA harmonics.� The definition
of ��+2k�

KH follows straightforwardly from Eq. �4� �and the
definition of f��t� just below Eq. �4��:

��+2k�
KH �r,t� = − 2� lim

r�=0

Ylm��r��

−�

t

G�V��r,t;r�,t��

exp�i��t − t�� − 2ik�t��dt�. �26�

The coefficients fk �or fk
�m�, for p states� are key objects of

the TDER theory since they contain complete information on
high-order binding potential effects �which, as is commonly
accepted, are responsible for rescattering effects� during the
interaction of an initially bound electron with a laser field
�2�. In contrast, the KA harmonics describe the free evolution
�of the electron in the laser field� as monochromatic QES
harmonics of frequency 2k� created near the origin as a
result of the binding potential-mediated exchange of an even
number of photons between the electron and the laser field.
As may be seen in Eq. �26�, the KA harmonics have a re-
markably similar form for different k, differing only in the
value of the “energy parameter,” �+2k�. Thus the terms
fk

�m�d
N;k,k�
�m�

f
k�
�m� with k ,k��0 in Eq. �22� describe binding

potential-induced contributions to the HHG amplitude AN
��m��

that originate from electron transitions between the kth and
the k�th KA harmonics. However, both our numerical and
analytical investigations in Ref. �15� show that in the low-
frequency �tunneling� regime the coherent sum of these con-
tributions in Eq. �22� has only a small effect on the HHG

amplitude AN
��m��, which is dominated by the k=k�=0 term.

Approximating ��m� by E0=−1 and N�m� by N�F=0�
= �−1�lC�l

2 , the term with k=k�=0 in Eq. �22� determines the
HHG amplitude in the KA,

AN
KA = �− 1�lC�l

2 dN;0,0
�m� ���m� = E0��e�* · ez� . �27�

The KA HHG amplitude �27� represents a drastic simplifica-
tion of the exact TDER result �given by Eqs. �16� and �22��
that avoids the most laborious problem in exact TDER cal-
culations: numerical solution of the matrix equation �20� for
��m� and the Fourier coefficients fk

�m�.
Although the KA is usually understood as an approxima-

tion for the ionization amplitude �27,28�, we use this termi-
nology also in this HHG study because the KA harmonic in
Eq. �25� with k=0 and �=E0 corresponds to the QQES
TDER wave function ���r , t� in the KA �15�:

�KA�r,t� � ��=E0

KH �r,t�

= − 2� lim
r�=0

Ylm��r��

0

�

eiE0t�G�V��r,t;r�,t − t��dt�.

�28�

The subscript KA is, in turn, used for this wave function
since its asymptotic form at large distances yields the “exact”
KA result for the ionization amplitude �in terms of general-
ized Bessel functions; see Refs. �2,15��, which in the quasi-
classical limit ��	1� reduces to known results for tunneling
ionization �29–31�. In addition, for F→0, the large r
�asymptotic� form of �KA�r , t� reduces to the asymptotic
form of �0�r�=��lm�r�Ylm�r̂� in Eq. �2�. Thus the KA wave
function �28� accounts for binding potential effects on the
same level of accuracy as in the KA for the ionization am-
plitude �27,28�, i.e., only on the level of the initial state wave
function �0�r� �cf. Ref. �15� for further discussion�. Note
finally, that the KA HHG amplitude �27� for the case of an s
state �0�r� coincides with both the S-matrix result in Ref.
�32� and the “Keldysh-type approximation” of Ref. �33� pro-
vided that both these results include terms corresponding to
the so-called “continuum-continuum transitions” �34�.

B. Quasiclassical results for the KA HHG amplitude

The KA HHG amplitude AN
KA in Eq. �27� is determined

by the matrix element dN;0,0
�m� �E0�, whose analytical expression

�for either an s or a p initial state �0�r�� contains only one-
dimensional integrals involving Bessel functions Jp�z� with
integer indices p �cf. Eqs. �A2� and �A9��. However, these
Bessel functions have a complicated argument, z=z��� �cf.
Eq. �A3��, so that analytical evaluations of the integrals are
difficult. On the other hand, neglect of high-order KA har-
monics with �k � 
0 in Eq. �25� is equivalent to the approxi-
mation f��t��constant, which is generally valid for low fre-
quencies �5�, and thus permits the use of quasiclassical
methods to evaluate dN;0,0

�m� �E0�. The quasiclassical approxi-
mation is appropriate �and very common� for analyses of
laser-atom processes in not too strong, low-frequency fields.
It usually utilizes the stationary phase method to evaluate
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some temporal integrals �see, e.g., Ref. �4��. For both s and
p-states of the bound electron, the most profound quasiclas-
sical analysis of the HHG process was performed in Refs.
�33,35–38�.

For comparison with previous quasiclassical studies and
to check the accuracy of the quasiclassical approximation to
our “exact” KA result �27� for the HHG amplitude, we
present here an alternative derivation of AN

KA, employing dif-
ferent mathematical techniques from those used in Sec. II B.
Instead of the Feynman representation, our derivation em-
ploys the “quasienergy form” for the time-dependent Green
function G�V� in Eq. �4� �cf. Appendix B�. This form allows
one to perform some temporal integrations by means of the
stationary phase method.

We follow the procedure used for the derivation of ���m�
in Eq. �21�. First, we construct the KA-like wave function,

��̃
KA�r , t� �valid in the domain r
rc�, for the bichromatic

field F̃�t� in Eq. �7� by substituting f �̃�t�→1 into Eq. �4� and
keeping �̃ in the exponential, exp�i�̃�t− t�� /��, as an un-
known parameter. Then, in order to obtain an approximate,
low-frequency result for the quasienergy �̃�m�, we match the
time-averaged �over the laser period, T� projection of the
function ��̃

KA�r , t� onto the spherical harmonics Ylm�r̂� by
using boundary condition �5� with fk=�k0 �cf. Ref. �5��. The
result is a transcendental equation for �̃�m�, whose perturba-
tive �lowest order, i.e., linear in Fh� solution for ���m�= �̃�m�
−��m� allows one to obtain the quasiclassical KA result for

d̃N�
��m�� in Eq. �15�. As details of the derivations are given in

Appendix B, we present here only the final results. The qua-
siclassical HHG amplitude for an initial s state �0�r� is

AN
�s� = 2i�

s

Z0,s

0

T ei��t+Ss�t0��−Ss�t���kt − Ks� · e�*

�cos��t� − cos��t0�����Ks − kt�2 + 1�2dt . �29�

Those for an initial p state �0�r� are

AN
�p,�m�=1� =

�2

F
�

s

Z1,sks

0

T ei��t+Ss�t0��−Ss�t���kt − Ks� · e�*

�cos��t� − cos��t0���
2��Ks − kt�2 + 1�2dt , �30�

AN
�p,m=0� = �

s

Z1,s

0

T ei��t+Ss�t0��−Ss�t����Ks − kt�2 − 1��Ks − kt0�
� · e�*

�cos��t� − cos��t0�����Ks − kt�2 + 1�2 dt . �31�

In Eqs. �29�–�31� the sum �s is over all open s-photon ATI
channels �i.e., those with s
 �up+1� /��; ks=�s�−1−up is
the photoelectron momentum in the sth channel,

Ss�t� = 
t

���Ks − k���2 + 1�d� ,

Ks = ks
F�t� − F�t��
�F�t� − F�t���

= ± ksez, kt = − ez
F

�
sin �t;

t0� is the �complex� stationary point of the function Ss�t��
having Im t0�
0 and the smallest real part �see Appendix B�;
and the “normalization parameter” Zl,s is

Zl,s =
�2l + 1�C�l

2 �4

2�2F
� 2�i

S�s�t0��
.

Since �kt−Ks�=ez��F /��sin �t±ks�, the HHG amplitudes
�29�–�31� may also be written similarly to Eq. �16�, with
obvious definitions for the quasiclassical susceptibilities
�̃N�

��m�� �� ,F�.
Postponing quantitative comparisons to Sec. IV, we con-

clude this section with some qualitative remarks concerning
comparisons of HHG rates obtained using our quasiclassical

results �29�–�31� with those using their more exact KA coun-
terpart �27� as well as with those in the quasiclassical three-
step HHG model �33,37,38�.

�i� Our quasiclassical HHG rates for both s and p states
are in good quantitative agreement with the KA results ob-
tained from Eq. �27� except in two cases: �a� for low har-
monics, ��� �E0�, before the plateau onset, and �b� for high
frequencies, ��� �E0�, in which case the use of stationary
phase methods is unjustified.

�ii� For s states, our HHG amplitude �29� coincides ex-
actly with that of Ref. �33�.

�iii� For p states, our results using Eqs. �30� and �31�
differ from those in Ref. �33�. This discrepancy stems from
the use in Ref. �33� of the asymptotic form �2� to approxi-
mate �0�r� over the whole space when calculating its Fourier

transform, �̃0�q� �q=kt−Ks�. In contrast, our formulation in
Sec. II B is independent of the small-r behavior of �0�r� and
���r , t� beyond the boundary condition �4�, which is inde-
pendent of the shape of U�r�. Agreement of the results for s
states is not surprising since for this case the asymptotic
form �2� determines the whole-space wave function of the

bound state of the ZRP model �20�, so that �̃0�q� is valid for
any �q�. However, differences between the results in Ref.
�37� and those using Eqs. �30� and �31� are to be expected for
p-states since the form �2� is incorrect for small r, where
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��lm�r��rl. Indeed, this is the case: for �m � =1, the result in
Ref. �33� is generally divergent �37�, whereas, for m=0, the
result differs significantly from that using Eq. �31�, as shown
in Sec. IV. In fact, the HHG spectra in Ref. �33� for s and p
states differ only by a scaling factor ��3C�1 /C�0�4.

�iv� The sensitivity of p-state HHG rates to the initial state
�0�r� is discussed in Ref. �38�, where it is shown that use of
realistic wave functions gives HHG rates for p states with
m=0 that are smaller by 1–2 orders of magnitude compared
to those in Ref. �37�. The results of Ref. �38� agree reason-
ably well with our quasiclassical results using Eq. �31�.

�v� The factor �2 /F in Eq. �30� explicitly exhibits the
suppression of HHG rates from states with nonzero angular
momentum projection m for the case of a strong, low-
frequency field, in agreement with the intuitive physical ar-
guments in Ref. �37�.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Comparison of different approximations for the HHG
amplitude

Our three different results for the HHG amplitude �i.e.,
the exact TDER theory result in Eqs. �16� and �22�; the KA
result �27�; and the quasiclassical KA results in Eqs.
�29�–�31��, enable us to evaluate the accuracy of both the KA
and its quasiclassical approximation for HHG calculations.
While the KA �i.e., neglect of high-order KA harmonics in
Eq. �25�� may be considered as the result to lowest nonvan-
ishing order in the binding potential, the conditions for ap-
plicability of the quasiclassical approximation for the HHG
amplitude AN �33�, i.e., �	1 and F /�2�1 �which are used
to evaluate particular integrals�, appear to be more restric-
tive. Since these inequalities are not very specific, it is un-
clear a priori over which range of the parameters �, F, and
N is the accuracy of quasiclassical �or, in fact, stationary
phase� methods reasonable. Our comparisons are for the H−

��E0�=0.755 eV, C�0=2.304 �25�� and F− ��E0�=3.4 eV, C�1
=1.188 �26�� ions, for which there have been experiments
�39,40�.

For negative ions with ground S states �such as H− and
F−�, we use the following expression for the HHG rate in the
single active electron approximation,

R̃N =
��N��3

8�

1

2l + 1�
m

��̃N
�m���,F��2, �32�

where l is the angular momentum of the outer �weakly
bound� electron. The result �32� requires some discussion.
Both H− and halogen negative ions have spherically symmet-
ric ground states �owing to their filled s2 and p6 valence
shells�, so that in an exact multielectron formulation the fol-
lowing definition �in absolute units� for the HHG rate in

terms of the Fourier component, D̃N�, of a multielectron dual

dipole moment D̃�t� should be used,

dWN�,k̂

d�k̂
� R̃N =

�N��3

8��c3 �D̃N��2. �33�

However, for halogen ions in the single active electron ap-

proximation the definition �32� for R̃N is used, which is simi-
lar to that in Eq. �17�. Note that the transitions m→m�
=m±1 in Eq. �32� are restricted not by the “coherence” con-
dition �as for atoms or ions with nonzero total angular mo-
mentum in Eq. �17�; cf. Sec. V in paper I�, but by the Pauli
exclusion principle, as is shown in Ref. �37�.

Figures 1�a�–1�d� show, respectively, comparisons for the
“low-frequency” ��=0.098,F=0.1� and “high-frequency”
��=0.343,F=0.418� HHG spectra for H− and F−. �Note that
for F− the frequency �=0.343 corresponds to Nd:YAG laser
radiation, �=1064 nm.� In the low frequency domain, the
KA results are in excellent agreement with the exact ones.
�This unprecedented accuracy of the KA in the low-
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FIG. 1. �Color online� HHG
rates for H− and F− for low �a�,�b�
and high �c�,�d� frequencies. Re-
sults for different approximations
are presented: circles �red�, exact
TDER theory results, Eqs. �17�
and �22�; squares �green�, KA re-
sults, Eq. �27�; triangles �blue�,
quasiclassical results �Eq. �29� for
H− and Eqs. �30� and �31� for F−�.
For F−, the rates for m=0 �solid
line� and �m � =1 �broken line� are
presented. Arrows show the posi-
tions of the classical cutoffs, Nc

= ��E0�+3.17up� / ����, in each
case.
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frequency, strong-field regime originates from the fact that
the HHG amplitude in this regime is described only by odd
QES harmonics, �N=2k+1�r�, of ���r , t�, which agree well
with the KA QES harmonics �N=2k+1

KA �r� over all space, 0
�r��, as shown in Ref. �15�.� The quasiclassical results
using Eqs. �29�–�31� agree well with the exact ones only
around and beyond the classical cutoff. Along the plateau,
the latter exhibit deviations from the exact results, especially
for p-state �F−� ions. Moreover, the quasiclassical results fail
to describe the low-energy part of the HHG spectra, in which
the exact HHG rates exhibit perturbativelike �decreasing� be-
havior with increasing N. The results in Figs. 1�a� and 1�b�
�as well as our results for other ions� show that for small �
the minimum value of N at which the quasiclassical results
are reasonable corresponds to the onset of the HHG plateau,
i.e., N
 �1/�� �or N�n0, where n0 is the minimum number
of photons needed for ionization�. In the high frequency do-
main �cf. Figs. 1�c� and 1�d��, the results are quite different.
The KA HHG rates overestimate the exact ones along the
plateau �except for p states with �m�=1�, but agree with the
latter at and beyond the plateau cutoff. The quasiclassical
results overestimate the exact ones by an order of magnitude
along the plateau and by much more beyond the classical
cutoff. Also, the quasiclassical results for m=0 and �m�=1
�cf. Fig. 1�d�� merge with increasing N, in sharp contrast
with the KA and exact results.

Figure 2 compares our exact TDER results with results of
the three-step HHG model �33�, which was used recently to

treat negative halogen ions in Refs. �37,38�. As discussed
above, use of the asymptotic form �2� for the p-state wave
function over the whole space leads to incorrect results for
AN

�p,m=0� that differ from those for an s-state by only a scaling
factor �37�. The use of realistic wave functions �38,41� sig-
nificantly improves the results in both low �Fig. 2�a�� and
high-frequency �Fig. 2�b�� domains, except for the lowest N
in the former and high N �beyond the cutoff� in the latter.
Use of realistic initial state wave functions �0�r� �38,41� in
the quasiclassical three-step-model calculations of Refs.
�37,38� results in much better agreement with our own qua-
siclassical results �31�; however, differences from exact
TDER results remain �especially for the low-frequency case�.
Differences between our exact and quasiclassical results
have already been discussed for Fig. 1. In summary, we con-
clude that regardless of the quality of initial state wave func-
tions, quasiclassical results are generally inaccurate for the
low-energy part �N� �1/��� of the HHG spectrum and over-
estimate HHG rates beyond the cutoff in the high-frequency
case.

Finally, we discuss two related questions.
�1� How does the perturbation of the bound state energy

E0 by a laser field �i.e., the Stark shift, Re �−E0, and the
depletion due to photodetachment, described by the level
width, ��=−2 Im �� influence the HHG rates?

�2� How do high-order binding potential effects, which
are described by the Fourier coefficients fk�0

�m� , influence the
HHG rates in the approximation that �=E0?

According to our discussion of Figs. 1�a� and 1�b�, these
effects are negligibly small in the strong-field, low-frequency
�tunneling� regime since the exact TDER results are well
approximated by the KA ones �in which case fk

�m�=�k,0 and
the complex quasienergy � is approximated by E0, in particu-
lar, because the level width is exponentially small in this
regime�. To illustrate the situation for a higher frequency
regime, in Fig. 3 we compare exact TDER results �obtained
using Eqs. �16� and �22��, KA results �given by Eq. �27��,
and approximate TDER results corresponding to the case in
which both the matrix elements d

N;k,k�
�m� ���m�� and the Fourier

coefficients fk
�m� in Eq. �22� are calculated for �=E0. �The

coefficients fk
�m����m�=E0� are obtained as an approximate so-

lution of the matrix equation �20�, i.e., substituting there
��m�=E0 in the matrix elements M

k,k�
�m� ���m��.� We consider the

F− ion, Nd:YAG laser radiation ��=0.343�, and both “inter-
mediate” ��=up / ����=2.26; cf. Fig. 3�a�� and strong-field
��=4.52; cf. Fig. 3�b�� intensity regimes. Comparison of the
red �circles� and blue �triangles� curves in Fig. 3 shows that
in this high frequency regime ����0.3�E0�� the influence of
the Stark shift and width of the bound state becomes signifi-
cant for moderate intensities over the entire plateau region,
while in the strong field ���1� regime the differences are
more irregular, but may be considerable in the middle part of
the plateau. More important, however, is the second kind of
beyond-the-KA correction to the HHG rates obtained by in-
cluding the coefficients fk

�m����m�=E0� that are omitted in the
KA. Their effect may be seen in Fig. 3 by comparing the
triangles �blue� and squares �green� curves, whose differ-
ences are relevant to the rescattering interpretation of plateau
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FIG. 2. �Color online� HHG spectrum of F− for low �a� and high
�b� frequencies. Full circles �red�, exact TDER results; full squares
�green�, quasiclassical �three step HHG model �33�� results �37,41�;
full triangles �blue�, our quasiclassical results �Eq. �31��; open
circles, quasiclassical �three step model� results of Ostrovsky using
realistic bound state wave functions �38,41�. Owing to the different
definition of HHG rates for halogen ions in Refs. �37,38� as com-
pared to our definition �32�, results of Refs. �37,38,41� have been
divided by a factor of 3.
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features in HHG processes. Indeed, the remarkable rescatter-
ing scenario explanation of plateau features in strong field
phenomena �as resulting from repeated interactions of the
active electron with the atomic core� was suggested for the
first time based on a �quasi�classical description of the HHG
process. However, a rigorous quantum analysis in terms of
the properties of exact QQES wave functions shows that
HHG plateaus in the tunneling regime are well described just
by the KA wave function �cf. �28� for the case of TDER
theory�, which corresponds to a lowest nonvanishing order
account of binding potential effects �i.e., on the initial state
only�, similar to that in the Keldysh theory of tunneling ion-
ization �see Ref. �15� for more details�. In contrast, this same
analysis shows that only “true rescattering” �i.e., involving
higher than lowest order binding potential effects� causes the
well-known plateau features in above-threshold ionization/
detachment. As mentioned in Sec. III A, high-order binding
potential effects in the TDER theory are completely de-
scribed by the coefficients fk

�m�. Therefore, for HHG, such
“true rescattering” effects become important only for high
�nontunneling� frequencies, and their quantitative measure in
the TDER theory is given by the difference between the blue
�triangles� and green �squares� curves in Fig. 3, both of
which correspond to the same �unperturbed� quasienergy, �
=E0. We observe in Fig. 3 that both approximate results gen-
erally overestimate the exact ones, as is typical �usually� of
most approximate theories.

B. Initial state symmetry effects

To the best of our knowledge, HHG rates for negative
ions with valence p electrons are known for only two ions,

F− and I−, for one wavelength, �=800 nm, i.e., �=0.456 for
F− and �=0.505 for I− �37,38�. We present below a compara-
tive study of HHG rates �obtained using the exact TDER
formulas �17� and �22�� for ions with s and p outer electrons
for a number of frequencies, from ��0.1 �which is typical
for investigations of HHG in rare gas atoms� up to ��0.5.
Since ions with s and p outer electrons have rather different
binding energies, we present their HHG spectra for the same
scaled intensity and photon energy. Moreover, the asymptotic
coefficients C�l are also different for s and p states, while the
normalization factors N�m� in Eqs. �22� and �23� are not too
sensitive to F and � �cf. Table I� and remain close to their
field-free value, C�l

2 . Therefore, we introduce the reduced
HHG rates,

rN = R̃NC�l
−4, �34�

where R̃N is the HHG rate in scaled units given by Eq. �32�.
It is to be expected that differences between reduced rates rN
for s-state and p-state ions for the same scaled F and �
originate entirely from the dependence of harmonic photon
emission by these ions on the spatial �s or p� symmetry of
the initial state, �0�r�, i.e., on the “inner” dynamics. HHG
rates in absolute units may be obtained by multiplying rN by
the factor C= ��E0� /Ea�2C�l

4 �a, where Ea=27.21 eV and �a

=Ea /�=4.131016 s−1. In Table II we present the numerical
value of this factor for several ions, although the numerical
results for rn are applicable also for other targets for which
the parameters �E0� and C�l are known. �For the data in Table
II, the parameters �E0� and C�l were taken from Refs. �25�
�for H−� and �26�.�

In Fig. 4 we present reduced HHG rates, rN �cf. Eq. �34��,
for ions with s and p outer electrons for four sets of fre-
quency and intensity. For p states, both the total rates and the
separate contributions to rN of the different magnetic sublev-
els are given. In all cases shown, rates for sublevels with
�m�=1 are orders of magnitude smaller than for m=0, in
qualitative agreement with quasiclassical results �30� as well
as with physical arguments in Refs. �37,38� based on the
three-step HHG mechanism �33�. Nevertheless, the suppres-
sion shown in Fig. 4 is much stronger than indicated by the
parameter �2 /F in Eq. �30�; this suppression is similar to
that for plateau features in above-threshold detachment
�ATD� from p states with �m�=1 �see Ref. �2�, where it is
noted that rescattering for this case is suppressed by the cen-
trifugal barrier�. Observe also that the shape of the m= ±1
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FIG. 3. �Color online� Comparison of exact TDER results
�circles �red��, TDER results neglecting the Stark shift of the initial
bound state and its width due to photodetachment, i.e., ��m�=E0

�triangles �blue��, and KA results, i.e., ��m�=E0, fk
�m�=�k,0 �squares

�green�� for the HHG spectrum of F− at �=1064 nm ��=0.343� and
�a� I=2.51013 W/cm2 �F=0.427� and �b� I=51013 W/cm2

�F=0.604�.

TABLE II. Numerical values of the coefficient C
= ��E0� /Ea�2C�l

4 �a for several negative ions having s- and p-state
outer electrons. �n��10n.

s state C �s−1� p state C �s−1�

H− 8.96�14� O− 1.98�14�
Li− 4.65�14� F− 1.28�15�
Na− 4.18�14� Cl− 8.85�15�
K− 2.50�14� Br− 1.26�16�
Rb− 1.51�14� I− 3.04�16�
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rates is qualitatively similar to that for s states �as might be
expected owing to the similar structures of the amplitudes
�29� and �30��.

Figure 4 shows that, on average, the reduced HHG rates
rN are approximately the same for s and p states; however,
with increasing �, the magnitude of rN for p states becomes
somewhat larger for harmonics beyond the plateau cutoff.
Thus, owing to the much greater C factors for p states �cf.
Table II�, the absolute harmonic yields for p-state ions are
much higher for the same scaled F and � values. Figure 4
shows also that the oscillation pattern in the HHG rates over
the region from the onset up to about the middle of the
high-energy plateau are more pronounced for low frequen-
cies and are out of phase for s and p states. These features
appear to be general since they occur also in our results for
other sets of laser parameters F and � �not shown here�. The
low-energy part of the HHG plateau is generally highly ir-
regular and specific to the atomic system and the laser pa-
rameters. Indeed, it is not possible to describe this low-
energy portion of the HHG plateau in terms of a few
classical trajectories or quantum orbits �36,42�. To attain rea-
sonable accuracy using standard stationary phase methods, it
is necessary to take into account hundreds of quantum orbits.
Note also that it is in this region that the threshold-related
�channel closing� enhancements of HHG rates are most pro-
nounced, for both s �13� and p states �43�. In contrast, HHG
spectra for s and p states are very similar near and beyond
the plateau cutoff. Concerning the variation of the rates with
variation of the laser parameters, Fig. 4 allows us to formu-
late some general conclusions, valid for both s and p states.

�i� Plateau features in the HHG spectrum �as well as in the
ATD spectrum� begin to develop for ��up /�
1 �i.e., when
PT in V�r , t� breaks down �16,44�� and become well devel-
oped at ��5. �Note that we have chosen the laser parameters
in Fig. 4 such that �=5.31; 5.36; 5.38; and 1.90 for panels
�a�–�d�, respectively.�

�ii� The plateau cutoff position in HHG spectra is insen-
sitive to the initial state symmetry �as is that for ATD �2��.

This fact is consistent with the classical origin of the cutoff
for all photon energies, including those comparable with the
binding energy �E0�, and is in agreement with our previous
analysis for p states �16�.

�iii� For fixed � �as, approximately, in panels �a�–�c��, the
rates rN decrease rapidly with decreasing � �by a factor
�10−5 as � decreases from 0.20 to 0.10�.

C. Symmetry effects in HHG spectra for fixed absolute laser
parameters

As shown in the preceding section, for two ions �A and B�
having a bound state of the same symmetry and for the same
scaled F and �, the ratio of HHG rates may be approximated
with high accuracy as

Rn
A

Rn
B �

CA

CB
, �35�

where the coefficients C �cf. Table II� are defined below Eq.
�34�. On the other hand, since the relation �35� involves dif-
ferent absolute values of laser frequency and intensity for
each ion, it cannot be used to compare HHG rates for these
ions for the same absolute laser parameters. In other words,
although the curves in Fig. 4 describe the HHG rates for any
ion with known E0 and C�l for the same scaled laser param-
eters, upon conversion to absolute units, the curves corre-
spond to a different set of absolute laser parameters for each
different ion. In order to compare the absolute HHG rates for
different ions for the same set of absolute laser parameters,
in Fig. 5 we present HHG spectra for eight negative ions for
the low- �Figs. 5�a� and 5�b�� and high-frequency regimes
�Figs. 5�c� and 5�d��. Because of the significant difference in
binding energies for ions with s and p outer electrons, the
“low-frequency” results in Figs. 5�a� and 5�b� for ions with s
electrons are given for �=10.6 �m �the CO2 laser�, while
the laser parameters for halogen ions are as in a recent ex-
periment �39�: �=1.8 �m and I=1013 W/cm2. Note that
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FIG. 4. �Color online� Re-
duced HHG rates, Eq. �34�, for s
and p initial states, �0�r�. Dia-
monds �black�, s state; circles
�red�, total harmonic rate for a p
state; squares �green�, contribution
of magnetic sublevel with m=0;
triangles �blue�, contribution of
magnetic sublevels with �m�=1.
Arrows show the positions of the
classical cutoffs, Nc= ��E0�
+3.17up� / ����. Scaled units are
used for � and F.
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these low-frequency results are for approximately the same
parameter �=up / ���� in Figs. 5�a� ��=4.47� and 5�b� ��
=4.37�. To illustrate the dispersion of the scaled parameters
for different ions at fixed absolute values of F and �, we
present these parameters in Table III for the data in Fig. 5.

For low frequencies �Figs. 5�a� and 5�b��, the rates for p
electrons are �on average� much larger than those for s elec-
trons, in agreement with the correspondingly large difference
in the coefficients C in Table II for s and p states. In both
cases one observes that the rates tend to increase as the
atomic number of the ion increases, with the spread in the
rates for p states being much greater than that for s states.
This clear difference may stem from the greater dependence
of HHG amplitudes on the initial state wave function �i.e., on
the “inner dynamics”� for p-state ions, as discussed above.

The existence of plateau structures in different laser-atom
processes even for high frequencies has been shown recently
in Ref. �16�. Figures 5�c� and 5�d� show such plateau struc-
tures in the HHG rates for both s- and p-state ions. As for the
low-frequency case, the rates for s-state ions are much less
than those for p-state ions; also, the spread in the rates for

different ions is much greater for p-state ions. In contrast to
the low-frequency case, however, the behavior of the rates
RN with increasing N is far smoother and less oscillatory.
Such behavior is appropriate to the “multiphoton” regime �in
contrast to the “tunneling” regime� of harmonic generation at
high frequencies ���� �E0�� �16�. Finally, we note that the
plateau structures in the high-frequency HHG rates are
“under-developed” �cf. Figs. 1�c�, 1�d�, 2�b�, 4�d�, 5�c�, and
5�d��. This stems, in part, from the small value of the param-
eter � for this regime ���2�. This parameter cannot be in-
creased, however, for the frequencies considered, since with
further increases in intensity, depletion of target ions over a
laser cycle becomes significant �i.e., � exceeds T−1

=� / �2��; this occurs already for Rb− and I− for the param-
eters used in Figs. 5�c� and 5�d��, and thus the concept of
HHG rates loses its applicability.

V. SCALING OF HHG RATES FOR NEGATIVE IONS
TO ATOMS

Although the results in Sec. III of paper I for the HHG
amplitude in terms of complex quasienergy are valid for both
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FIG. 5. �Color online� Abso-
lute HHG rates for negative ions
with s �a�,�c� and p �b�,�d� initial
state symmetry for the wave-
lengths and intensities marked in
the figures.

TABLE III. Scaled parameters � and F for different ions at fixed absolute intensity �I� and wavelength ��� of the laser field �cf. Fig. 5�.
Ĩ=51011 W/cm2.

Ion
�s state�

�=10.6 �m

I=0.1Ĩ

�=3.5 �m

I= Ĩ
Ion

�p state�
�=1.8 �m

I=20Ĩ

�=800 nm

I=20Ĩ

H− �=0.155 �=0.470 F− �=0.203 �=0.456

F=0.183 F=0.577 F=0.270 F=0.270

Li− �=0.191 �=0.579 Cl− �=0.190 �=0.428

F=0.250 F=0.791 F=0.246 F=0.246

Na− �=0.213 �=0.644 Br− �=0.204 �=0.46

F=0.294 F=0.928 F=0.273 F=0.273

Rb− �=0.241 �=0.729 I− �=0.225 �=0.505

F=0.353 F=1.127 F=0.315 F=0.315
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atoms and ions, their application to atoms is a formidable
task owing to the absence of analytical approximations for
the complex quasienergy that account for the long-range
Coulomb potential. Nevertheless, qualitative estimates of the
role of Coulomb effects on the HHG process may be ob-
tained similarly to those for tunneling ionization in Keldysh
theory �cf. Refs. �45,46��. For strong field HHG, a Coulomb
scaling factor was introduced in Ref. �37�, but was not used
to scale negative ion HHG rates to atoms. In this section we
describe a scaling procedure that enables one to estimate
HHG rates for an atomic electron having an energy Ea
=−�2�a

2 / �2m� based on HHG rates for the outer electron of a
negative ion with binding energy E0=−�2�2 / �2m� and the
same initial bound state symmetry as that for the active
atomic electron. Existing results for Coulomb corrections to
tunneling ionization rates are for the case of low frequencies
�the quasistatic approximation�, which we assume also.
Moreover, it may be expected that atomic potential effects
are most important for the low-energy part of the HHG spec-
trum, and that the HHG rates should be less sensitive to the
atomic potential for harmonics near and beyond the classical
cutoff.

As discussed in Sec. III �see also Ref. �15��, for the case
of an intense low-frequency field, the HHG spectrum is well
described by the KA, in which the dual dipole moment may
be approximated by �cf. Eqs. �30� and �31� in paper I�

d̃KA�t� � ��0�r��d��KA�r,t�� + ��̃KA�r,t��d��0�r�� ,

�36�

where the KA wave function �KA�r , t� contains the entire
dependence of the dual dipole moment on the laser intensity.
As noted long ago �45,46� �see also Chap. V, Sec. IV in Ref.
�21��, for the quasistatic �low-frequency� case, the modifica-
tion of the wave function of a weakly bound electron in a
laser field by long-range Coulomb forces reduces to only an
intensity-dependent factor T0,

T0 = �F0/F��, �37�

where �=Z�EH/ �Ea�, EH=13.606 eV, Z is the charge of the
remaining atomic core �i.e., Z=0 for negative ions and Z
=1 for neutral atoms�, and F0=�2m�Ea�3 / ��e���. Because the

squares of the Fourier components of d̃KA�t� in Eq. �36� enter
the HHG rate, the square of T0 enters the scaling factor T for
scaling HHG rates for negative ions to atoms. �The Coulomb
factor T0

2 was introduced also in Ref. �37� using arguments
based on the three-step model for HHG.� In order to obtain

the factor T, differences in the asymptotic coefficients in the
wave functions for negative ions and for atoms at r→� must
be taken into account. They enter the HHG rate with the
power four �37� �see also Eqs. �29�–�31��. For negative ions,
the definition of C�l is given by Eq. �2�; for an atom, the
asymptotic coefficient C�al is defined by ��alm�r��a

−1�
�C�alr

�−1e−�ar. Thus the dimensionless coefficient T for at-
oms, which is used to scale the HHG rates �in s−1� calculated
for a negative ion at the same scaled frequency and laser
field amplitude as for an atom, is given by

T = �F0/F�2��C̃�al/C̃�l�4�Ea/E0�2, �38�

where the dimensionless asymptotic coefficients are C̃�al

=C�al /�a
�+1/2 and C̃�l=C�l /��. Table IV gives the parameters

necessary to calculate the parameter T that is needed to scale

our exact TDER results for the F− ion ��E0�=3.4 eV, C̃�l
=1.188� to the Ne ��Ea � =21.56 eV� and Xe ��Ea�
=12.13 eV� atoms for the case of a laser field of intensity
21014 W/cm2 and �=800 nm �up / �����7.7�. Figure 6�a�
compares our scaled results for Ne and Xe with those of Ref.
�38�, which are based on the use of realistic initial state wave
functions. Our scaled results were obtained using the param-
eters in Table IV. Figure 6�a� shows that our scaled results
are in good agreement with the results of Ref. �38� for har-
monics at the high end of the plateau and beyond; moreover,
as the scaled frequency becomes smaller �as for the case of
Ne�, our scaled results are in unexpectedly good agreement
with the results of Ref. �38� over the entire plateau. The
differences at small N may be attributed to inaccuracies of
the quasiclassical analysis in Ref. �38� for low harmonics,
N� �1/��, as discussed in Sec. III.

Our analysis of the scaling factor must be modified for the
case of a not too strong laser field �up����, which corre-
sponds to the onset of plateau structures in HHG spectra �15�
�and for which the plateau region involves relatively few
harmonics�. For this case, the influence of the Coulomb field
on the HHG rates should be much stronger than for the case
of up���. Moreover, the approximation �36� for the dual
moment is not appropriate for this regime and a more accu-
rate approximation,

d̃�t� � ��̃KA�r,t��d��KA�r,t�� , �39�

becomes necessary. �In fact, the approximation �39� takes
into account the continuum-continuum transitions omitted in
Eq. �36�.� Thus an appropriate Coulomb scaling factor
should be T0

2 times larger than T,

TABLE IV. Scaling factors T for scaling HHG rates for the F− ion to Ne and Xe atoms subjected to a laser
field with I=21014 W/cm2 and �=800 nm

Atom � F /F0 �� / �Ea� C̃�al T

Ne 0.794 0.076 0.072 1.300 3452

Xe 1.059 0.179 0.128 2.625 11600
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T1 = TT0
2 = �F0/F�4��C̃�al/C̃�l�4�Ea/E0�2. �40�

Figure 6�b� compares our scaled HHG rates for H− ��E0�
=0.755 eV, C̃�l=2.3� with accurate numerical results of Ref.

�47� for the H atom ��Ea�=13.606 eV, C̃�al=2� for a linearly
polarized field of intensity I=1.41013 W/cm2 and �
=1064 nm �up / ����=1.2�. In order to get better cutoff
matching, we also present scaled results for a lower intensity,
I=1.11013 W/cm2. Our scaled parameters are thus F /F0
=0.040, �� / �E0�=0.086, and T1=1.9108 for I=1.4
1013 W/cm2, while F /F0=0.035 and T1=1.2108 for I
=1.11013 W/cm2. �Owing to a difference of 16� /3 be-
tween the definitions of HHG rates in Ref. �47� and in Eq.
�17�, our scaled results for the HHG rates in Fig. 6�b� were
additionally multiplied by 16� /3.� As expected for the weak-
field regime, scaled rates for the low-order harmonics do not
agree with those of Ref. �47�, while plateau structures are
sensitive to small variations of the intensity. However, for the
plateau part of the HHG spectrum, scaled rates reproduce
qualitatively the exact results in Ref. �47�.

Our scaled numerical results show that, for the low-
frequency regime ���0.1�, simple Coulomb factors �38�
and �40� remove most of the differences between HHG rates

for finite-range and Coulomb potentials. These differences
range over several orders of magnitude, from about 104 for
up��� up to �108 for up���. By means of these factors,
HHG rates for atoms may thus be roughly estimated from
accurate calculations for negative ions.

VI. SUMMARY AND CONCLUSIONS

The main results of this paper are �i� formal application of
a wave-function-independent theoretical formulation of the
HHG amplitude �1� to treat harmonic generation by a weakly
bound electron in s and p states with exact account of strong
field effects within the framework of TDER theory �cf. Sec.
II�; �ii� analysis and numerical use of the new TDER theory
of HHG to make connections to commonly used approxi-
mate theories for HHG, to elucidate the dependence of HHG
rates on initial state symmetry, and to compare and contrast
HHG rates for a number of negative ions �cf. Secs. III and
IV�; and �iii� development of procedures to scale negative
ion HHG rates to atoms �cf. Sec. V�. In what follows we
make some concluding remarks on this work.

In spite of the fact that the QQES wave function ���r , t�
in TDER theory �2� is known only outside a short-range
atomic core and thus cannot be used to calculate the dual

dipole moment �which is defined by d̃�t�= ��̃��t��d̂����t���,
the complex quasienergy may nevertheless be obtained as the
eigenvalue of a one-dimensional integro-differential equation
�cf. Eqs. �8� and �9�� for a periodic function f��t� �which
depends only on the boundary conditions satisfied by
���r , t��. As a result, we obtain an analytical expression �22�
for the nonlinear susceptibility �̃N

�m��� ,F�, which is the basic
ingredient for our essentially analytical, self-consistent
theory of HHG for a negative ion having an outer �weakly
bound� electron of s or p symmetry. Only two parameters
specify the concrete ion: the electron affinity, E0, and the
asymptotic coefficient C�l. For s-state ions it reduces to the
ZRP model upon neglecting the effective range r0. Although
the exact HHG amplitude �22� is quite manageable for nu-
merical computations, we have shown that its simplified ver-
sion, the KA result �27�, has high accuracy for the case of an
intense low-frequency field and is thus convenient for large-
scale calculations. This approximation neglects high-order
binding potential effects and corresponds to the KA for
QQES wave functions �15�.

HHG rates for negative ions with s and p outer electrons
show that the position of the plateau cutoff is insensitive to
the initial state symmetry �even for high frequencies� and is
given by the classical law, �max��E0�+3.17up. However, the
shape of the plateau strongly depends on this symmetry �e.g.,
oscillations of HHG rates along the plateau have opposite
phases for p and s states�. In fact, we find that the HHG rates
are much more sensitive to the initial state symmetry than to
the particular atomic species. �Note that for a given initial
state symmetry, HHG rates are also much less sensitive to
the atomic species than are rates for the competing above-
threshold ionization process �15�.� For the same scaled laser
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FIG. 6. �Color online� �a� HHG spectra for Ne and Xe for I
=21014 W/cm2 and �=800 nm. Open symbols, results of Ref.
�38� with realistic bound state wave functions; full symbols, our
scaled results obtained from HHG rates for F−. Circles, Ne; tri-
angles, Xe. �Results of Ref. �38� are divided by 3 for consistency
with Eq. �17�.� �b� HHG spectra for the H atom �1s state� for �
=1064 nm. Open circles, result of Ref. �47� for I=1.4
1013 W/cm2; full circles and triangles, present results for H− for
I=1.41013 W/cm2 and I=1.11013 W/cm2, respectively, scaled
by the factor �16� /3�T1 �see text for explanation�.
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parameters, HHG rates for p initial states are higher than for
s states. This “enhancement” is mostly caused by differences
in the asymptotic coefficients C�l and binding energies for
p-state and s-state ions, while the reduced rates rN �cf. Eq.
�34��, which are insensitive to these parameters, have on av-
erage approximately the same magnitude for negative halo-
gen and alkali ions.

Since existing results for HHG rates for bound electrons
with nonzero angular momentum have been obtained only
with quasiclassical accuracy �in the framework of the three-
step model �37,38�� and show a high sensitivity to the quality
of initial bound state wave functions, we have performed a
quasiclassical analysis of our exact results. For s states, our
quasiclassical HHG amplitude exactly reproduces the three-
step-model result in Ref. �33�, whereas our results for p
states are different from those in Ref. �37�, where the
asymptotic form �2� of the initial p-state wave function was
used for the whole-space integration over the radial variable
r. However, for low frequencies our quasiclassical results for
p states are in reasonable agreement with results in Ref. �38�,
in which realistic initial state wave functions were employed.

Finally, we have described a simple scaling procedure that
allows one to estimate atomic HHG rates by introducing
Coulomb corrections to the results for negative ions. This
scaling procedure is most appropriate for high-order harmon-
ics produced by an intense low-frequency field. Also we
have found that different scaling factors should be used for
two different regimes of laser-atom interaction, up��� and
up���.

ACKNOWLEDGMENTS

A number of valuable comments that have improved this
paper as well as numerical data for Fig. 2 were provided to
the authors by our colleague, V. N. Ostrovsky, who passed
away recently. This work was supported in part by RFBR
Grant No. 07-02-00574 and by NSF Grant No. PHY-
0601196. Two of the authors �M.V.F. and A.V.F�. acknowl-
edge the support of the “Dynasty” Foundation, Grants of the
President of the Russian Federation No. MK-1075.2005.2
and No. MK-8715.2006.2, and CRDF and BRHE Grants for
young scientists, Grants No. Y2-P-10-03 and No. Y2-P-10-
06. One of the authors �A.F.S.� gratefully acknowledges par-
tial support of the Alexander von Humboldt Stiftung and the
Max-Planck-Institut für Quantenoptik �MPQ� as well as the

hospitality of the MPQ, where part of this paper was pre-
pared.

APPENDIX A: EXPLICIT FORMS FOR Mk,k�
„m…

„�…

AND d±N;k,k�
„m… IN EQS. (18) AND (19)

�1� The case of an s state �0�r� �l=m=0, M
k,k�
�m� �Mk,k�,

d
n;k,k�
�m� �dn;k,k�, n� ±N�,

Mk,k���� = ik−k�� �

8�i



0

� e2i��/�+k+k���

�3/2 �e−i����Jk−k��z����

− �k,k�	d� , �A1�

dn;k,k���� = C0

0

� d�

�3/2e2i��/�+k+k���−i�����j−���J−���

− ij+���J+���� , �A2�

where J±��� is shorthand for the Bessel function, J±���
=Jk−k�+�n±1�/2�z����,

z��� =
2up

�
sin �cos � −

sin �

�
� ,

���� =
2up

�
� −

sin2 �

�
� , �A3�

j±��� =
sin � sin�n��

�
−

n sin��n ± 1���
n ± 1

, �A4�

C0 =
2ik−k�+n/2

n2 � up

��3 , up =
F2

2�2 . �A5�

Note that dn;k,k� in Eq. �A2� formally coincides with the “sus-
ceptibility” �̃n;k,k� for a ZRP model presented in the Appen-
dix of paper I: dN;k,k�= �̃n;k,k�. The difference is that the nu-
merical value of the quasienergy � in Eq. �A2� depends on
the effective range r0 �in accordance with Eq. �8��, while
r0=0 for a ZRP model.

�2� The case of a p state �0�r� �l=1; m=0, ±1; n� ±N�,

Mk,k�
�m� ��� = M̄k,k���� + �m,0M̂k,k���� , �A6�

where

M̄k,k���� =
3ik−k�+1

4
� �3

8�i



0

� e2i��/�+k+k���

�5/2 �e−i����Jk−k��z���� − �k,k�	d� , �A7�

M̂k,k���� = − 3ik−k�up� �

8�i



0

� e2i��/�+k+k���−i����

�3/2 �v−���Jk−k��z���� + iv+���Jk−k�
� �z����	d� . �A8�
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Matrix elements d
n;k,k�
�m� have a general structure similar to

that in Eq. �A6�,

dn;k,k�
�m� = d̄n;k,k���� + �m,0d̂n;k,k���� , �A9�

where

d̄n;k,k���� =
C1

2n



0

�

d�
e2i��/�+k+k���−i����

�5/2 �j−���J−���

− ij+���J+���� , �A10�

d̂n;k,k���� = C1

0

�

d�
e2i��/�+k+k���−i����

�3/2 v−,n���J−���

− iv+,n���J+��� +
2up

n�
�ij−����v−���J−���

+ iv+���J−����� + j+����v−���J+���

+ iv+���J+�����	� , �A11�

and where J±���� is the derivative of J±��� over the argu-
ment z���,

v±,n��� =  sin�n��
n�

− cos�n��� sin �

�

− cos �� ± sin�n��sin � , �A12�

v±��� � v±,n=1��� =  sin �

�
− cos ��2

± sin2 �, C1

=
3ik−k�+1+n/2

n
� up

��
. �A13�

APPENDIX B: QUASICLASSICAL HHG AMPLITUDE
IN TDER THEORY

In order to carry out the quasiclassical analysis of the
HHG amplitude sketched in Sec. III B, we represent the
integral term on the right-hand side of Eq. �4� in terms
of the quasienergy representation for the Green function,

G�
�V��r , t ;r� , t��, of a free electron in the field F̃�t� given by

Eq. �7�. Its spectral expansion has a known form �48,49�
�absolute units are used in Eqs. �B1�–�B3��,

G�
�V��r,t;r�,t�� = �

s=−�

� 
 dp
�p,s�r,t��p,s

* �r�,t��
� − Ep,s + i0

, �B1�

where Ep,s=Ep+s��+ ũp; Ep=p2 / �2m�; ũp= �e2F2� / �4m�2�
+ �e2Fh

2� / �4m�2�; and �p,s�r , t�=�p�r , t�exp�is�t�. The func-
tion �p,s�r , t� is the solution of Eq. �1� with U�r�=0 and

V�r , t�=−d · F̃�t�, which relates to the common Volkov wave
function �p

�V��r , t� �normalized by 1/��2���3� as follows:
�p

�V��r , t�=�p,s�r , t�exp�−�i /��Ep,st�. The desired relation,



−�

t

G�V��r,t;r�,t��f�t��ei��t−t��/�dt�

=
1

T



0

T

G�
�V��r,t;r�,t��f�t��dt�, �B2�

follows immediately from the known relation between G�
�V�

and the usual time-dependent �Volkov� Green function, G�V�

�48,49�,

G�
�V��r,t;r�,t�� = T �

k=−�

�

G�V��r,t;r�,t� − kT�

exp i

�
��t − t� + kT�� , �B3�

upon multiplying Eq. �B3� by the periodic function f�t�� and
integrating over t� over the period T=2� /�. (The relation
�B2� is a common one for representing the basic integral
equations of QQES theory in terms of either G�

�V� or G�V�

�48,49�; it may also be obtained using the so-called “factor-
ization techniques” �50� �used for HHG calculations in Ref.
�33�� which, indeed, amounts “to some special representation
of �the� time-dependent Green function” �i.e., given by Eq.
�B3��, as suspected by the authors of Ref. �33�.)

The integral over p in Eq. �B1� may be calculated analyti-
cally in closed form, so that the right-hand side of Eq. �B2�
may be written as follows �details of the calculation are simi-
lar to those in Ref. �33� for the case of a single-frequency
field, F�t��:

�KA�r,r�;t� �
1

T



0

T

G�
�V��r,t;r�,t��dt�

= −
1

4�
�

s

1

T



0

T

dt�
eiS̃s�r,t;r�,t��

�R − R��
, �B4�

where

S̃s�r,t;r�,t�� = r · Ṙ�t� − r� · Ṙ�t�� + ks�R − R��

− 

t�

t

�Ṙ���2 − ũp + s��d� ,

ks = ��̃ + s� − ũp, R = r − 2R�t�, R� = r� − 2R�t�� ,

R�t� = ezR�t�, R�t� =
F cos��t�

�2 +
Fh cos��t�

�2 , � = N� .

�B5�

The KA-like wave function ��̃
KA�r , t� is obtained from

�KA�r ,r� ; t� according to Eq. �4� �upon substituting f��t��
→1�. Its explicit forms for s and p initial states, �0�r�, are

��s��r,t� =
1

�4�
�

s

1

T



0

T

dt�eiS̃s�r,t;0,t�� 1

�R̃�t,t���
, �B6�
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�m
�p��r,t� = �

s

1

T



0

T

dt�eiS̃s�r,t;0,t���rY1m�r̂�
1 − iks�R̃�t,t���

�R̃�t,t���3

− �m,0� 3

4�
i

Ṙ�t��

�R̃�t,t���
+ 2

1 − iks�R̃�t,t���

�R̃�t,t���3
�R�t�

− R�t�����, m = 0, ± 1, �B7�

where R̃�t , t��=R+2R�t��=r−2ez�R�t�−R�t���. Since the
harmonic field Fh�t� is weak �Fh→0�, we approximate ũp by
up=F2 / �2�2�, so that ks=��̃+s�−up and the dependence of
��s� and �m

�p� on Fh is contained only in the factors R�t�,
R�t�� �including those in S̃s�r , t ;0 , t���.

According to the boundary condition �5�, the QQES wave
function in TDER theory diverges at small distances, so that
the functions �B6� and �B7� are singular at r=0. To extract
the singular terms explicitly, we use the following identities:

1

T
�

s



0

T ei��t��−i��t�−is��t−t��

�R̃�t,t����
dt� =

1

r� ,

��t� = 
t

�Ṙ2��� − up�d� ,

1

T
�

s



0

T sei��t��−i��t�−is��t−t��

�R̃�t,t����
dt� =

i

�
 i�̇�t�

r� −
2�r · Ṙ�t�

r�+2 � ,

�B8�

where we have used a known relation for the �-function in a
space of periodic functions,

��t − t�� = �1/T��
s

e−is��t−t��. �B9�

Using Eq. �B8�, the functions �B6� and �B7� can be repre-
sented in the following form:

��s��r,t� =
1

�4�
exp�ir · Ṙ�t��1

r
+ �

s

1

T



0

T

e−i�
t�
t �Ṙ2���−up+s��d�

�exp�iks�R̃�t,t���� − 1	

�R̃�t,t���
dt�� , �B10�

�m
�p��r,t� = Y1m�r̂�exp�ir · Ṙ�t��1 − ir · Ṙ�t�

r2 −
Ṙ2�t�

2
+

�̃

2
� + rY1m�r̂�exp�ir · Ṙ�t��

 �
s

1

T



0

T

e−i�
t�
t �Ṙ2���−up+s��d� 1

�R̃�t,t���3
exp�iks�R̃�t,t�����1 − iks�R̃�t,t���� −

1

2
ks

2R̃2�t,t�� − 1�dt�

− �m,0i� 3

4�
exp�ir · Ṙ�t���

s

1

T



0

T

e−i�
t�
t �Ṙ2���−up+s��d� �exp�iks�R̃�t,t���� − 1	Ṙ�t��

�R̃�t,t���

+ �R�t� − R�t���
2 exp�iks�R̃�t,t�����1 − iks�R̃�t,t���� − ks

2R̃2�t,t�� − 2

�R̃�t,t���3
�dt�. �B11�

The integral terms in Eqs. �B10� and �B11� are regular at
the origin �r=0�, and thus the integration path over t� can be
shifted into the complex t� plane in order to integrate over t�
by the stationary phase method at any r. We deform this path
so that it passes through the stationary phase points, t��, of the

function S̃s�r=0, t ;r�=0, t��� S̃s�t ; t�� in Eq. �B5�. This
function may be represented as follows:

S̃s�t;t�� � 2ks�R�t� − R�t��� − 

t�

t

�Ṙ���2 − ũp + s��d�

= S̃s�t�� − S̃s�t� , �B12�

where

S̃s�t�� = 
t�
��K̃s − Ṙ����2 − �̃	d� ,

K̃s = ks

R��� − R�t��
�R��� − R�t���

= ksn̂ , �B13�

and where n̂ is the unit vector directed along the vector
�R���−R�t���, i.e., n̂= ±ez. Thus the equation for t�� is

S̃s��t��� = �K̃s − Ṙ�t����
2 − �̃ = 0, K̃s = ± ksez. �B14�

Since Re �̃�0, the equation �B14� has only complex solu-
tions, t��. Moreover, for each of the two directions of the

vector K̃s, there are two solutions, t��, symmetric with respect
to the real axis of t�. Furthermore, only the solutions with
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positive imaginary parts, Im t��
0, should be taken into ac-
count �see Sec. III in Ref. �33� for details�. Thus, for each
direction of K̃s, only one saddle point t�� contributes to the
integrals over t� in Eqs. �B10� and �B11� by the stationary
phase method.

Besides the general quasiclassical condition, �	1, the
quasiclassical analysis of HHG requires also the condition
�33�, F /�2�1 �or, in absolute units, �0��−1, where �0
= �eF� / �m�2� is the amplitude of free electron oscillations in
a laser field�. Therefore, the factor �R�t�−R�t���� must be
treated as a large �complex� parameter in our further consid-

erations. For small r, r�rc	1, we expand the integral terms
on the right-hand sides of Eqs. �B10� and �B11� in the small
parameter r�R�t�−R�t����

−1 up to terms of order rl �cf. Eq.
�5��, project the results on the spherical harmonic Ylm�r̂�, and
average the resulting expressions for functions �B10� and
�B11� over time t over the period T. Then, performing the
integration over t� using the stationary phase method and
matching the results with the boundary condition �5� at fn

=�n,0, we obtain the following results for ��= �̃−E0: For the
s state �0�r�,

�� = −
C�0

2

T2 �
s,�
� �i

2S̃s��t���
eiS̃s�t���


0

T e−iS̃s�t�

�R�t� − R�t����
dt , �B15�

and for the p state �0�r�,

�� =
3C�1

2

T2 �
s,�
� �i

2S̃s��t���
eiS̃s�t���


0

T

e−iS̃s�t���m�,1
iks

�R�t� − R�t����
2 − �m,0

�Ṙ�t��� − Ks� · �Ṙ�t� − Ks�

�R�t� − R�t����
�dt . �B16�

In Eqs. �B15� and �B16� we have approximated �−1�l+1�1− �−���2l+1�/2�+rl�� /2�−�� /C�l
2 and replaced � by E0 in ks, i.e.,

ks=�s�−1−up. Also, only terms of lowest order in �R�t�−R�t����
−1 were kept on the right-hand sides of Eqs. �B15� and

�B16�. To extract the linear in Fh terms in ��, we integrate by parts in Eqs. �B15� and �B16� using the following approximate
�i.e., lowest order in �R�t�−R�t����

−1� relations:



0

T e−iS̃s�t�gp�Ṙ�t��

�R�t� − R�t����
1+�m�dt � i�2


0

T e−iSs�t��F�t� + Fh�t��
�F�t� − F�t����

1+�m�
�

�kt
gp�kt�

Ss��t�
�dt , �B17�

where

F�t� + Fh�t� = − R̈�t�, g0�Ṙ�t�� = g0�kt� = 1, g1�Ṙ�t�� = Ṙ�t� ± ks, g1�kt� = kt ± ks, kt = Ḟ�t�/�2 = − ezF/� sin �t .

Since the right-hand side of Eq. �B17� explicitly involves Fh�t� in the numerator, the substitution R�t�→F�t� /�2 had been

made in all other places on the right-hand side of Eq. �B17�, including S̃s�t�→Ss�t�, where �cf. Eq. �B13��

Ss�t� = 
t

��Ks − k��2 + 1�d�, Ks = ks
F�t� − F�t��
�F�t� − F�t���

= ± ksez. �B18�

Correspondingly, S̃s�t��� in Eqs. �B15� and �B16� should also be replaced by Ss�t���. Thus instead of �B14�, the stationary phase
points t�� in Eqs. �B15� and �B16� should be determined from the equation Ss��t���=0, which involves only the laser field F�t�.

Extracting the linear in Fh terms in �� in Eqs. �B15� and �B16� using Eq. �B17�, the HHG amplitude is obtained from
relations similar to Eqs. �15� and �16�. After some algebra, we obtain the following results: For an s state �0�r�,

AN
�s� = 2i�

s,�
Z0,s


0

T ei��t+Ss�t���−Ss�t���kt − Ks� · e�*

�cos��t� − cos��t������Ks − kt�2 + 1�2dt , �B19�

and for a p state �0�r�,

AN
�p,�m�=1� =

�2

F
�
s,�

Z1,sks

0

T ei��t+Ss�t���−Ss�t���kt − Ks� · e�*

�cos��t� − cos��t����
2��Ks − kt�2 + 1�2dt , �B20�

AN
�p,m=0� = �

s,�
Z1,s


0

T ei��t+Ss�t���−Ss�t����Ks − kt�2 − 1��Ks − kt
��
� · e�*

�cos��t� − cos��t������Ks − kt�2 + 1�2 dt , �B21�
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where

Zl,s =
�2l + 1�C�l

2 �4

4�2F
� 2�i

S�s�t���
.

Note that the generalization to the case of an arbitrary polar-
ization of the harmonic field, e�, in Eqs. �B19�–�B21� was
done by substituting ez→e�*, as explained below Eqs. �28�
and �29� in paper I. The sum �s is taken over all open
s-photon ATI channels, i.e., those with s
 �up+1� /�. As ar-

gued in Ref. �33�, the sum �� over two stationary points, t��
�corresponding to the two opposite directions of Ks in
�B18��, may be replaced by the contribution of only one of
these points �e.g., that with the smaller value of Re t��
0,
say t0��, multiplying the expressions �B19�–�B21� by a factor
of 2 and substituting �cos��t�−cos��t����→ �cos��t�
−cos��t0��� in the denominators. As a result, the final quasi-
classical expressions for the HHG amplitudes attain the
forms �29�–�31� given in the main text.
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