
Mobility edges in bichromatic optical lattices

Dave J. Boers, Benjamin Goedeke, Dennis Hinrichs, and Martin Holthaus*
Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg, Germany

�Received 21 January 2007; published 6 June 2007�

We investigate the localization properties of single-particle eigenstates in bichromatic one-dimensional
optical lattices. Whereas such a lattice with a sufficiently deep primary component and a suitably adjusted
incommensurate secondary component provides an approximate realization of the Harper model, the system’s
self-duality is broken when the lattice is comparatively shallow. As a consequence, the sharp metal-insulator
transition exhibited by Harper’s model is replaced by a sequence of mobility edges in realistic bichromatic
optical lattices that do not reach the tight-binding regime.
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I. INTRODUCTION

The deceptively simple single-band tight-binding model
given by the Hamiltonian Htb=Hnn+Hos, where

Hnn = �
�=−�

+�
t

2
������ + 1� + �� + 1����� �1�

describes a single particle moving on a one-dimensional lat-
tice with constant hopping matrix elements t /2 connecting
each Wannier state ��� with its two nearest neighbors, and

Hos = �
�=−�

+�

v cos�2�g� + �������� �2�

introduces a modulation of the on-site energies with ampli-
tude v, possesses unusual properties �1�. Provided the num-
ber g is irrational, and �v / t��1, all its energy eigenstates are
extended, but they become exponentially localized when
�v / t��1, with a sharp metal-insulator transition occurring at
�v / t�=1 �1,2�. At the transition point, the energy spectrum is
fractal: If one plots the eigenvalues for �v / t�=1 versus g, one
obtains the famous Hofstadter butterfly �3,4�. Accordingly,
this system has attracted a lot of interest �5–8�.

A possible experimental realization could exploit ultra-
cold atoms of mass m in a superposition of two standing
laser light waves directed along the x axis with wave num-
bers kL and gkL. Atomic motion along the lattice is then
described by the effective Hamiltonian H=H0+H1, where

H0 =
p2

2m
−

V0

2
cos�2kLx� �3�

models a monochromatic optical lattice with period
d=� /kL, and

H1 = V1 cos�2gkLx + �� �4�

describes a second cosine lattice which, for irrational g, is
incommensurate with the first one, � being an arbitrary
phase. If the depth V0 of the “principal” component of such a
bichromatic optical lattice is chosen sufficiently large com-
pared to the recoil energy Er=�2kL

2 / �2m�, such that the

single-particle dynamics can be restricted to the lowest
Bloch band given by H0, and the corresponding lowest-band
Wannier states have appreciable overlap with their nearest
neighbors only, the monochromatic lattice �with V1 /Er=0�
provides a good approximation to the basic tight-binding
model Hnn �9�. If then the second optical lattice component
modeled by H1 is added, with an amplitude V1 that is merely
on the order of the width of the lowest Bloch band of the
primary lattice, one obtains an approximation to the full sys-
tem Htb �10,11�. In view of the enormous experience that has
been gained recently with ultracold atoms in periodic optical
lattices �12,13�, culminating in the observation of the transi-
tion from a superfluid to a Mott insulator �14,15�, and in the
realization of the Tonks-Girardeau gas �16�, it seems prom-
ising now to start exploring quasiperiodic optical lattice
structures �17�.

The metal-insulator transition exhibited by the tight-
binding model Htb=Hnn+Hos hinges on a delicate property. If
one expands its energy eigenfunctions in the form

��E� = �
�=−�

�

a���� , �5�

the stationary Schrödinger equation translates into

t

2
�a�+1 + a�−1� + v cos�2�g� + ��a� = Ea�, �6�

a system known as the Aubry-André model �1�, or as Harp-
er’s equation �8�. Considering then the transformation

a� = �
m

bmeim�2�g�+��ei	�, �7�

which maps the set of amplitudes 	a�
 to its dual 	bm
, this
equation �6� is cast into the form

v
2

�bm+1 + bm−1� + t cos�2�gm + 	�bm = Ebm, �8�

with the same eigenvalue E. Thus, the system �6� possesses
self-duality: Its dual equation �8� has precisely the same
form, with the roles of t and v being interchanged �2�.

It is immediately obvious that this self-duality can be
“broken” in a realistic one-dimensional lattice which, unlike
the theoretical ideal described by Htb, does admit not only*Electronic address: holthaus@theorie.physik.uni-oldenburg.de
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coupling between neighboring Wannier states, but also next-
to-nearest neighbor interactions, and possibly interactions
between Wannier states separated still farther from each
other. This happens in a bichromatic optical lattice of the
type sketched above, when the primary lattice which defines
the Wannier basis does not reach the tight-binding limit. It is,
therefore, both of interest and of relevance to investigate how
the sharp transition featured by Htb is affected in an imper-
fect realization achieved with moderately deep optical lat-
tices, when self-duality is not ensured.

Thus, in this paper we consider the dynamics of a single
particle in a bichromatic optical lattice beyond the tight-
binding limit. In the following section we study the exact
Wannier states for monochromatic cosine lattices, and quan-
tify the magnitude of next-to-nearest-neighbor coupling. In
Sec. III, we then demonstrate that the sharp metal-insulator
transition met in the ideal tight-binding model Htb gives way
to a sequence of mobility edges in comparatively shallow
bichromatic optical lattices, and briefly draw some conclu-
sions in Sec. IV.

II. WANNIER FUNCTIONS FOR A COSINE LATTICE

Our deductions are based on an inspection of the Wannier
functions �18� pertaining to the lowest energy band of the
primary cosine lattice �3� with depth V0. Wannier functions
do depend on the choice of the phases of the Bloch waves
from which they are computed; we consider here the maxi-
mally localized, real Wannier functions as specified by Kohn
�19�. It is intuitively clear that within a sufficiently deep
cosine well a Wannier function w0�x� is approximated by the
harmonic-oscillator ground state function adapted to the
well’s parabolic bottom �20�


0�x� =
kL

1/2

�1/4�V0

Er
�1/8

exp�−
1

2

V0

Er
�kLx�2� . �9�

However, there are profound differences between this Gauss-
ian and the true Wannier functions: On the one hand, the tails
of the actual Wannier functions oscillate, in order to ensure
orthogonality of functions centered at different lattice sites.
On the other hand, the asymptotic decay of the exact func-
tions is given �for x�0� by

w0�x� � x−3/4 exp�− h0x� , �10�

where h0 is the �positive� imaginary part of the branch point
connecting the lowest two energy bands in the complex k
plane �19�, and the universal exponent −3/4 of the prefactor
is due to the fact that this branch point is of the square-root
type �21�. In Fig. 1 we compare the local Gaussian �9� to the
exact Wannier function for a monochromatic cosine lattice
with depth V0 /Er=3, while Fig. 2 visualizes the exponential
decay of the exact function.

Now the nth Fourier component of the dispersion E�k� for
the lowest energy band

E�k� = E0 + �
n=1

�

�− 1�n2Jn cos�nkd� �11�

is given by the matrix element of the monochromatic lattice
Hamiltonian �3� taken with Wannier functions w0�x� and
wn�x�=w0�x−nd� located at sites separated by n lattice peri-
ods d,

�− 1�nJn = �w0�H0�wn� . �12�

Hence, under conditions such that it suffices to retain only
n= ±1, i.e., only nearest-neighbor interaction, the Wannier
representation of H0 reduces to the model �1� with t /2=−J1,
neglecting the overall energy shift E0. However, in many
cases this reduction is an oversimplification. According to He
and Vanderbilt �21�, the decay of the matrix elements �12�
with n is again described by an asymptotic law of the type
�10�,

Jn � �nd�−3/2 exp�− h0nd� , �13�

with modified universal exponent −3/2 of the prefactor.
Hence, knowledge of the branch point h0 is of key impor-
tance for estimating the magnitude of the interaction among
non-neighboring Wannier states. A weak-binding calculation
yields
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FIG. 1. Wannier function w0�z� for the lowest energy band of a
monochromatic cosine lattice �3� with depth V0 /Er=3 �full line�,
compared to its harmonic-oscillator approximation �9� �dashes�. We
employ the dimensionless coordinate z=kLx, so that �z=� corre-
sponds to one lattice period.
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FIG. 2. Decay of the square of the exact Wannier function w0�z�
depicted in Fig. 1.
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h0/kL �
V0

8Er
for

V0

4Er
� 1, �14�

whereas an estimate based on the known properties of the
Mathieu equation �22� leads to the relation

h0/kL �
 V0

4Er
−

1

4
�15�

for very deep lattices. Figure 3 shows numerically computed,
exact values of h0 /kL; the two trends �14� and �15� are
clearly recognizable.

In order to assess the accuracy of the asymptotic law �13�,
we plot in Fig. 4 the quantities ln�Jn /Er�+n�h0 /kL versus
ln n� for V0 /Er=3. According to Eq. �13�, one expects a
straight line with slope −3/2 for large n; actually, this expec-
tation is well met even for small n.

To conclude the investigation of the Wannier basis for the
monochromatic cosine lattice �3�, we list some typical nu-
merical data in Table I. The large squared overlap ��w0 �
0��2

of the Gaussian �9� with the true Wannier function already
for low V0 /Er should not divert attention from the essential
point: For V0 /Er=3 the ratio J2 /J1 of the magnitude of next-
to-nearest-neighbor coupling J2 to nearest-neighbor coupling
J1 is still on the order of 10%. This ratio drops to 1% when
V0 /Er=10, and becomes 0.1% when V0 /Er=20. In other

words, the description of optical lattice potentials in terms of
a nearest-neighbor model becomes correct at the one-percent
level only when V0 /Er
10.

III. MOBILITY EDGES

We now turn to bichromatic optical lattices as given by
Eqs. �3� and �4�, with the understanding that the amplitude
V1 of their secondary component remains small compared to
the depth V0 of the principal one. In order to characterize the
localization properties of the eigenstates of such a system,
we diagonalize the full Hamiltonian H=H0+H1 in the
lowest-band Wannier basis defined by the principal lattice
H0, after truncating that lattice to a finite number N of sites.
From the expansion of the �th eigenstate

���x� = �
�=1

N

a�
�w��x� , �16�

with w��x�=w0�x−�d�, we then compute its extension ��,

�� =
 12

N2 − 1��
�=1

N

�2�a�
��2 − ��

�=1

N

��a�
��2�2�1/2

, �17�

normalized such that ��=1 for a uniformly extended state
�i.e., when a�

�=1/
N for all sites ��. Then

�̄ =
1

N
�
�=1

N

�� �18�

provides a measure for the average extension of the eigen-
states, with �̄�1 implying that most eigenstates are ex-
tended all over the �truncated� lattice, whereas �̄�0 indi-
cates that all eigenstates are strongly localized. Figure 5
summarizes results of such calculations for various depths V0
of the principal lattice, as functions of the perturbation V1
introduced by the second component. In all these calcula-
tions we fix g= �
5−1� /2 as the incommensurability param-
eter, and choose N=1000. Evidently, �̄ drops sharply with
increasing V1 /Er from 1 to about 0 when the primary lattice
is deep, V0 /Er
10, thus indicating an approximate realiza-
tion of the sharp metal-insulator transition predicted by
the ideal tight-binding model Htb. In contrast, �̄ features
pronounced steps when the primary lattice is shallow,
V0 /Er�5. These steps are a clear manifestation of the effect
of the residual next-to-nearest- �and higher� neighbor cou-

0 10 20
V0/Er

0.0

1.0

2.0

h 0/
k L

FIG. 3. Location of the branch point h0 /kL, as a function of the
depth V0 /Er of a monochromatic cosine lattice �full line�. Also
shown are the estimates �14� �short dashes� and �15� �long dashes�.
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FIG. 4. Plot of ln�Jn /Er�+n�h0 /kL vs ln n� for V0 /Er=3 �dia-
monds�, using h0 /kL=0.3661. The slope −3/2 expected for large n
is already showing up for small n.

TABLE I. Numerical values characterizing optical cosine lat-
tices for some typical depths V0 /Er.

V0 /Er ��w0 �
0��2 h0 /kL J1 /Er J2 /J1

3.0 0.9719 0.3661 0.11103 0.1011

5.0 0.9836 0.5896 0.06577 0.0516

10.0 0.9938 1.0678 0.01918 0.0118

15.0 0.9964 1.4635 0.00652 0.0035

20.0 0.9975 1.8069 0.00249 0.0012

25.0 0.9981 2.1144 0.00104 0.0005
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plings quantified in Table I, and discarded in Harper’s
equation �6�.

To throw light on the nature of these steps, we plot in
Fig. 6 the extensions �� of the individual energy eigenstates
versus their respective energy E, each dot corresponding to
one state, for the most shallow primary lattice considered in
Fig. 5, with V0 /ER=3.0. In Fig. 6�a� we have V1 /ER=0.25,
coinciding roughly with the onset of the steep drop of the
corresponding line in Fig. 5; V1 /ER=0.293 in �b�, located in
the middle between the first two well-developed steps; and
V1 /ER=0.35 in �c�, in the middle of the most pronounced
plateau. In general, energy eigenvalues for an infinite quasi-
periodic lattice form an intricate pattern of subbands and
gaps �17,23�, a glimpse of which can be inferred, even for
only N=1000, from the pattern of the eigenvalues displayed
in Fig. 6. We have made sure that the structure of these plots
remains practically unchanged when the number of sites is
increased to N=2000. Evidently, when V1 /Er is increased,
the eigenstates investigated here do not all localize simulta-
neously, as they do in the tight-binding model Htb, but rather
subband by subband, so that within an intermediate regime
of V1 /Er localized states in “lower” subbands coexist with
extended states in “higher” ones, i.e., there are mobility
edges. Thus, as a consequence of the “breaking” of Aubry-
André self-duality occurring in shallow bichromatic optical
lattices, resulting from �predominantly� next-to-nearest-
neighbor interaction, the sharp metal-insulator transition
shown by the ideal tight-binding model Htb is replaced by a
sequence of mobility edges.

IV. CONCLUSION

One-dimensional quasiperiodic lattice structures show
features far more delicate than the usual Bloch bands en-
countered in periodic lattices, and fairly different from lat-
tices with truly random disorder. Although the mathematical
theory of such systems governed by almost periodic
Schrödinger operators is quite well developed �23�, their ex-
perimental study still rests in its infancy. Hall measurements
on a two-dimensional electron gas in a semiconductor super-

lattice indeed have revealed traces of the Hofstadter butterfly
spectrum �24�. But still, there exists a need for more versatile
and well controllable laboratory realizations of quasiperiodic
systems.

With the ubiquitous availability of cold atoms in optical
lattices �12,13�, and the possibility to realize bichromatic op-
tical lattices, this situation is likely to change in the near
future. In particular, we have suggested in this paper to con-
sider one-dimensional bichromatic lattices with a sufficiently
strong primary component �3�, and a secondary component
with an amplitude that is comparable to the width of the
lowest Bloch band defined by the primary lattice. As wit-
nessed by Fig. 5, such a system provides an approximate
realization of the sharp metal-insulator transition exhibited
by the ideal Harper model �6� when the primary lattice is at
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V1/Er

0.0

0.5

1.0

σ av

FIG. 5. Average extension �av= �̄ for the eigenstates of
bichromatic optical lattices, as functions of the amplitude V1 of
the secondary lattice �4�, with incommensurability parameter
g= �
5−1� /2. The amplitudes of the principal lattices �3� are
V0 /Er=3,4 ,5 ,6 ,8 ,10,15,20 �right to left�.
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FIG. 6. Extensions �� of individual eigenstates of a bichromatic
optical lattice, with depth V0 /Er=3 of the primary component. As
in Fig. 5, we set g= �
5−1� /2 and N=1000. The amplitudes of the
secondary lattices are V1 /Er=0.25 �a�, 0.293 �b�, and 0.35 �c�.

BOERS et al. PHYSICAL REVIEW A 75, 063404 �2007�

063404-4



least ten recoil energies deep, so that only the coupling be-
tween Wannier states adjacent to each other remains appre-
ciable. In a laboratory experiment, such a transition could be
detected by measuring the momentum distribution of the at-
oms, or by studying the diffusion of their wave packets �17�.
Our model calculations show that it is not necessary to
implement truly irrational numbers with mathematical �i.e.,
unattainable� precision; after all, on a finite lattice one can
“resolve” only a finite number of digits.

From the condition �v / t�=1 for the transition in the model
�6�, one can derive an estimate for the “critical” amplitude V1

c

of the secondary lattice, given the depth V0 of the primary
one: When V0 /Er
10, the hopping matrix element −t /2 ap-
pearing in Eq. �1� is well approximated by �25�

−
t

2
�

4Er


�
�V0

Er
�3/4

exp�− 2
V0

Er
� . �19�

On the other hand, the amplitude v of the on-site perturba-
tion �2� can be estimated with the help of the Gaussian ap-
proximation �9� for the Wannier states as follows:

v � �
0�H1�
0� = V1 exp�−
g2


V0/Er
� . �20�

This gives

V1
c

Er
�

8

�

�V0

Er
�3/4

exp�+
g2


V0/Er

− 2
V0

Er
� , �21�

valid for reasonably chosen g on the order of unity.
Perhaps even more interesting than an approximate real-

ization of Harper’s model �6� with deep primary lattices is
the appearance of mobility edges, and the associated coex-
istence of extended and localized single-particle eigenstates,
in comparatively shallow bichromatic lattices. Actually, the
estimate �21� does not only yield the “critical” modulation
strength V1

c when the primary lattice is deep, but it also gives
a reasonable idea of the amplitudes V1 required for inducing
such mobility edges in more shallow lattices. In Fig. 7 we
compare the estimate �21� with those values of V1 which,

according to Fig. 5, lead to an average extension of �̄=0.5.
Evidently, the agreement is satisfactory even beyond the
tight-binding limit.

We suggest that possible laboratory experiments with
bichromatic lattices aiming for the detection of these mobil-
ity edges should employ primary components with a depth of
three recoil energies or even less, which are readily available
�12–14�. According to Fig. 5, detection of the main edges
then requires adjusting the depth of the secondary compo-
nent with a precision of about 0.05Er.

With a view towards promising future developments, it
would be interesting to consider not only single-particle phe-
nomena, but also to investigate Bose-Einstein condensates in
bichromatic optical lattices of the type suggested here. In
that case, the incommensurability-induced transition de-
scribed by the ideal Harper model would compete with the
interaction-induced Mott-Hubbard transition �14,15�, and it
might be worthwhile to study the outcome of that competi-
tion.
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