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The quasistatic limit of the velocity-gauge strong-field approximation describing the ionization rate of
atomic or molecular systems exposed to linearly polarized laser fields is derived. It is shown that in the
low-frequency limit the ionization rate is proportional to the laser frequency, if a Coulombic long-range
interaction is present. An expression for the corresponding proportionality coefficient is given. Since neither
the saddle-point approximation nor the one of a small kinetic momentum is used in the derivation, the obtained
expression represents the exact asymptotic limit. This result is used to propose a Coulomb correction factor.
Finally, the applicability of the found asymptotic expression for nonvanishing laser frequencies is investigated.
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I. INTRODUCTION

Keldysh-Faisal-Reiss �KFR� theories are very popular to
describe nonresonant multiphoton ionization of atoms and
molecules in intense laser fields �see, e. g., �1–4� and refer-
ences therein�. While the principle concept of ignoring the
effect of the interaction of the ionized electron with the re-
maining atomic system in the final state is common to all
KFR approximations, the approaches differ in the details of
their formulation. Whereas the length gauge was used in the
original work of Keldysh �5�, the velocity gauge was in-
voked by Reiss �6� and Faisal �7�. Historically, the velocity-
gauge variant of KFR theory is also known as strong-field
approximation �SFA� �8�. Although this terminology is not
consequently adopted nowadays, this meaning of SFA is
used in the present work that discusses exclusively the
velocity-gauge variant of KFR.

A possible test of KFR theories is a comparison of its
prediction in the tunneling limit with the corresponding one
of quasistatic theories �9,10�. The tunneling limit of the
length-gauge version of KFR was considered already by
Keldysh for the explicit example of a hydrogen atom. In the
derivation he employed, however, two additional approxima-
tions: The one of a small kinetic momentum and the saddle-
point method �SPM�. In his detailed work �6� about SFA
theory Reiss has also used the SPM to obtain an approxima-
tion for the generalized Bessel functions �“asymptotic ap-
proximation”� that are required for the calculation of the
transition amplitude. The algebraically cumbersome form of
the in �6� derived “asymptotic approximation” has motivated
the development of a simpler form appropriate for the tun-
neling regime. This approximation �11� is again based on the
SPM and is referred to as “tunneling 1 approximation.” It
was, however, shown �12,13� that the “tunneling 1 approxi-
mation” is much worse than the “asymptotic approximation”
in the case of large kinetic momenta. Since neither �6� nor
�11� contain explicit asymptotic expressions in the limit of
vanishing laser frequency ��→0�, a systematic study of the
quasistatic limit on their basis is almost impossible. Recently,
the different versions of KFR were numerically compared
with quasistatic theories for the hydrogen atom in �14�. It
was found that SFA significantly underestimates the ioniza-

tion rate, especially in the limit �→0 or for very strong
fields. Since both limits can be well described with quasi-
static theories, a comparison of them with the corresponding
limit of SFA can provide an insight into the reasons for such
a disagreement. The derivation and analysis of such an
asymptotic expression for the SFA ionization rate is the main
motivation of this work. As is shown below, the SFA rate
does not converge to the tunneling result, if long-range Cou-
lomb interactions are present.

The asymptotic limit of SFA for �→0 is also very inter-
esting, because it may be used for deriving a Coulomb cor-
rection factor by comparing this limiting expression with the
one of quasistatic theories. Rescaling the SFA rate �for �
�0� in such a way that it agrees with the quasistatic limit for
�→0 is supposed to correct SFA for the otherwise neglected
long-range Coulomb interaction between the ionized electron
and the remaining ion. Such a Coulomb correction factor
was proposed by Becker and Faisal �see �2� and references
therein� and is extensively used in their atomic and molecu-
lar SFA calculations �1,2�. Note, this correction factor is in
fact very large and can amount to almost three orders of
magnitude for atomic hydrogen and standard parameters of
intense femtosecond lasers. Although it is emphasized in �2�
that the low-frequency limit of SFA converges to the tunnel-
ing result, this is only shown for the case of short-range
interactions. As is demonstrated in the present work, the cor-
rect asymptotic limit of SFA in the presence of long-range
Coulomb interactions differs from the short-range case even
qualitatively, since it is proportional to �, but � independent
for short-range potentials. Therefore, the present work also
allows to directly derive an asymptotically correct Coulomb
correction factor for SFA.

The present paper is organized the following way. After a
brief description of the ionization rate within SFA in which
the basic formulas and notations are introduced �Sec. II A�,
an expression is derived in Sec. II B that is numerically very
convenient for the calculation of generalized Bessel func-
tions and thus the SFA in the quasistatic limit. In Sec. II C an
exact asymptotic formula is derived for the generalized
Bessel functions in the limit �→0. In this derivation neither
the SPM nor any other approximation beyond the ones in-
herent to SFA are used and it is demonstrated that the SPM
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yields wrong results for weakly bound systems or very in-
tense fields. In Sec. II D two simplifications are introduced
that in contrast to the SPM or small-momentum approxima-
tion are universally justified in the limit �→0. This allows
to derive an exact analytical expression of the quasistatic
limit of the SFA in the presence of long-range interactions
that we name QSFA. In Sec. III the QSFA is discussed for
the example of atomic hydrogen. After a derivation of the
parameters specific to the considered atomic system in Sec.
III A, the rate obtained in the weak-field limit is discussed
and compared to tunneling models in Sec. III B. Based on
this comparison, a Coulomb correction factor is derived for
SFA and compared to an earlier proposed one. The range of
validity of QSFA for standard laser frequencies is explored in
Sec. III C where also a correction is proposed that is explic-
itly given for the 1S state of hydrogenic atoms. The findings
of this work are summarized in Sec. IV.

II. THEORY

A. Ionization rate

In the single-active-electron approximation, we consider
the direct transition of an electron from the initial bound
state �0 to a continuum state �p due to the linear polarized
laser field F�t�=F cos �t with period T=2� /�. The total
ionization rate is given in the SFA by

WSFA = �2��−2 �
N�N0

pN� pN
2

2
+ Eb�2

�� dp̂	L�pNp̂�	2	�̃0�pN,p̂�	2, �1�

with �=
2Eb where Eb is the binding energy of the initial

bound state �0 with its Fourier transform �̃0. The number of
absorbed photons N satisfies N�N0= �Eb+Up� /� where Up

=F2 / �4�2� is the electron’s quiver �ponderomotive� energy
due to the laser field. Finally, pN=
2�N�−Eb−Up� is the
momentum in the final state for an N photon transition. The
function L�p� is defined as

L�p� =
1

T
�

0

T

eiSp�t�dt , �2�

where S�t� is given with the aid of the mechanical momen-
tum of the electron, ��t�=p− �F /��sin �t, as

Sp�t� = �
0

t

dt��Eb +
1

2
�2�t��� . �3�

For p= pNp̂ the function L�p� can simply be expressed using
the generalized Bessel functions �we use for them Reiss’
definition which differs slightly from the one of Faisal� as

L�pNp̂� = �− i�Ne�iJN��,− z/2� , �4�

where �=−pNF�p̂ · F̂� /�2 and z=Up /�. In the high-
frequency and low-intensity �so called multiphoton� regime
the generalized Bessel functions can be very efficiently cal-

culated using an expansion over products of ordinary Bessel
functions,

JN�a,b� = �
m=−�

�

JN−2m�a�Jm�b� , �5�

where only a few terms are required to yield high accuracy.
Consider now the quasistatic limit defined by �→0. In-

troducing the Keldysh parameter 	=�� /F, the �inverse�
field parameter 
=�3 /F, and the variables

qN = pN/� and � = − p̂ · F̂ , �6�

one finds

� =

qN�

	2 , z =



4	3 , N0 =



4	3 �1 + 2	2� . �7�

The condition �→0 leads to 	→0, whereas parameter 
 is
� independent and thus unaffected. Since the numerical val-
ues of qN and � are usually of the order of one, both argu-
ments and the index of the generalized Bessel function in Eq.
�4� approach to infinity. In this case it is very problematic to
use Eq. �5� for numerical calculations, since very many terms
are required and their amplitudes are much larger than the
final result. This can lead to large cancellation errors. In the
next subsection we solve this problem by a transformation of
the integral �2� to a form that is more convenient for numeri-
cal calculations.

B. Efficient calculation in the quasistatic limit

A very efficient way for the numerical computation of
L�pNp̂� in the tunneling regime is possible by means of per-
forming the integration through the saddle points. Introduc-
tion of the new complex variable u=sin �t allows to rewrite
Eq. �2� as

L = 

Cc

F�u�du , �8�

where

F�u� =
eiS�u�

2�f�u�
, �9�

S�u� =



2	3�
Cu

v2 + 2	qN�v + 	2�1 + qN
2 �

f�v�
dv , �10�

f�u� = sgn�Im�u��
1 − u2. �11�

The closed contour Cc in Eq. �8� encloses the branch cut
�−1,1� of the functions f�u�, S�u�, and F�u�. The path of
integration Cu in Eq. �11� specifies the path around the
branch cut starting at v= i0+ and terminating at v=u. Since
S�u� is a multivalued function, we have selected the branch
cut along the negative imaginary axis. Nevertheless, function
F�u� �as well as f�u�� is analytical in the whole complex
plane except its branch cut �−1,1�.

There exist two saddle points u± of S�u� in the complex
plane u defined by S��u±�=0 and given explicitly by
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u± = 	��− 
 ± i� , �12�

with

� = 
1 + qN
2 �1 − �2� � 1, 
 = qN�/� � qN. �13�

We introduce the straight contours C± that go through the
saddle points u± and are given parametrically as

u�x,Q±� = u± + xQ±, − � � x � � �14�

starting at x→−�. The values of Q± are chosen in such a
way that the contours C± are passing through the steepest
descent, i.e., as

Q± =
 2i

S��u±�
, �15�

where the argument of Q± satisfies −� /4�arg Q±�� /4.
As 	u 	 →�, the function F�u� decays exponentially to 0

for 	arg u 	 �� /4. This allows to transform the contour inte-
gral �8� as

L = 

C+

F�u�du − 

C−

F�u�du = L+ − L−, �16�

where the integrals L± can be calculated using Eq. �14� as

L± = �
−�

�

Q±F�u± + Q±x�dx . �17�

The transformations above could also be used in the context
of SPM, where the integration in Eq. �17� is performed in an
approximate way using an expansion of S�u� at u=u± �see
next subsection for more details�. However, the expression
obtained for L within the SPM is only approximate. Since
our intention is to perform an exact calculation of L �within
a controllable precision�, the integration in Eq. �17� is done
numerically using Gaussian quadrature. Moreover, it is suf-
ficient to calculate only L+. Indeed, using

f�u*� = − f*�u�, Q±
* = Q�, �18�

eiS�u*� = �− 1�N exp�2�i��eiS�u��*, �19�

one obtains

L− = − �− 1�N exp�2�i�L+
* . �20�

Substituting Eq. �20� into Eq. �16� yields

L = L+ + �− 1�N exp�2�i�L+
* . �21�

Introducing the absolute value L and the argument � of L+
we obtain for the generalized Bessel function

JN��,− z/2� = 2L cos�� − � − N�/2� �22�

and

	L	2 = 2L2�1 + cos�2� − 2� − N��� . �23�

We stress that no approximations have been done. The
highly oscillatory integral �2� has only been modified to a
form that is much more convenient for the numerical calcu-
lation of 	L	2 and will be used in the present work to obtain

numerical values of the SFA ionization rate WSFA �1� that
serve as a reference for the QSFA derived below.

C. Generalized Bessel functions in the quasistatic limit

In order to derive �in Sec. II D� an analytic expression for
the SFA rate in the quasistatic limit, it is required to first find
the exact limit of 	L	2 for 	→0. It follows from Eq. �12� that
u+→0 in the limit 	→0. Function f�u� is then nearly 1 in
the interval �0,u+� and S�u+� can be calculated using the
Taylor expansion of f−1�u� at u=0 for Im�u��0,

f−1�u� = 1 +
u2

2
+

3u4

8
+ ¯ . �24�

Substitution of Eq. �24� into Eq. �11� and integration yields

iS�u+� = −

�3

3
−


�3
�3 + 
2�
6

i + O�	2� . �25�

Performing the Taylor expansion of S�u� at u=u+ gives

iS�u+ + Q+x� = iS�u+� − x2 + i

2

3

�3
x3 + O�	2� , �26�

where

Q+ = 	
2f�u+�

�

= 	
 2


�
+ O�	3� �27�

has been used. Due to the smallness of Q+, function eiS�u�

decays fastly in the vicinity of u+. Since the expansions �26�
and �24� are expected to be valid in this region, the integrand
of L+ can be rewritten as

Q±F�u± + Q±x� = 	C exp�− x2 + i

2x3

3

�3� + O�	3� ,

�28�

where

C =
1

2�

 2


�
exp�−


�3

3
−


�3
�3 + 
2�
6

i� . �29�

Integration over x yields for the absolute value L and the
argument � of L+

L = 	
�


3�
K1/3� 
�3

3
� + O�	3� , �30�

� = −

�3
�3 + 
2�

6
+ O�	2� , �31�

where K� is the modified Bessel function of the second kind
of order �. Before using this result for a derivation of the
ionization rate in the quasistatic limit, it is instructive to
compare it to the predictions of the “asymptotic approxima-
tion” �6� and the “tunneling 1 approximation” �11� which
both are based on the SPM.

It is important to stress that the term proportional to x3 is
usually ignored, if the SPM is used. Ignoring this term in Eq.
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�28� and integrating over x would yield instead of Eq. �30�

LSPM =
	


2�
�
exp�−


�3

3
� . �32�

Although the limit 	→0 of the “asymptotic approximation”
is not easily transparent from the equations given in �6�, a
tedious analysis yields exactly the form given in Eq. �22�
where � is specified in Eq. �31� and L must be substituted
with LSPM from Eq. �32�. On the other hand, to obtain the
limit 	→0 of the “tunneling 1 approximation” one should
substitute L and � in Eq. �22� with

Ltun1 =
	


2�
�̄
exp�−


�̄3

3
� + O�	3� , �33�

�tun1 = −

qN��̄2

2
+ O�	2� , �34�

where �̄=
1+qN
2 .

Clearly, the “tunneling 1 approximation” agrees with the
“asymptotic approximation” only for ��0. It is also evident
that for ��1 the damping factor in the exponent increases
with qN, whereas for the “asymptotic approximation” it re-
mains at about −
 /3. Since ��1 gives the main contribution
to ionization, the “tunneling 1 approximation” underesti-
mates the ionization rate for larger kinetic momenta as is
numerically proven in �12�.

It is also instructive to check the range of the validity of
the SPM used to obtain the “asymptotic approximation.” The
ratio between LSPM and L is given by

LSPM

L
=


� exp�− 
�3/3�

2/3

�3K1/3�
�3/3�

. �35�

Its numerical values for different parameters is shown in Fig.
1. For large values of 
�3 /3 the ratio is given asymptotically
as

LSPM

L
→ 1 +

5

72

3


�3 = 1 +
5F

24�3�3 �36�

and approaches 1 in the weak-field limit. For usual laser
parameters SPM may give an error within a few percent and
only in the extreme case of small binding energies �e.g.,
ionization of Rydberg states� and very strong fields the error
is significantly larger.

D. SFA rate in the quasistatic limit

Having obtained an exact asymptotic expression for 	L	2 it
is now possible to derive an analytic form of the SFA ion-
ization rate WSFA �1� in the quasistatic limit. Besides the
formulas obtained in the previous two subsections some fur-
ther asymptotically exact approximations are, however, re-
quired. For this purpose, defining the azimuthal angle �
around axis parallel to F and using

� dp̂ = �
−1

1

d��
0

2�

d� , �37�

we rewrite Eq. �1� as

WSFA =
�5

16�2�
−1

1

d� �
N�N0

qN�1 + qN
2 �2	L	2�̃ , �38�

where

�̃ = �
0

2�

d�	�̃0	2. �39�

Note that the argument of the cosine in Eq. �23� is pro-
portional to 	−3 and leads to fast oscillations, if N and � are
varied. Thus the contribution of this term to the final result is
negligibly small and it is possible to substitute 	L	2 in Eq.
�38� with 2L2,

WSFA
ap1 =

�5

8�2�
−1

1

d� �
N�N0

qN�1 + qN
2 �2L2�̃ . �40�

The next step is to substitute the summation over N by an
integral. A standard approach consists of a transformation of
the sum into an integral over qN. This allows to calculate
differential rates, but due to the coupling of qN and � in � it
is impossible to obtain a simple analytical expression with-
out the use of an expansion �e.g., the small kinetic momen-
tum one, qN�1�. Instead of the use of a double integral with
respect to qN and � we rewrite Eq. �40� as a double integral
with respect to � and 
. Transforming the sum into the inte-
gral over � with

�
N�N0

→ �
1

�

d�
�


	�1 − �2�
, �41�

and using

1 + qN
2 = �2�1 + 
2�, �

−1

1

d�
qN

�1 − �2�
= �

−�

�

d
� �42�

one obtains

10
-2

10
-1

10
0

10
1

10
2

10
3

τρ3/3

1

1.1

1.2

1.3

1.4

1.5

R
at

io

FIG. 1. Ratio between LSPM �32� and L �30� as a function of

�3 /3. This ratio indicates the range of validity of the SPM. Since
��1, the SPM result shows very good agreement for large 
 and
starts to fail only for small values of 
. The latter case corresponds
to a small binding energy or a high intensity of the field.
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WSFA
ap2 =

�5


8�2	
�

1

�

d� �6�
−�

�

d
�1 + 
2�2L2��,
��̃��,
� .

�43�

Substitution of Eq. �30� into Eq. �43� yields an analytical
expression for the quasistatic limit of the SFA �denoted
QSFA�

WQSFA = �R�
,�� , �44�

with

R�
,�� = �
1

� 8
2

3�
B��,��K1/3

2 � 
�3

3
�d� , �45�

B��,�� = �8� �

4�
�3�

−�

�

d
�1 + 
2�2�̃��,
� . �46�

If the SPM is used, one has to use Eq. �32� instead of Eq.
�30� in Eq. �43�. As a consequence, one obtains a similar
result, but function R�
 ,�� has to be substituted with

RSPM�
,�� = �
1

� 4


�3 B��,��exp�−
2


3
�3�d� . �47�

Equation �44� is one of the central results of the present
work. It shows that the ionization rate calculated within SFA
is proportional to the frequency � in the limit �→0. Thus
the SFA rate vanishes in the static limit �=0 for all binding
energies and field strengths. Clearly, this prediction of SFA is
unphysical implying that SFA is not applicable in the quasi-
static limit for atomic systems. As is also clear from the
derivation, this conclusion is not a consequence of the usu-
ally adopted SPM or small-momentum approximation, since
they were not adopted.

The present finding appears to be in conflict with the dis-
cussion given, e.g., in �2�, where it is explicitly stressed that
SFA �corresponding to the first-order S-matrix theory in ve-
locity gauge� approaches the correct tunneling limit for �
→0 �and sufficiently weak fields�. However, in �2� �and cor-
responding references therein� this conclusion is reached on
the basis of a derivation valid for short-range potentials,
while the present result is obtained for the long ranged Cou-
lomb potential. For short-range potentials the integral over 

in Eq. �46� diverges and one has to consider the term pro-
portional to 	2 in Eq. �25�. This term removes the divergence
and the obtained limit for the ionization rate is now � inde-
pendent in accordance with the discussion in �2�. For long-
range potentials there is no divergence in Eq. �46�, and thus
Eq. �44� gives the corresponding quasistatic limit of SFA for
that case. Clearly, the agreement of the SFA rate with the one
predicted by tunneling theories that is obtained for short-
range potentials cannot be used as a measure of the validity
of the SFA, if long-range potentials are present. However, as
is discussed below for the specific example of hydrogenlike
atoms, the QSFA results may be used together with tunneling
theories to obtain an approximate Coulomb correction factor
for SFA.

Since for long-range potentials the SFA rate leads to un-
physical results in the quasistatic limit, one would expect

that there is very limited interest in its explicit calculation.
However, as is shown below, the explicit calculation of
WQSFA is not only useful for obtaining a Coulomb correction
factor, but it provides also an alternative recipe for an effi-
cient though approximate calculation of SFA rates for atomic
and molecular systems exposed to intense laser fields in a
large range of experimentally relevant laser parameters. To
demonstrate this, calculations for hydrogenlike atoms using
Eqs. �44� to �46� are discussed in the next section.

III. QUASISTATIC LIMIT OF SFA FOR HYDROGENLIKE
ATOMS

A. Proportionality coefficient R

In the case of bound states of hydrogenlike atoms the
integral over 
 in Eq. �46� can be analytically calculated
using the identity

�
−�

� d


�1 + 
2�n = �
�2n − 3� ! !

�2n − 2� ! !
. �48�

For example, the Fourier transform of the 1S0 state is
given by

�̃0 =
16�

�3/2

1

�1 + qN
2 �2

1

4�

�49�

resulting in

�̃��,
� =
27�2

�3�8�1 + 
2�4 . �50�

Substitution of Eq. �50� into Eq. �46� and integration over 

yields B1S0

=1. The functions B��� for all hydrogenic states,
with principal quantum number n�3 are listed in Appendix
A. Note, for hydrogenlike states, the function B��� is
�-independent and, therefore, the proportionality coefficient
R is a function of 
 only. The evaluation of R according to
Eq. �45� can then simply be performed numerically. Since
the integrand is a smooth exponentially decaying function
�this is directly evident, if the SPM approximation is adopted
as in Eq. �47��, quadrature can easily and very efficiently be
performed with high precision.

The proportionality coefficients R�
� for a variety of
states of hydrogenlike atoms are shown in Fig. 2 for the
complete range of values of the inverse field parameter 
. In
Fig. 2�a� the range 
�1 is shown. For better visibility the
function R�
� /

 is plotted instead of R�
�. It is worth notic-
ing that for very small 
 the R values for all states approach
0. This is a known failure of SFA, since a larger field inten-
sity to binding energy ratio �and thus smaller 
� should
clearly result in a larger and not in a smaller ionization rate
�14�.

In the 
 range shown in Fig. 2�a� in which the R values
follow the expected behavior �decreasing R for increasing 
�,
the different states vary rather differently as a function of 
.
It is clearly visible that R depends mostly on the quantum
numbers l and m and only very weakly on n. A different
dependence is found for large values of 
 as is discussed
below.
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B. Weak-field limit

The weak-field limit F→0 corresponds to 
→�. Using
an asymptotic expansion for the modified Bessel function
one finds that the integrand in Eq. �45� is proportional to
exp�−2
�3 /3�. For large values of 
 the integrand decays
thus rapidly as � increases. Therefore, it is possible to use an
expansion in terms of � at �=1. This procedure yields

Rnlm�
� → Cnlm
QSFA�2
�−	m	e−2
/3. �51�

The general expression for the coefficients Cnlm
QSFA is quite

complicated. A very simple result occurs, however, for m
=0 where Cnl0

QSFA=2n is obtained. Note that in this case the
coefficient is l-independent. For n�3 the coefficients are
given by

Cnlm
QSFA = 2n

�2n�n − l� + 2	m	 − 1� ! !

�2n�n − l� − 1� ! !
. �52�

Noteworthy that the l dependence is in fact limited to the
circularity of the hydrogenic state, since l appears only in the
form n− l.

In Fig. 2�b� function R is shown �after multiplying it with
e2
/3 to remove the exponential dependence on 
� as a func-
tion of 1 /
. The weak-field limit corresponds thus to 1/

→0. As predicted, for m=0 the scaled function R approaches
Cnl0

QSFA=2n in this case. Due to the 
	m	 factor appearing in
Eq. �51� the high 	m	 states are harder to ionize in the weak-
field limit. It is also apparent from Fig. 2�b� that the charac-
teristic dependence on the quantum numbers in the weak-
field limit is reached only for 1 /
�0.1 to 0.2. For example,
down to 1/
�0.15 the QSFA ionization rates of the 2S0 and
2P0 states are almost identical.

It is instructive to compare the quasistatic limit of SFA
ionization rate in weak-field limit with the well-known qua-
sistatic Popov-Peremolov-Terent’ev �PPT� formula �9�,

WPPT = 	Cnl	2f lm
 3

2�
�2�2
�2n−	m	−3/2e−2
/3, �53�

where

	Cnl	2 =
22n

n�n + l� ! �n − l − 1�!
, f lm =

�2l + 1��l + 	m	�!
2	m		m	 ! �l − 	m	�!

.

The ionization rates WQSFA and WPPT both include the
exponential term exp�−2
 /3� and the factor �2
�−	m	, but dif-
fer in the remaining part. Introducing the ratio

QPPT =
WPPT

WQSFA
=

1

�

22n−2	Cnl	2f lm

Cnlm
QSFA 
 3

�

F3/2

�5/2

�6n

F2n , �54�

it is possible to identify four factors that prevent an agree-
ment between the QSFA and PPT predictions. One is due to
the �unphysical� � dependence of QSFA. Also the constant
factors that depend on the quantum numbers n, l, and m
differ. For example, for fixed n and m=0 QSFA predicts the
same ionization rate for states with different l whereas the
PPT formula predicts an l dependence. Then there is a con-
stant factor �
3/�� that is, however, very close to 1. Finally,
both rates differ in their dependence on field strength and
binding energy which is expressed as two factors to stress the
n dependence or independence.

Note that the popular Ammosov-Delone-Krainov �ADK�
formula �10� differs from PPT by introducing effective quan-
tum numbers n* and l* for nonhydrogenic atoms, application
of the Stirling approximation for the evaluation of factorials,
and a rearrangement of the final expression. In the here con-
sidered case of hydrogenlike atoms the difference between
ADK and PPT reduces thus basically to the application of the
Stirling formula for 	Cnl	2. Therefore, the ADK and PPT rates
of a specific state differ only by a few percent which is due
to their different constant prefactors. A comparison to ADK
leads thus to basically the same conclusion as the one to PPT
performed above.
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FIG. 2. �Color online� The proportionality coefficient R�
�
=WQSFA/�, Eq. �45�, is shown for the complete range of 

= �2Eb�3/2 /F values for the different hydrogenlike states with n
�3. �a� For small 
 �corresponds to a strong field F or a small
binding energy Eb� all coefficients decrease with decreasing 
.
To partly compensate this effect all coefficients R�
� are scaled
by factor 

. �b� For large 
 �corresponds to a weak field F or a
large binding energy Eb� all coefficients are scaled by the factor
exp�−2
 /3� �in the insert the coefficients for m�0 are also shown
scaled by the factor 
−m exp�−2
 /3��. In this limit the coefficients
R�
� tend to those given by Eq. �51�.
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Since QSFA is the exact asymptotic limit of SFA, Eq. �54�
can be used to derive a Coulomb-corrected SFA rate,
WCSFA=QPPTWSFA. Clearly, the factor QPPT derived here ex-
plicitly for atomic hydrogen could be applied also to other
atomic or molecular systems by performing the evident
modifications like the introduction of effective quantum
numbers �10�, such as n*, l*, etc. Although the range of va-
lidity of WCSFA for ��0 is not directly evident, in contrast
to WSFA it at least reaches the tunneling limit. Already in the
past efforts have been made to derive Coulomb-correction
factors for KFR theories, but so far the resulting rates did not
lead to convincing results �see �2� and references therein�.
Based on some approximations, Becker et al. �1� have pro-
posed a Coulomb correction factor, C2. Using this factor,
very good agreement is found between experimental and the-
oretical SFA ionization yields for a large number of atoms
and laser frequencies. The comparison is, however, mostly
performed on a qualitative level, since the experiments did
not provide absolute yields and thus the theoretical and ex-
perimental data were adjusted at one common point. In ad-
dition, SFA results for atomic hydrogen �with and without C2

factor� are compared to full numerical solutions of the time-
dependent Schrödinger equation in �1� and again good agree-
ment is found �on logarithmic scale�.

For atomic hydrogen one has C2=�6n /F2n which corre-
sponds just to the last factor in Eq. �54�. Clearly, the
C2-corrected SFA rate does not approach the tunneling limit
for �→0. However, the terms missing in C2 yield for �
=0.05 a.u. and the ground state of a hydrogen atom a factor
0.5–1.2 for F=0.05−0.1 a.u. This can explain the reasonable
agreement of the C2-corrected SFA results with the ones of

ab initio calculations reported for such parameters in �1�.
However, the deviation increases by a factor 10 for the CO2
laser frequency or for larger n. It may be noted that although
�1� contains also comparisons with experimental data ob-
tained with a CO2 laser, the present work shows that the
found agreement is due to the fact that the comparison is
made on a relative scale, as mentioned before. In this case
the erroneous � dependence of SFA �clearly not corrected by
the C2 factor� is, for example, not visible.

C. Range of validity of QSFA

As follows from the derivation, WQSFA in Eq. �44� is the
exact asymptotic form of the SFA ionization rate WSFA in the
limit �→0. It is of course interesting to investigate the va-
lidity regime of QSFA for nonzero values of �. In fact, as is
shown now, QSFA provides for a wide range of parameters a
good approximation to SFA even for laser wavelengths of
around 800 nm or less.

Figure 3 shows the ratio WSFA/WQSFA for the 1S state of a
hydrogenlike atom as a function of laser frequency for nine
different values of the inverse field parameter 
. The varia-
tion of 
 is achieved by using three different values for both
the binding-energy related quantity � and the field intensity
F. The �reference� ionization rate WSFA has been calculated
numerically using the scheme described in Sec. II B. All
curves approach unity for �→0 indicating the correctness of
the derivation of QSFA as well as numerical consistency. In
the case of the smallest shown value of the inverse field
parameter, 
=0.625, one notices that the ratio shows an os-
cillatory behavior that is due to channel closings that are not
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FIG. 3. Ratio WSFA/WQSFA for
the 1S state of a hydrogenlike
atom as a function of the fre-
quency � for different field
strength F and electron binding
energies Eb=�2 /2.
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resolved in QSFA. The oscillation amplitude increases with
�, but the ratio remains in between about 0.75 and 1.25 in
the full frequency range. Therefore, QSFA is correct to
within 25%. If one averages over the oscillations, one finds
an even much better quantitative agreement between QSFA
and SFA. In view of the fact that the SFA rate is known to
overestimate the effect of channel closings and that these
pronounced channel closing features mostly disappear when
averaging over realistic laser parameters �envelope, focal
volume, etc.�, the QSFA can be said to provide a very accu-
rate approximation for the given parameters. Note, �
=0.1 a.u. corresponds to a laser wave length of about
450 nm and thus the shown frequency range covers a large
range of experimentally relevant lasers.

Increasing 
 by decreasing F �but keeping � fixed� leads
to larger oscillation amplitudes while the oscillation period
increases. Most importantly, the average value of the ratio
drops with increasing � below 1. QSFA starts to overesti-
mate the SFA rate. Nevertheless, the oscillation averaged
QSFA rate deviates for 
=2.5 at 800 nm from SFA by less
than 25%. Increasing 
 by increasing � �for fixed F
=0.2 a.u.� decreases the oscillation amplitude. However, the
� averaged ratio deviates more from unity than for smaller
binding energies. Changing � from 0.5 a.u. �corresponding
to a binding energy Eb�3.5 eV� to 1.0 a.u. �13.6 eV, hydro-
gen atom� and 2.0 a.u. �27.2 eV, He+� changes the ratio at
��0.1 a.u. to about 0.75 and 2.0, respectively. From the
representative examples shown in Fig. 3 one can see that
these are general trends. A decrease of F �fixed �� leads to
larger oscillation amplitudes and deviations of the averaged
ratio from unity. This limits the applicability of QSFA to a

smaller � range. An increase of the binding energy �fixed F�
damps the oscillation, but increases the deviation from unity.
Combining both results it is clear that QSFA works best for
small binding energies and high field strengths and thus for
small values of 
. However, 
 alone is not a sufficient pa-
rameter to describe the validity of QSFA, as can be seen
from the examples shown for 
=2.5 and 5.0. In this example
QSFA works better for the larger value of 
 that is realized
by enlarging both Eb and F.

In Figs. 4 and 5 the validity of the QSFA is investigated
for different initial states of hydrogenlike atoms. This in-
cludes all possible states with n�3. Figure 4 shows the re-
sults for F=0.05 a.u. and �=0.5 a.u. These are the same pa-
rameters as the ones used for the 1S state in the upper left
corner of Fig. 3. The results in Fig. 5 were, on the other
hand, obtained with F=0.1 a.u. and �=1.0 a.u. and corre-
spond therefore to the ones in the middle of Fig. 3. Again, all
ratios approach unity for �→0 as it should be. Comparing
the results for the S states one notices that the oscillation
amplitude increases with n, but the deviation of the
�-averaged results is very similar. The same trend is visible
within the P states �for either m=0 or m=1�. For a given n
value the oscillations are most pronounced for l=0 and de-
crease with increasing l. In view of the �-averaged results
the range of validity of the QSFA as a function of � shows,
however, a weaker dependence on l, but is in fact decreasing
for increasing l. For a given n and l combination �2P0 and
2P1, 3P0 and 3P1, or 3D0, 3D1, and 3D2� the �-averaged
ratios indicate that the range of validity of the QSFA in-
creases with m. One may notice the close similarity of the
results within the series 1S0, 2P1, and 3D2, 2P0, and 3D1, as
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FIG. 4. �Color online� The ra-
tios WSFA/WQSFA �black solid�
and WSFA

ap1 /WQSFA �red dotted� are
shown as a function of the fre-
quency � for all atomic states �n
�3� and an electron binding pa-
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first step in the derivation of the
QSFA discussed in Sec. II D is
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well as 2S0 and 3P1. Finally, as was the case for the 1S state,
also Figs. 4 and 5 show that a larger value of 
 decreases the
oscillation amplitude and increases the validity regime of the
QSFA.

Figure 4 shows in addition the ratio of WSFA
ap1 �see Eq.

�40�� and WQSFA. The overall good agreement with the ratio
WSFA/WQSFA indicates WSFA

ap1 �WSFA. Clearly, the first step in
deriving QSFA is well justified for finite frequencies. Espe-
cially, the highly oscillatory behavior of the rate due to chan-
nel closings is relatively well reproduced by WSFA

ap1 . The main
reason for the deviation between SFA and QSFA is thus due
to step 2 of the derivation which smoothes out the highly
oscillatory behavior of the rate if � is varied.

It is instructive to investigate the main reason for the fail-
ure of QSFA to reproduce SFA for large values of 
. It turns
out that for large 
 it is most essential to consider in Eq. �25�
also the terms proportional to 	2. This yields �see Appendix
B�

WQSFA
cor = CcorWQSFA, �55�

where the correction factor �for a hydrogenlike 1S state� is
given by

Ccor�	� =

exp�−
2


3
f0�	��

�1 + ��


6
f2�	��6/7�7/12

. �56�

This correction significantly increases the range of validity
of the quasistatic formula. Figure 6 shows a direct compari-

son of WSFA and WQSFA
cor �both scaled by �−1� for those two

case where QSFA failed most severely for the 1S state of a
hydrogenlike atom, �=2.0 a.u. and F=0.05 or 0.1 a.u. Be-
sides the oscillatory behavior of SFA that is also not repro-
duced in the corrected QSFA, the overall agreement is very
good, even if the rate varies by many orders of magnitude, if
� changes from 0 to 0.1 a.u. The results of the corrected
QSFA are not only interesting for improving the QSFA, but
they also confirm once more that the two steps made in the
derivation of the QSFA are justified. Finally, it is worth no-
ticing that the range of applicability of Eq. �55� is not re-
stricted to a range of parameters that according to the
Keldysh parameter 	 belongs to the quasistatic regime
�	�1�. Figure 6 shows that it works even for 	�1.

IV. CONCLUSION

The SFA �KFR theory in velocity gauge� was studied both
analytically and numerically in the quasistatic limit. The de-
rived analytical asymptotic expression �QSFA� shows that in
the presence of long-range Coulomb interactions and thus for
ionization of neutral or positively charged atoms or mol-
ecules the SFA rate is proportional to the laser frequency in
this limit. This evidently unphysical result indicates a break-
down of the SFA. Furthermore, this result shows that in con-
trast to the case of short-range potentials the SFA rate does
not converge to the tunneling limit for weak fields, if long-
range Coulomb interactions are present. The analytical result
is supported by a numerical study for which an efficient
scheme for the numerical evaluation of the SFA transition
amplitude has been developed.
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Using different states of hydrogenlike atoms as an ex-
ample, the predictions of the original SFA and the QSFA are
compared to each other. It is found that QSFA allows for a
rather accurate prediction of the SFA rate even for finite laser
frequencies extending in some favorable cases to wave-
lengths of 500 nm and below. It is shown that the validity
regime of the QSFA can even be extended using a correction
factor that is explicitly derived for 1S states. The large range
of applicability of the QSFA is of practical interest, since its
numerical evaluation is simpler than the one of the original
SFA rate, especially in the IR and far-IR frequency regime.
Furthermore, it is very convenient for studies of the fre-
quency dependence of the SFA rate, since the QSFA is, be-
sides a simple proportionality factor, � independent. Thus
the QSFA has to be evaluated for a given system and field
strength only once. In turn, the relatively large range of laser
frequencies in which QSFA and SFA agree demonstrates that
also the SFA rate itself is in a wide range of laser parameters
only proportional to �. An exception is the pronounced �
dependence due to channel closings that is not reproduced by
QSFA.

On the basis of a comparison of the QSFA result with the
prediction of the Popov-Peremolov-Terent’ev �PPT� formula
a Coulomb correction factor is derived. This factor is com-
pared to a previously proposed one that was supposed to be
successfully adopted in a wide range of calculations. It is
discussed that part of this success may be due to the fact that
the comparisons to experimental data was only possible on a
relative scale. In this case a number of important terms miss-
ing in the previously proposed Coulomb correction factor is
not visible.

The goal of this work has been the derivation of an
analytical expression for the SFA in the quasistatic limit in
the presence of long-range Coulomb interactions and a
discussion of the resulting QSFA in comparison to SFA.
The investigation of the validity of the SFA itself by com-
paring to the results of full solutions of the time-dependent
Schrödinger equation is presently underway and will be
discussed elsewhere.
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APPENDIX A: FUNCTIONS B„�… FOR DIFFERENT
STATES

In this appendix function B defined by Eq. �46� is given
explicitly for all states of hydrogenlike atoms fulfilling n
�3 �note, for hydrogenlike atoms, function B is independent
of ��:

B1S0
��� = 1,

B2S0
��� = 4 − 12�−2 + 10�−4,

B2P0
��� = 2�−2,

B2P1
��� = 5�−2 − 5�−4,

B3S0
��� = 9 − 72�−2 + 220�−4 − 280�−6 + 126�−8,

B3P0
��� = 12�−2 − 30�−4 + 21�−6,

B3P1
��� = 30�−2 − 135�−4 +

399

2
�−6 −

189

2
�−8,

B3D0
��� =

47

4
�−4 −

49

2
�−6 +

63

4
�−8,

B3D1
��� =

21

2
�−4 −

21

2
�−6,

B3D2
��� =

189

8
�−4 −

189

4
�−6 +

189

8
�−8.

APPENDIX B: CORRECTION FOR LARGE �

In this appendix the corrected QSFA given in Eq. �55� is
derived. Introducing G=	� and v̄=v /G we rewrite iS�u+� in
Eq. �25� as
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FIG. 6. �Color online� The exact SFA rate WSFA, the QSFA rate
WQSFA, and the corrected QSFA rate WQSFA

cor �all scaled by �−1� are
shown for the 1S state of a hydrogenlike atom with �=2 a.u. at �a�
F=0.05 a.u. and �b� F=0.1 a.u. The frequencies � corresponding to
various values of Keldysh parameter 	 are indicated with dashed
lines.
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iS�u+� = −

�3

3
f�G,
� , �B1�

where

f�G,
� = �
0

−
+i 3

2i

�v̄ + 
�2 + 1


1 − G2v̄2
dv̄ . �B2�

The real part of f�G ,
� can be given using a Taylor expan-
sion with respect to 
 as

Re f�G,
� = 1 + f0�G� + f2�G�
2 + ¯ , �B3�

where

f0�G� =
3�1 + 2G2�sinh−1G

4G3 −
3
1 + G2

4G2 − 1,

f2�G� =
3

2� sinh−1G

G
−

1

1 + G2� .

For small values of G these functions can be well approxi-
mated by f0�G��−G2 /10, f2�G��G2 /2 and for G�4 they
can be fitted with good accuracy by

f0�G� � −
11G2�14 + 3G2�

55�28 + 15G2� + 54G4 , �B4�

f2�G� �
5G2 + G3

10 + 9G2 e−G/5. �B5�

A simple correction factor for the 1S state can now be
obtained. Indeed, for this case the main contribution comes
from ��1 and one can multiply WQSFA in Eq. �44� by

Ccor = exp�− �2
/3�f0�	��exp�− �2
/3�f2�	�
2� . �B6�

The first term in Eq. �B6� yields an exponential increase with
	. The second term introduces a damping for 
�
d where
d= �2
 /3�f2�	�. Using the approximate identity �valid within
one percent�

�
−�

� e−d
2

�1 + 
2�2d
 �
�

2
�1 + ��d

4
�6/7�−7/12

�B7�

to carry out the integration over 
 one obtains the final result
given in Eqs. �55� and �56�.

�1� A. Becker, L. Plaja, P. Moreno, M. Nurhuda, and F. H. M.
Faisal, Phys. Rev. A 64, 023408 �2001�.

�2� A. Becker and F. H. M. Faisal, J. Phys. B 38, R1 �2005�.
�3� T. K. Kjeldsen and L. B. Madsen, Phys. Rev. A 74, 023407

�2006�.
�4� D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, J.

Phys. B 39, R203 �2006�.
�5� L. V. Keldysh, Sov. Phys. JETP 20, 1307 �1965�.
�6� H. R. Reiss, Phys. Rev. A 22, 1786 �1980�.
�7� F. H. M. Faisal, J. Phys. B 6, L89 �1973�.

�8� H. R. Reiss, Prog. Quantum Electron. 16, 1 �1992�.
�9� A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys.

JETP 23, 924 �1966�.
�10� M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys.

JETP 64, 1191 �1986�.
�11� H. R. Reiss and V. P. Krainov, J. Phys. A 36, 5575 �2003�.
�12� J. Bauer, J. Phys. A 38, 521 �2005�.
�13� H. R. Reiss and V. P. Krainov, J. Phys. A 38, 527 �2005�.
�14� J. Bauer, Phys. Rev. A 73, 023421 �2006�.

QUASISTATIC LIMIT OF THE STRONG-FIELD… PHYSICAL REVIEW A 75, 063403 �2007�

063403-11


