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We investigate the possibility of trapping ultracold 87Rb atoms near the outside of a metallic carbon nano-
tube, which we imagine using as a miniaturized current-carrying wire. We calculate atomic spin-flip lifetimes
and compare the strength of the Casimir-Polder potential with the magnetic trapping potential. Our analysis
indicates that the Casimir-Polder force is the dominant loss mechanism, and we compute the minimum distance
to the carbon nanotube at which the atoms can be trapped to be larger than 100 nm.

DOI: 10.1103/PhysRevA.75.062905 PACS number�s�: 34.50.Dy, 42.50.Ct, 78.67.Ch, 03.75.Be

I. INTRODUCTION

Advances in magnetic trapping of clouds of ultracold at-
oms and Bose-Einstein condensates have received consider-
able research attention �1–4�. The control and manipulation
of atomic clouds is of fundamental importance in the inves-
tigation of the basic physical properties of atom-surface in-
teraction �5–7�, as well as in quantum-information process-
ing �8,9�. As trapped cold atoms appear to be very sensitive
to magnetic-field variations, they represent a powerful tool in
magnetic-field imaging as well as in gaining insight into
atom-surface coupling phenomena �10,11�. The challenge is
to keep the atoms as close as possible to the substrate mate-
rial to map the magnetic and electric fields in the vicinity of
the surface. The combination of quantum state control with
the development of ever smaller magnetic traps is an essen-
tial element in the implementation of integrated quantum de-
vices for fundamental research, quantum-information pro-
cessing, and precision measurement.

Along with the push toward miniaturization evolved the
idea of devising even smaller structures based on carbon
nanotubes �CNs� �12�. Carbon nanotubes are carbon mono-
layers rolled up into cylinders of a few nanometers diameter
�13,14�. They have been widely investigated theoretically
and experimentally as they play a key role in miniaturized
electronic, mechanical, electromechanical, and scanning-
probe devices. For their potential use as miniaturized
current-carrying wires, it is important to realize that the de-
sired close proximity of a neutral atom and the carbon atoms
that make up the nanotube can vastly enhance the influence
of dispersion forces, and we address this point in this paper.

It is well known that an atom held in a magnetic trap near
an absorbing dielectric surface will be subject to thermally
induced spin-flip transitions whose origin lies in fluctuating
magnetic fields, which can be attributed to resistive noise in
the substrate �15,16�. In accordance with the fluctuation-
dissipation theorem, dissipation processes associated with a
finite conductivity give rise to electromagnetic-field fluctua-
tions. These fluctuations can be strong enough to drive spin
transitions that lead to trapping losses �17–19�.

In addition, an atom placed near a dielectric body will
experience a dispersion force due to the presence of the di-

electric material—the Casimir-Polder force �20–23�. The po-
tential generating this force adds to the magnetic trapping
potential and may cause the trap to become unstable at small
distances.

With this in mind, CNs seem to represent rather attractive
structures for designing miniaturized magnetic traps. This is,
on one hand, due to the fact that they consist of a very small
amount of dielectric matter which means that unwanted dis-
persion forces such as the Casimir-Polder force are mini-
mized. On the other hand, they also possess extremely ho-
mogeneous surfaces and are thus less likely to induce
inhomogeneities in the potential surface of the trap.

This paper is organized as follows. In Sec. II we introduce
the basic concepts of magnetic trapping of neutral atoms. In
Sec. III the spin-flip lifetime is calculated and compared to
the tunneling lifetime resulting from the combination of the
magnetic trapping potential and the Casimir-Polder potential.
Both lifetimes are given in terms of the dyadic Green tensor.
In order not to interrupt the flow of arguments and results we
will present technical details about the conductivity and the
Green tensor for a single-wall CN in the Appendices. Some
conclusions are drawn in Sec. IV.

II. MAGNETIC TRAPS FOR NEUTRAL ATOMS

In this section, we briefly review magnetic trapping using
straightforward tools of electromagnetism. An atom with a
magnetic dipole moment � placed in a magnetic field BT
experiences an interaction potential

V = − � · BT. �1�

Assuming that a low-field-seeking atom is in the state
�IJFmF�, Eq. �1� corresponds to a Zeeman energy
V=gF�BmFB that depends on the quantum number mF and
on the magnitude of the field B= �BT�, while it is independent
of the field’s direction, with gF the Landé factor and �B the
Bohr magneton.

Let us consider a current I flowing through a wire along
the z direction that generates a circular magnetic field B.
Applying a homogeneous bias magnetic field Bb pointing in
a direction orthogonal to the wire, a line of vanishing mag-
netic field parallel to the wire is created which is located a
distance y0=�0I / �2�Bb� away from the wire. The total field
is given by BT=B+Bb, whose gradient B��r�=−�0I / �2�r2�,*Electronic address: rachele.fermani@imperial.ac.uk

PHYSICAL REVIEW A 75, 062905 �2007�

1050-2947/2007/75�6�/062905�7� ©2007 The American Physical Society062905-1

http://dx.doi.org/10.1103/PhysRevA.75.062905


at the position of the field minimum y0, can be written as
B��y0�=b�=−2Bb

2� / ��0I�. As B��y0� is independent of posi-
tion, the superposition of the magnetic field created by the
wire and the homogeneous bias field creates a two-
dimensional quadrupole-type trap �24�. In such a trap, the
trapping potential can be approximated by a linear function
of the magnetic field gradient b�. The magnetic field can be
expressed as B=b�xex−b�yey and its modulus is �B�=b��x2

+y2�1/2=b�r with r denoting the distance from the trap cen-
ter.

The modulus of the y component of BT vanishes at the
trap center. In order to prevent Majorana transitions to non-
trapped magnetic levels, a further offset field Bo parallel to
the wire is applied with �Bo�� �B�. The magnitude of the field
near the center of the trap is then given by �25�

�B� = �Bo
2 + �b�r�2�1/2 � Bo +

b�2r2

2Bo
, �2�

where the approximation holds for b�r�Bo. The presence of
the Bo field changes the shape of the potential near the trap
center from being linear to harmonic. The interaction poten-
tial that follows from Eq. �1� is then, to a good approxima-
tion, a harmonic potential of the form V=V0+ 1

2 M�r
2r2,

where M denotes the mass of the atom. The trap oscillation
frequency �r is given by

�r =�gF�BmF

MB0

�0I

2�y0
2 . �3�

Moreover, Bo controls both the splitting of the magnetic sub-
levels by a frequency f0= 1

2�BBo /h at the trap center as well
as the stability of the resonance associated with the magnetic
guide �26�.

III. TRAPPING LIFETIMES

In this section, we investigate the two main limitations to
the trapping lifetime, thermally induced spin-flip transitions
and the Casimir-Polder potential. In the following calcula-
tions, we take the current through the single-wall CN to be
equal to I=20 �A, which seems to be the largest current that
can be sustained before saturation effects become important
�27�. The physical properties of a CN are determined by the
way in which the graphite sheet is rolled. The winding angle
with respect to the hexagonal carbon lattice is usually de-
scribed by two integer numbers �a ,b� �28–31�. When 2a
+b=3n, where n is again an integer, a CN shows metallic
behavior, otherwise it is semiconducting.

The axial conductivity �zz��� and the resulting dielectric
permittivity ���� of a �9,0� carbon nanotube are calculated in
Appendix A. At a frequency f0=70 kHz, chosen to corre-
spond to an offset field Bo=10−5 T=100 mG, we obtain
�zz��0�=1.19�109+11.5i �� m�−1 and ���0�	3�1014i.
Hence, a �9,0� carbon nanotube can indeed be considered as
a metallic cylinder.

Thermal fluctuations generate noise currents that lead to
fluctuating fields near the body surface. We expect the noise
due to these fluctuating fields to be much reduced in a CN

compared to a dielectric bulk material due to the very small
amount of matter involved. Nevertheless, thermal spin flips
and the Casimir-Polder force cannot be neglected and need
investigation and a comparison of their effect. Both mecha-
nisms originate from the fluctuations of the electromagnetic
field. In particular, the spin-flip transitions are caused by the
magnetic-field fluctuations while the Casimir-Polder force
arises from both electric- and magnetic-field fluctuations, the
latter usually being negligible.

In order to describe the two phenomena, we utilize the
quantization scheme of the electromagnetic field in the pres-
ence of dispersing and absorbing bodies �32,33�. As this
theory is a macroscopic theory whose central quantities are
linear susceptibilities, carbon nanotubes are probably at the
limit of what we can actually describe with it. However,
when viewed from distances that are several multiples of the
bond lengths, the CN can be thought of as a homogeneous
object so that the detailed structure from the surface cannot
be resolved and QED in dielectrics can be safely used. This
also assumes that the CN contains no impurities and shows
no pitch alterations.

A. Spin-flip lifetime

If an atom is held sufficiently close to the CN surface it
will experience quantum fluctuations of the electromagnetic
field. At the center of the trap, the atom experiences a con-
stant magnetic field Bo. The atomic magnetic sublevels are
thus split by the Zeeman interaction and only a subset of
these levels will experience an attractive force �low-field-
seeking states�. An 87Rb atom can be trapped in the hyperfine
state �F ,mF�= �2,2�, but only for sufficiently tight magnetic
traps, also in the state �F ,mF�= �2,1�. Transitions to lower
magnetic sublevels allow the atom to escape. In the follow-
ing, we disregard all the lower-lying states and treat the atom
in the two-level approximation as this transition is the rate-
limiting step.

The lifetime of an atom due to spin-flip transitions is
given by the inverse of the spin-flip rate �16�

	 =
2��BgS�2

c2�0


f �Ŝq�i�
i�Ŝk�f�Im��� � G�r,r,�0� � �� �qk

�4�

where �B is the Bohr magneton, Ŝk is the kth vector compo-
nent of the electronic spin operator, and gS�2 is the elec-
tron’s g factor. Spin flips occur between the initial state �i�
and the final state �f�; the position r of the atom is taken to be
the center of the trap.

The spin-flip rate in Eq. �4� is given in terms of the dyadic
Green tensor G�r ,r ,�� which contains the physical and geo-
metrical information about the nanotube. We assume the CN
to be in thermal equilibrium with the environment at a tem-
perature T. The total spin-flip rate is then given by 	tot
=	�n̄th+1�, where n̄th is the mean thermal occupation num-
ber n̄th= �e
�0/kBT−1�−1, with kB denoting Boltzmann’s con-
stant.

In Fig. 1 we show the calculated spin-flip lifetime �SF
=1/	tot as a function of the trapping distance y0 from the
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surface of a �9, 0� CN for a temperature T=380 K, corre-
sponding to a thermal excitation energy of kBT=5.2
�10−21 J �	33 meV�. We consider the ground state transi-
tion �2,2�→ �2,1� for an 87Rb atom with the transition fre-
quency f0=�0 /2�=70 kHz. At such frequencies, the ther-
mally induced spin flips dominate the spontaneous spin flips
as 
�0=4.8�10−29 J �	0.3 neV��kBT. We calculate the
spin matrix elements relative to that transition through the
Clebsch-Gordan coefficients and obtain for the nonvanishing

matrix elements �
i�Ŝx�f��= �
i�Ŝy�f��=1/4.
To evaluate the Green tensor that satisfies the correct

boundary conditions at the CN surface we used the formulas
obtained in Appendix B. In particular, the electric surface
current density creates a discontinuity in the tangential com-
ponent of the magnetic field �34�. To compute the full Green
tensor, we use the method of scattering superposition of dy-
adic Green tensors that are expanded into cylindrical vector
wave functions �see, e.g., �35,36�� which somewhat differs
from the approach employed in �37�.

The lifetime increases with the atom-surface distance y0
and follows the same power law encountered in �16� for a
solid wire. According to Fig. 1, at an atom-surface distance
of approximately 20 nm, a lifetime of the order of a few
seconds is achievable. The spin-flip lifetime can reach 1 min
for distances approaching 120 nm and exceeds more than
100 s for trapping distances larger than 160 nm. These re-
sults suggest that an atom can be held very close to a metal-
lic CN for sufficiently long times, and this is in line with our
expectations about spin-flip occurrence and with the atom-
loss rate estimations presented in �12�.

B. Casimir-Polder potential

The presence of macroscopic dielectric bodies changes
drastically the structure of the vacuum electromagnetic field.
One consequence is that an atom in its ground state placed
sufficiently close to a dielectric body experiences a nonvan-
ishing, in general attractive, dispersion force, the Casimir-
Polder �CP� force �20,38–40�. Since the CP potential adds to
the �repulsive� trapping potential, atoms can tunnel through
the resulting potential barrier and get stuck at the nanotube
surface. The lifetime we have calculated in Sec. III A pro-

vides information about the distance at which an atom can be
held before thermally driven spin flips occur in a given time,
but the Casimir-Polder force may play an even bigger role
for small enough distances.

The Casimir-Polder potential can be derived in lowest-
order perturbation theory within the framework of QED in
dielectric media �39�. If we assume that an atom is in an
energy eigenstate �l�, then the CP potential is given by the
body-induced—i.e., dependent on the quantity of material—
�and position-dependent� shift of the eigenvalue �El corre-
sponding to this eigenstate �l�. The CP potential can be ex-
pressed as �20,39�

U�r� =

�0

2�
�

0



du u2�l
�0��iu�Tr�G�S��r,r,iu�� �5�

where iu=� and �l
�0���� is the atomic polarizability in

lowest-order perturbation theory. In particular, for an atom in
a spherically symmetric ground state, one finds that

�l
�0���� = lim

�→0

2

3



k

�kl

�kl
2 − �2 − i��

�dlk�2 �6�

with dlk= 
l�d̂�k� representing the matrix dipole elements rela-
tive to the transition from the atomic initial state �l� to the
allowed states �k� with frequency �kl��Ek−El� /
. The ex-
pression of the CP potential in Eq. �5� is given in terms of the
scattering part G�S��r ,r , iu� of the Green tensor and the fre-
quency integral is performed along the imaginary axis.

The Casimir-Polder potential has to be compared with the
magnetic trapping potential in order to establish the size of
its effect. In Fig. 2 we show Vtot, the total potential experi-
enced by the atom at three different trapping distances
y0=100, 150, and 200 nm. Vtot is given by the sum of the two
potentials defined by Eqs. �1� and �5�. We assume that a
20 �A current is flowing through the CN, and the associated
heating justifies our choice of the temperature to be signifi-
cantly higher than room temperature. Among all the possible
transitions �l�→ �k�, we consider only the lowest electronic
transition D2�5 2S1/2→5 2P3/2� with wavelength �	780 nm
and dipole moment �d2�=4.227ea0 �a0 is the classical Bohr
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FIG. 1. Spin-flip lifetime of a rubidium atom near a �9, 0�
carbon nanotube with radius RCN=3.52 Å. The trapping distance
y0 is varied between 1 and 200 nm. The other parameters are
f0=70 kHz and T=380 K.
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FIG. 2. Potential Vtot, the sum of the Casimir-Polder potential of
Eq. �5� and the magnetic trapping potential of Eq. �1�, for three
different trapping distances y0=100, 150, and 200 nm, respectively.
A �9,0� CN is considered with a 20 �A current; the spin-flip tran-
sition frequency is taken to be f0=70 kHz.
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radius�. We assume that the D2 transition represents the main
contribution to the atomic polarizability, while other transi-
tions bring about a negligible contribution to the CP force.

In contrast to the spin-flip lifetime, temperature effects are
negligible here because hc /�=2.5�10−19 J �	1.6 eV�
�kBT. This means that the resonant contributions corre-
sponding to virtual dipole absorption �41� are suppressed. It
also allows us to replace the Matsubara sum by the integral
in Eq. �5� which effectively has to be computed over a fre-
quency range set by hc /�.

As it is evident from Fig. 2, Vtot forms a potential barrier
whose height and width vary with the trapping distance y0.
As mentioned previously, the addition of the offset field Bo
changes the bottom of the potential well from a linear to a
harmonic trap which is, however, not visible on the scale of
the figure. With decreasing y0 the potential barrier becomes
more and more shallow, until for atom-surface distances
smaller than the critical value of y0	100 nm the barrier ef-
fectively disappears. For trapping distances larger than that,
the total potential shows a pronounced minimum. For ex-
ample, for y0=150 nm we estimate the trap oscillation fre-
quency to be �r	0.7 kHz, and the width and the height of
the potential barrier to be 68.6 nm and 3.8�10−29 J, respec-
tively.

Using the WKB approximation, we can estimate the tun-
neling probability T and the corresponding tunneling lifetime
�CP=2� / �T�r�. The result is shown in Fig. 3 for a ground-
state atom trapped at varying distances y0. From the com-
parison of Fig. 1 and Fig. 3, it is clear that the effect of the
CP force cannot be neglected. For small enough atom-
nanotube distances �and indeed for all distances shown in the
figures� the tunneling lifetime is several orders of magnitude
smaller than the spin-flip lifetime. For example, at a trapping
distance y0=150 nm we estimate �SF and �CP to be 94.4 and
0.2 s, respectively, and a tunneling lifetime of a few seconds
is achievable for trapping distances equal to or bigger than
170 nm, where the spin-flip occurrence is no longer a limit-
ing factor.

IV. CONCLUSION

In this paper we have investigated a method of miniatur-
izing atomic magnetic traps by replacing solid current-
carrying wires with carbon nanotubes as the elementary

building blocks. At first sight, the advantages of using CNs
are both their small diameter and the fact that they are effec-
tively two-dimensional structures. Hence, one would expect
from scaling arguments that traps at rather small atom-
surface distances could be realized.

We have investigated the loss mechanisms both due to
thermally induced spin flips as well as by tunneling through
the Casimir-Polder barrier. The calculations have been per-
formed within the framework of quantum electrodynamics in
dielectric media, which is valid as long as the dielectric prop-
erties of the nanotube can be described by a macroscopic
permittivity, and if the experimental situation is such that the
atomic structure of the CN cannot be resolved and macro-
scopic boundary conditions can be set.

The spin-flip lifetime has been found to scale according to
our expectations. That is, this lifetime follows, as a function
of the atom-surface distance, the same power law as in the
case of a solid wire, with the result that for distances much
larger than the radius of the nanotube the expected lifetime
exceeds several seconds. In contrast, the alterations of the
trapping potential by the Casimir-Polder potential are much
more severe. It appears that the minimal feasible trapping
distance is larger than 100 nm. The main reason explaining
this result is that single-wall nanotubes cannot sustain high
enough currents �and thus cannot generate deep enough mag-
netic traps� as they saturate at high electric fields. As a po-
tential remedy, it would be beneficial to consider multiwall
nanotubes. An increased number of carbon layers would al-
low for higher current densities and consequently a magnetic
trapping potential that would be comparable with the
Casimir-Polder potential even for smaller distances.
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APPENDIX A: AXIAL CONDUCTIVITY AND DIELECTRIC
PERMITTIVITY

The calculation of the Casimir-Polder potential requires
full knowledge of the frequency dependence of the conduc-
tivity. In order to make our presentation self-contained we
quote some results on calculations of the axial conductivity
that have previously been published elsewhere.

Here we briefly review the frequency dependence of the
axial surface conductivity �zz��� and of the dielectric permit-
tivity ���� for a single-wall CN following the presentation in
�29,30�. For a dielectric medium, the linear relation between
���� and ���� is ���� /�0−1= i���� / ���0�, where �r���
=���� /�0 is the �complex� relative dielectric permittivity.
The Clausius-Mosotti equation establishes the relation be-
tween the response of a medium to an applied field, i.e., the
polarization, and its dielectric constant. Because of the cylin-
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FIG. 3. Tunneling time �CP as a function of the trapping distance
y0, varied between 110 and 200 nm.
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drical structure of CNs, their polarizability is highly aniso-
tropic, with the principal axis of the polarizability tensor ori-
ented parallel to the cylindrical axis �14,29,42–44�.
Consequently, one is allowed to neglect the azimuthal cur-
rent �45�. The axial conductivity per unit length can be ex-
pressed as �29,37�

�zz�R,�� = −
i��0

S

�r�R,�� − 1

�T
�A1�

where R= �RCN ,� ,Z� is the radius vector of an arbitrary
point of the CN surface, S is the area of a single nanotube,
and �T is the tubule density in a bundle.

The physical properties of a CN are determined by the
way in which the graphite sheet is rolled. The winding angle
with respect to the hexagonal carbon lattice is usually de-
scribed by two integer numbers �a ,b�. Depending on a and
b, CNs are either semiconducting or metallic, and particu-
larly a CN exhibits metallic properties when 2a+b=3n,
where n is again an integer �28–31�. An �a ,b� CN has a
one-dimensional bands

E±�N,p� = ± t0

��1 + 4 cos�2�N

a
−

a + 2b

2a
p��cos

p�

2
+ 4 cos2 p�

2

where � is 3
2 times the interatomic distance, N=0,

1 , . . . ,a−1, and � /�� p�� /� with p the wave num-
ber. The corresponding Fermi distribution function is
f�E�=1/ �exp���E−���+1� with inverse temperature � and
chemical potential �.

The main contribution to the conductivity is given by the
dynamic conductivity due to the free carrier term �r

f��� but
for high-frequency regimes another term �r

b���, arising from
the transition between the conduction and the valence bands,
becomes important such that the relative dielectric permittiv-
ity is given by �r���=�r

f���+�r
b��� �29,45�. The interband

transition term is given by

�r
b��� = 1 + � e
2

m
�24�c

a�

N

� �
−�/l

�/l

dp
f„E+�N,p�… − f„E−�N,p�…

E+�N,p� − E−�N,p�

�
�Re K0�N,p��2

�
��2 + i
2�/�r − �E+�N,p� − E−�N,p��2 ,

�A2�

where �r is a phenomenological relaxation time and �C

=2a�T= ���3� / �2RCN�2� is the density of carbon atoms per
volume �31�. The Drude term is given by

�r
f��� = −

�
�pl�2


��
� + i
/�r�
, �A3�

with �pl the plasma frequency,

�pl
2 = − � e


m
�22�C

a�

N
�

−�/�

�/�

dp�Im K0�N,p��2

��f�„E+�N,p�… + f�„E−�N,p�…� . �A4�

The quantity K0�N , p� corresponds to the �dimensionless�
matrix element of the momentum operator and is given in
�29�. The following parameters have been used in our calcu-
lations: t0=4.32�10−19 J, 
 /�r=4.8�10−21 J, �=2.13 Å,
RCN=3.52 Å.

APPENDIX B: GREEN TENSOR OF A SINGLE-WALL
CARBON NANOTUBE

In this section we present our calculation of the dyadic
Green tensor for a single-wall CN. For a single-wall nano-
tube, we can approximate the carbon layer by a boundary
layer with zero thickness. In this way, the Green tensor ex-
hibits a discontinuity in its first spatial derivative across the
carbon layer. Due to its cylindric symmetry, the problem can
be described by adopting the cylindric basis �er ,e� ,ez� as-
suming the CN to be directed along ez. We use the method of
scattering superposition �see, e.g., �35,36��. For an atom lo-
cated at r� outside the CN, the Green tensor can thus be
written as

G�r,r�,�� = �G0�r,r�,�� + GR
�S��r,r�,�� , r � RCN,

GT
�S��r,r�,�� , r � RCN,

�
�B1�

where G0�r ,r� ,�� is the unbounded �bulk� Green tensor
representing the contribution of direct waves from the source
at r� to the point r, and the two scattering contributions
GR

�S��r ,r� ,�� and GT
�S��r ,r� ,�� describing the reflection and

transmission of waves from and through the cylindrical sur-
face. In order to satisfy the homogeneous Helmholtz equa-
tion and the radiation condition at infinity, the vacuum term
and the two scattering terms can be taken to be in the fol-
lowing forms �36�:

G0�r,r�,�� = −
r̂r̂��r − r��

k2 +
i

8�
�

−



dh
n=0


2 − �n0

�2

�� M
o
en
�1��h�M

o
en
� �− h� + N

o
en
�1��h�N

o
en
� �− h� , r � r�,

M
o
en�h�M

o
en
��1��− h� + N

o
en�h�N

o
en
��1��− h� , r � r�,

�
�B2�

GR
�S��r,r�,�� =

i

8�
�

−



dh
n=0


2 − �n0

�2

� ��C1HM
o
en
�1��h� + C2HN

e
on
�1��h��M

o
en
��1��− h�

+ �C1VN
o
en
�1��h� + C2VM

e
on
�1��h��N

o
en
��1��− h�� ,

�B3�
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GT
�S��r,r�,�� =

i

8�
�

−



dh
n=0


2 − �n0

�2

� ��C3HM
o
en�h� + C4HN

e
on�h��M

o
en
��1��− h�

+ �C3VN
o
en�h� + C4VM

e
on�h��N

o
en
��1��− h�� ,

�B4�

where k=� /c and �2=k2−h2. To enhance readability, we
have omitted the tensor product symbol � between the even
�e� and odd �o� cylindrical vector wave functions, which are
defined as

M
o
en�h� = � � �Zn��r��cos

sin
�n� eihzez� , �B5�

N
o
en�h� =

1

k
� � � � �Zn��r��cos

sin
�n� eihzez� . �B6�

The symbol Zn�x� has to be replaced either by the Bessel
function Jn�x� or, if the superscript �1� appears on the corre-
sponding vector wave function, by the �outgoing� Hankel
function of the first kind, Hn

�1��x�. The primes in Eqs.
�B2�–�B4� indicate the cylindrical coordinates �r� ,�� ,z��.
The coefficients CmP �m=1, 2, 3, and 4, and P=H, V� need to
be determined from the boundary conditions for the electric-
and magnetic-field components on the CN surface. The elec-
tric field satisfies the boundary condition

er � ��E�r,���r=RCN
+ − �E�r,���r=RCN

− � = 0, �B7�

while the electric surface current density creates a disconti-
nuity in the tangential component of the magnetic field,

er � ��H�r,���r=RCN
+ − �H�r,���r=RCN

− � = �J�r,���r=RCN
.

�B8�

Equations �B7� and �B8� translate into the respective bound-
ary conditions for the Green tensor

er � ��G�r,r�,���r=RCN
+ − �G�r,r�,���r=RCN

− � = 0, �B9�

er � � � ��G�r,r�,���r=RCN
+ − �G�r,r�,���r=RCN

− �

= �i��0��r� · G�r,r�,���r=RCN
, �B10�

where ��r� is the �diagonal� conductivity tensor whose only
nonzero element is �zz�R ,��.

Substituting the decomposition �B1�, together with Eqs.
�B2�–�B4�, into the boundary conditions �B9� and �B10�
leads to two sets of four equations for each polarization H
and V, which enable us to determine the 16 coefficients CmP,

−
�2

k
Hn��r�C2H +

�2

k
Jn��r�C4H = 0, �B11�

− �rHn��r�C1H ±
ihn

kr
Hn��r�C2H

+ �rJn��r�C3H �
ihn

kr
Jn��r�C4H = �rJn��r� ,

�B12�

− �2Hn��r�C1H + �2Jn��r�C3H = �2Jn��r� , �B13�

�
ihn

r
Hn��r�C1H − k�rHn��r�C2H ±

ihn

r
Jn��r�C3H

+ �k�rJn��r� − i��0�zz
�2

k
Jn��r��C4H = ±

ihn

r
Jn��r�

�B14�

and

−
�2

k
Hn��r�C1V +

�2

k
Jn��r�C3V =

�2

k
Jn��r� , �B15�

�
ihn

kr
Hn��r�C1V − �rHn��r�C2V ±

ihn

kr
Jn��r�C3V

+ �rJn��r�C4V = ±
ihn

kr
Jn��r� , �B16�

− �2Hn��r�C2V + �2Jn��r�C4V = 0, �B17�

− k�rHn��r�C1V ±
ihn

r
Hn��r�C2V

+ �k�rJn��r� − i��0�zz
�2

k
Jn��r��C3V

�
ihn

r
Jn��r�C4V = k�rJn��r� . �B18�

The appearance of the axial conductivity �zz�R ,�� in the
boundary conditions �B14� and �B18� reflects the jump con-
dition �B10� of the derivative of the Green tensor at the
boundary layer.

As we need to compute only the Green function in the
region where the atom is located, only C�1,2�P need to be
determined. On using various properties of the Bessel
functions such as the Wronskian between the Bessel
function Jn�x� and the Hankel function Hn

�1��x�,
Jn�x�Hn

�1���x�−Jn��x�Hn
�1��x�=2/ ��x�, we obtain that the only

nonzero coefficient is
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C1V = −
��0�RCN�zz�

2Jn
2��RCN�

2k2 + ��0�RCN�zz�
2Jn��RCN�Hn��RCN�

�B19�

Finally, the Green tensor for an atom located at a position r�
outside the CN can be expressed as

G�r,r�,�� = G0�r,r�,�� +
i

8�
�

−



dh
n=0


2 − �n0

�2

�C1VN
o
en
�1��h�N�

o
en
��1��− h� . �B20�

Equation �B20�, together with Eq. �B2�, is the expression for
the Green tensor used throughout this paper.
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