
Phonon-mediated decay of an atom in a surface-induced potential

Fam Le Kien,1,* S. Dutta Gupta,1,2 and K. Hakuta1

1Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
2School of Physics, University of Hyderabad, Hyderabad, India

�Received 14 March 2007; published 19 June 2007�

We study phonon-mediated transitions between translational levels of an atom in a surface-induced potential.
We present a general master equation governing the dynamics of the translational states of the atom. In the
framework of the Debye model, we derive compact expressions for the rates for both upward and downward
transitions. Numerical calculations for the transition rates are performed for a deep silica-induced potential
allowing for a large number of bound levels as well as free states of a cesium atom. The total absorption rate
is shown to be determined mainly by the bound-to-bound transitions for deep bound levels and by bound-to-
free transitions for shallow bound levels. Moreover, the phonon emission and absorption processes can be
orders of magnitude larger for deep bound levels as compared to the shallow bound ones. We also study
various types of transitions from free states. We show that, for thermal atomic cesium with a temperature in the
range from 100 �K to 400 �K in the vicinity of a silica surface with a temperature of 300 K, the adsorption
�free-to-bound decay� rate is about two times larger than the heating �free-to-free upward decay� rate, while the
cooling �free-to-free downward decay� rate is negligible.
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I. INTRODUCTION

Over the past few years, tight confinement of cold atoms
has drawn considerable attention. The interest in this area is
motivated not only by the fundamental nature of the prob-
lem, but also by its potential applications in atom optics and
quantum information. A method for microscopic trapping
and guiding of individual atoms along a nanofiber has been
proposed �1�. Surface-atom quantum electrodynamic effects
have constituted another interesting area, where a great deal
of work has been carried out. Modification of spontaneous
emission of an atom �2� and radiative exchange between two
distant atoms �3� mediated by a nanofiber have been inves-
tigated. Surface-induced deep potentials have played a major
role and have received due attention in recent years. Oria et
al. have studied various theoretical schemes to load atoms
into such potentials �4,5�. A rigorous theory of spontaneous
decay of an atom in a surface-induced potential invoking the
density-matrix formalism has been developed �6�. The role
of interference between the emitted and reflected fields and
also the role of transmission into the evanescent modes were
identified. Further calculations on the excitation spectrum
have been carried out �7�. Bound-to-bound transitions were
shown to lead to significant effects like a large red tail of the
excitation spectrum as compared to the weak consequences
of free-to-bound transitions. A crucial step in this direction
was the experimental observation of the excitation spectrum
and the channeling of the fluorescent photons along the
nanofiber �8�, opening up avenues for novel quantum infor-
mation devices.

In most of the problems involving surface-atom interac-
tion, the macroscopic surface is usually kept at room tem-
perature. Thus the pertinent question that can be asked is

what would be the effect of heating on the cold atoms? It is
understood that transfer of heat to the trapped atoms will
lead to a change in the occupation probability of the vibra-
tional levels as well as their coherence. Phonon-induced
changes in the populations of the vibrational levels have
been studied by several groups �5,9,10�. In a nice and com-
pact treatment based on the dyadic Green function and the
Fermi golden rule, Henkel et al. showed that the effects can
be very different depending on the nature of the atomic or
molecular species �9�. The time scales for various species
were estimated. It should be stressed that the trap considered
by Henkel et al. was not necessarily a surface trap and
misses out on many of the aspects of the surface-atom inter-
action �9�. Based on the assumption that the surface-atom
interaction can be represented by a Morse potential, the
phonon-mediated decay was estimated by Oria et al. �5�.
Their estimate was based on the formalism developed by
Gortel et al. �10�. However, all the previous theories focus
only on the transition rates and thus are not general enough.

In this paper, we study phonon-mediated transitions be-
tween vibrational states of an atom in the vicinity of a planar
surface. For simplicity, we neglect surface waves and scat-
tering with the lattice. We present a general density-matrix
formalism to calculate the phonon-mediated decay of popu-
lations as well as the changes in coherence. We derive the
relevant master equation for the density matrix of the atom.
We emphasize that our density-matrix equation describes the
full dynamics of the coupling between trapped atoms and
phonons and does not assume any particular form of the
trapping potential. Under the Debye approximation, we de-
rive compact expressions for the phonon-mediated decay
rates. Numerical calculations are carried out assuming the
potential model considered in �4�. In contrast to the previous
work, we include a large number of vibrational levels due to
the deep surface-atom potential. We show that there can be
significant differences in the decay rates when the initial
level is chosen as one of the shallow or deep bound levels.
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We also calculate and analyze the decay rates for various
types of transitions from free states.

The paper is organized as follows. In Sec. II we describe
the model. In Sec. III we derive the basic dynamical equa-
tions for the phonon-mediated decay processes. In Sec. IV
we present the results of numerical calculations. Our conclu-
sions are given in Sec. V.

II. DESCRIPTION OF THE MODEL SYSTEM

We assume the whole space to be divided into two re-
gions, namely, the half-space x�0, occupied by a nondisper-
sive nonabsorbing dielectric medium �medium 1�, and the
half-space x�0, occupied by vacuum �medium 2�. We ex-
amine a single atom moving in the empty half-space x�0.
We assume that the atom is in a fixed internal state �i� with
energy ��i. Without loss of generality, we assume that the
energy of the internal state �i� is zero, i.e., �i=0. We describe
the interaction between the atom and the planar surface. We
first consider the surface-induced interaction potential and
then add the atom-phonon interaction.

A. Surface-induced interaction potential

In this subsection, we describe the interaction between the
atom and the surface in the case where thermal vibrations of
the surface are absent. The potential energy of the surface-
atom interaction is a combination of a long-range van der
Waals attraction and a short-range repulsion �11�. Despite a
large volume of research on the surface-atom interaction, due
to the complexity of surface physics and the lack of data, the
actual form of the potential is yet to be ascertained
�4,5,9,11,12�. For the purpose of numerical demonstration of
our formalism, we choose the following model for the poten-
tial �4,11�:

U�x� = Ae−�x −
C3

x3 . �1�

Here, C3 is the van der Waals coefficient, while A and �
determine the height and range, respectively, of the surface
repulsion. The potential parameters C3, A, and � depend on
the nature of the dielectric and the atom. In numerical calcu-
lations, we use the parameters of fused silica, for the dielec-
tric, and the parameters of ground-state atomic cesium, for
the atom. The parameters for the interaction between silica
and ground-state atomic cesium are theoretically estimated to
be C3=1.56 kHz �m3, A=1.6�1018 Hz, and �=53 nm−1

�6�.
We introduce the notation �	�x� for the eigenfunctions of

the center-of-mass motion of the atom in the potential U�x�.
They are determined by the stationary Schrödinger equation

�−
�2

2m

d2

dx2 + U�x���	�x� = E	�	�x� . �2�

Here m is the mass of the atom. In the numerical example
with atomic cesium, we have m=132.9 a.u.=2.21
�10−25 kg. The eigenvalues E	 are the center-of-mass ener-
gies of the translational levels of the atom. These eigenvalues

are the shifts of the energies of the translational levels from
the energy of the internal state �i�. Without loss of generality,
we assume that the center-of-mass eigenfunctions �	�x� are
real functions, i.e., �	

*�x�=�	�x�.
In Fig. 1, we show the potential U�x� and the wave func-

tions �	�x� of a number of bound levels with energies in the
range from −1 GHz to −5 MHz. We also plot the wave
function of a free state with energy of about 4.25 MHz. In
order to have some estimate about the spatial extent of a
wave function �	�x�, we define a crossing point xcross, which
corresponds to the rightmost solution of the equation U�x�
=E	. Note that, for shallow levels, the wave function gener-
ally peaks close to the point xcross. We plot the eigenvalue
modulus �E	� and the crossing point xcross in Figs. 2�a� and
2�b�, respectively. It is clear from the figure that, for 	 in the
range from 0 to 300, the eigenvalue varies dramatically from
about 158 THz to about 322 kHz, while the wave function
extends only up to 170 nm.

We introduce the notation �	�= ��	� and �	=E	 /� for the
state vectors and frequencies of translational levels. Then,
the Hamiltonian of the atom in the surface-induced potential
can be represented in the diagonal form
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FIG. 1. Energies and wave functions of the center-of-mass mo-
tion of an atom in a surface-induced potential. The parameters of
the potential are C3=1.56 kHz �m3, A=1.6�1018 Hz, and �
=53 nm−1. The mass of the atom is m=2.21�10−25 kg. We plot
bound levels with energies in the range from −1 GHz to −5 MHz
and also a free state with energy of about 4.25 MHz.
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FIG. 2. �a� Eigenvalue modulus �E	� and �b� crossing point xcross

as functions of the vibrational quantum number 	. The parameters
used are as in Fig. 1.
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HA = 	
	

��	
		. �3�

Here, 
		= �	�
	� is the population operator for the transla-
tional level 	. We emphasize that the summation over 	 in-
cludes both the discrete �E	�0� and continuous �E	�0�
spectra. The levels 	 with E	�0 are called the bound �or
vibrational� levels. In such a state, the atom is bound to the
surface. It is vibrating, or more exactly, moving back and
forth between the walls formed by the van der Waals part and
the repulsive part of the potential. The levels 	 with E	�0
are called the free �or continuum� levels. The center-of-mass
wave functions of the bound states are normalized to unity.
The center-of-mass wave functions of the free states are nor-
malized to the delta function of energy.

B. Atom-phonon interaction

In this subsection, we incorporate the thermal vibrations
of the solid into the model. Due to the thermal effects, the
surface of the dielectric vibrates. The surface-induced poten-
tial for the atom is then U�x−xs�, where xs is the displace-
ment of the surface from the mean position 
xs�=0. We ap-
proximate the vibrating potential U�x−xs� by expanding it to
the first order in xs,

U�x − xs� = U�x� − U��x�xs. �4�

The first term, U�x�, when combined with the kinetic energy
p2 /2m, yields the Hamiltonian HA �see Eq. �3��, which leads
to the formation of translational levels of the atom. The sec-
ond term, −U��x�xs, accounts for the thermal effects in the
interaction of the atom with the solid. Note that the quantity
F=−U��x� is the force of the surface upon the atom. Hence
the force of the atom upon the surface is −F=U��x� and,
consequently, U��x�xs is the work required to displace the
surface for a small distance xs.

In order to describe the displacement xs of the surface, we
use a simple bulk phonon model �10�. For simplicity, we
neglect surface waves, which do not change the results in a
qualitative way �10,13�. In the framework of the phonon
model, only the phonons polarized along the x direction are
responsible for the displacement xs �10�. In the harmonic
approximation, we have

xs = 	
q
� �

2MN�q
�1/2

�bqeiq·R + bq
†e−iq·R� . �5�

Here, M is the mass of a particle of the solid, N is the particle
number density, �q and q are the frequency and wave vector
of the x-polarized acoustic phonons, respectively, R
= �0,y ,z� is the lateral component of the position vector
�x ,y ,z� of the atom, and bq and bq

† are the annihilation and
creation phonon operators, respectively. Without loss of gen-
erality, we choose R=0. Meanwhile, the operator U� can be
decomposed as U�=			�
		�
	�U��	��, where 
		�= �	�
	�� is
the operator for the translational transition 	↔	�. Hence the
energy term −U��x�xs leads to the atom-phonon interaction
Hamiltonian �10�

HI = �	
q

1

�q

S�bq + bq
†� , �6�

with

S = 	
		�

g		�
		�. �7�

Here we have introduced the atom-phonon coupling coeffi-
cients

g		� =
F		�


2MN�
, �8�

with

F		� = − �
−�

�

�	�x�U��x��	��x�dx �9�

being the matrix elements for the force of the surface upon
the atom. We note that F		�=−m�		�

2 x		�, where x		�
= 
	�x�	�� and �		�=�	−�	� are the surface-atom dipole ma-
trix element and the translational transition frequency, re-
spectively. Hence the coupling coefficient g		� depends on
the dipole matrix element x		� and the transition frequency
�		�. Since �		=0, we have g		=0.

We note that the Hamiltonian of the x-polarized acoustic
phonons is given by

HB = 	
q

��qbq
†bq. �10�

The total Hamiltonian of the atom-phonon system is

H = HA + HI + HB. �11�

We use the above Hamiltonian to study the phonon-mediated
decay of the atom.

III. DYNAMICS OF THE ATOM

In this section, we present the basic equations for the
phonon-mediated decay processes. We derive a general mas-
ter equation for the reduced density operator of the atom in
Sec. III A, obtain analytical expressions for the relaxation
rates and frequency shifts in Sec. III B, and calculate the
rates and the shifts in the framework of the Debye model in
Sec. III C.

A. Master equation

In the Heisenberg picture, the equation for the phonon
operator bq�t� is

ḃq�t� = − i�qbq�t� −
i


�q

S�t� , �12�

which has a solution of the form

bq�t� = bq�t0�e−i�q�t−t0� − iWq�t� . �13�

Here, t0 is the initial time and Wq is given by
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Wq�t� =
1


�q
�

t0

t

e−i�q�t−��S���d� . �14�

Consider an arbitrary atomic operator O which acts only on
the atomic states but not on the phonon states. The time
evolution of this operator is governed by the Heisenberg
equation

�O�t�
�t

=
i

�
�HA�t� + HI�t�,O�t�� , �15�

which, with account of Eqs. �6� and �13�, yields

�O�t�
�t

=
i

�
�HA�t�,O�t��

+ 	
q

i

�q

�S�t�,O�t���bq�t0�e−i�q�t−t0� − iWq�t��

− 	
q

i

�q

�bq
†�t0�ei�q�t−t0� + iWq

†�t���O�t�,S�t�� .

�16�

We assume the initial density of the atom-phonon system
to be the direct product state


��t0� = 
�t0�
B�t0� , �17�

with the atom in an arbitrary state 
�t0� and the phonons in a
thermal state


B�t0� = Z−1 exp�− HB�t0�/kBT� . �18�

Here, Z is the normalization constant and T is the tempera-
ture of the phonon bath. For the initial condition �17�, the
Bogolubov’s lemma �14�, applied to an arbitrary operator
��t�, asserts the following:


��t�bq�t0�� = n̄q
�bq�t0�,��t��� , �19�

where the mean number of phonons in the mode q is given
by

n̄q =
1

exp���q/kBT� − 1
. �20�

Let � be an atomic operator. We then have the commutation
relation �bq�t� ,��t��=0, which yields

�bq�t0�,��t�� = iei�q�t−t0��Wq�t�,��t�� . �21�

Combining Eq. �19� with Eq. �21� leads to


��t�bq�t0�� = iei�q�t−t0�n̄q
�Wq�t�,��t��� . �22�

We perform the quantum mechanical averaging for expres-
sion �16� and use Eq. �22� to eliminate the phonon operators
bq�t0� and bq

†�t0�. The resulting equation can be written as

�
O�t��
�t

=
i

�

�HA�t�,O�t��� + 	

q

n̄q + 1

�q


�S�t�,O�t��Wq�t�

+ Wq
†�t��O�t�,S�t��� + 	

q

n̄q


�q


Wq�t��O�t�,S�t��

+ �S�t�,O�t��Wq
†�t�� . �23�

We note that Eq. �23� is exact. It does not contain phonon
operators explicitly. The dependence on the phonon opera-
tors is hidden in the shift of the time argument � of the
operator S��� in expression �14� for the operator Wq�t�.

We now show how the dependence of the operator Wq�t�
on the phonon operators can be approximately eliminated.
We assume that the atom-phonon coupling coefficients g		�
are small. The use of the zeroth-order approximation

		����=
		��t�e

i�		���−t� in the expression for S��� obtained
from Eq. �7� yields

S��� = 	
		�

g		�
		��t�e
i�		���−t�, �24�

which is accurate to first order in the coupling coefficients.
Inserting Eq. �24� into Eq. �14� gives

Wq�t� =
2�


�q
	
		�

g		�
		��t��−��	�	 − �q� , �25�

where

�−��� = lim
�→0

1

2�
�

−�

0

e−i��+i���d� =
i

2�

1

�
P +

1

2
���� .

�26�

Here, in order to take into account the effect of adiabatic
turn-on of interaction, we have added a small positive pa-
rameter � to the integral and have used the limit t0→−�.
Introducing the notation

Kq =
Wq


�q

=
2�

�q
	
		�

g		�
		��−��	�	 − �q� , �27�

we can rewrite Eq. �23� in the form

�
O�t��
�t

=
i

�

�HA�t�,O�t��� + 	

q
�n̄q + 1�
�S�t�,O�t��Kq�t�

+ Kq
†�t��O�t�,S�t��� + 	

q
n̄q
Kq�t��O�t�,S�t��

+ �S�t�,O�t��Kq
†�t�� . �28�

In order to examine the time evolution of the reduced
density operator 
�t� of the atom in the Schrödinger picture,
we use the relation 
O�t��=Tr�O�t�
�0��=Tr�O�0�
�t��,
transform to arrange the operator O�0� at the first position in
each operator product, and eliminate O�0�. Then, we obtain
the Liouville master equation
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�
�t�
�t

= −
i

�
�HA,
�t�� + 	

q
�n̄q + 1���Kq
�t�,S� + �S,
�t�Kq

†��

+ 	
q

n̄q��S,
�t�Kq� + �Kq
†
�t�,S�� . �29�

Equations �28� and �29� are valid to second order in the
coupling coefficients. These equations allow us to study the
time evolution and dynamical characteristics of the atom in-
teracting with the thermal phonon bath. We note that Eq. �29�
is a particular form of Zwanzig’s generalized master equa-
tion, which can be obtained by the projection operator
method �15�.

B. Relaxation rates and frequency shifts

We use Eq. �29� to derive an equation for the matrix ele-
ments 
 j j��
j�
�j�� of the reduced density operator of the
atom. The result is

�
 j j�

�t
= − i� j j�
 j j� + 	

		�

�� j j�		�
e + � j j�		�

a �
		�

− 	
	

��� j	
e + � j	

a �
	j� + �� j�	
e* + � j�	

a* �
 j	� , �30�

where the coefficients

� j j�		�
e = 2�	

q

n̄q + 1

�q
gj	gj�	���−��	j − �q� + �+��	�j� − �q�� ,

� j	
e = 2�	

q�

n̄q + 1

�q
gj�g	��−��	� − �q� �31�

and

� j j�		�
a = 2�	

q

n̄q

�q
gj	gj�	���−�� j�	� − �q� + �+�� j	 − �q�� ,

� j	
a = 2�	

q�

n̄q

�q
gj�g	��+���	 − �q� �32�

are the decay parameters associated with the phonon emis-
sion and absorption, respectively. Here, the notation �+���
=�−

*��� has been used.
Equation �30� describes phonon-induced variations in the

populations and coherences of the translational levels of the
atom. We analyze the characteristics of the relaxation pro-
cesses. For simplicity of mathematical treatment, we first
consider only transitions from discrete levels. The equation
for the diagonal matrix element 
 j j for a discrete level j can
be written in the form

�
 j j

�t
= 	

	

�� j j		
e + � j j		

a �
		 − �� j j
e + � j j

a + c.c.�
 j j

+ off-diagonal terms. �33�

When the off-diagonal terms are neglected, Eq. �33� reduces
to a simple rate equation. It is clear from Eq. �33� that the

rate for the downward transition from an upper level l to a
lower level k �k� l� is

Rkl
e = �kkll

e = 2�	
q

n̄q + 1

�q
glk

2 ���lk − �q� , �34�

while the rate for the upward transition from a lower level k
to an upper level l �l�k� is

Rlk
a = �llkk

a = 2�	
q

n̄q

�q
glk

2 ���lk − �q� . �35�

Equations �34� and �35� are in agreement with the results of
Gortel et al. �10�, obtained by using the Fermi golden rule.
We note that Rkl

e and Rlk
a with l�k are mathematically equal

to zero because they have no physical meaning. For conve-
nience, we introduce the notation Rlk=Rlk

e , Rlk
a , or 0 for l

�k, l�k, or l=k, respectively. It is clear that the off-
diagonal coefficients Rlk, with l�k, are the rates of the tran-
sitions from k to l. However, the diagonal coefficients Rkk
have no physical meaning and are mathematically equal to
zero.

As seen from Eq. �33�, the phonon-mediated depletion
rate of a level k is �kk=2 Re��kk

e +�kk
a �. The explicit expres-

sion for this rate is

�kk = 2�	
q�

n̄q + 1

�q
gk�

2 ���k� − �q�

+ 2�	
q�

n̄q

�q
g�k

2 ����k − �q� . �36�

We note that �kk=	��R�k
e +R�k

a �=	�R�k. We can write �kk

=�kk
e +�kk

a , where

�kk
e = 	

��k

R�k
e �37�

and

�kk
a = 	

��k

R�k
a �38�

are the contributions due to downward transitions �phonon
emission� and upward transitions �phonon absorption�, re-
spectively. We note that, in Eqs. �36�–�38�, the summation
over � can be extended to cover not only the discrete levels
but also the continuum levels.

Furthermore, the equation for the off-diagonal matrix el-
ement 
lk for a pair of discrete levels l and k can be written
in the form �
lk /�t=−�i�lk+�ll

e +�ll
a +�kk

e*+�kk
a*�
lk+¯, or,

equivalently,

�
lk

�t
= − i��lk + �lk − i�lk�
lk + ¯ . �39�

Here the frequency shift �lk is given by
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�lk = 	
q�

n̄q + 1

�q
� gl�

2

�l� − �q
+

g�k
2

��k + �q
�

+ 	
q�

n̄q

�q
� gl�

2

�l� + �q
+

g�k
2

��k − �q
� , �40�

while the coherence decay rate �lk is expressed as

�lk = �	
q�

n̄q + 1

�q
�gl�

2 ���l� − �q� + gk�
2 ���k� − �q��

+ �	
q�

n̄q

�q
�g�l

2 ����l − �q� + g�k
2 ����k − �q�� . �41�

When we set l=k in Eq. �40�, we find �kk=0. When we set
l=k in Eq. �41�, we recover Eq. �36�. We note that �lk
=	��R�l

e +R�k
e +R�l

a +R�k
a � /2=	��R�l+R�k� /2. Comparison

between Eqs. �41� and �36� yields the relation �lk= ��ll

+�kk� /2. We can also write �lk=�lk
e +�lk

a , where �lk
e

=	��R�l
e +R�k

e � /2 and �lk
a =	��R�l

a +R�k
a � /2 are the contribu-

tions due to downward transitions �phonon emission� and
upward transitions �phonon absorption�, respectively. We
note that, in Eqs. �40� and �41�, the summation over � can be
extended to cover not only the discrete levels but also the
continuum levels.

We now discuss phonon-mediated transitions from con-
tinuum �free� levels. We start by considering free-to-bound
transitions. For a continuum level f with energy E f �0, the
center-of-mass wave function � f�x� is normalized per unit
energy. In this case, the quantity R	f becomes the density of
the transition rate. A free level f can be approximated by a
level of a quasicontinuum �16�. A discretization of the con-
tinuum can be realized by using a large box of length L with
reflecting boundary conditions �17�. We label En the energies
of the eigenstates in the box and �n�x� the corresponding
wave functions. Note that such states are standing-wave
states �16,17�. The relation between a quasicontinuum-state
wave function �nf

�x�, normalized to unity in the box, and the
corresponding continuum-state wave function � f�x�, normal-
ized per unit energy, with equal energies Enf

=E f, is �17�

� f�x� � � �Enf

�nf
�−1/2

�nf
�x� � � L

��
�1/2� m

2Enf

�1/4

�nf
�x� .

�42�

Consequently, for a single atom initially prepared in the qua-
sicontinuum standing-wave state �nf�= ��nf

�, the rate for the
transition to an arbitrary bound state �	� is approximately
given by

G	f =
��

L
v fR	f , �43�

where v f = �2E f /m�1/2 is the velocity of the atom in the initial
continuum standing-wave state �f�. The phonon-mediated
free-to-bound decay rate �adsorption rate� is then given by

Gf = 	
	

G	f , �44�

where the summation includes only bound levels. It is clear
from Eq. �43� that, in the continuum limit L→�, the rate G	f
tends to zero. This is because a free atom can be anywhere in
free space and therefore the effect of phonons on a single
free atom is negligible.

In order to get deeper insight into the free-to-bound tran-
sition rate density R	f, we consider a macroscopic atomic
ensemble in the thermodynamic limit �16�. Suppose that
there are N0 atoms in a volume with a large length L and a
transverse cross section area S0. Assume that all the atoms
are in the same quasicontinuum state �nf� and interact with
the dielectric independently. The rate for the transitions of
the atoms from the quasicontinuum state �nf� to an arbitrary
bound state �	�, defined as the time derivative of the number
of atoms in the state �	�, is D	f =N0G	f. In order to get the
rate for the continuum state �f�, we need to take the thermo-
dynamical limit, where L→� and N0→� but N0 /L remains
constant. Then, the rate for the transitions of the atoms from
the continuum state �f� to an arbitrary bound state �	� is given
by D	f =��
0S0v fR	f =2��N fR	f. Here, 
0=N0 /LS0 is the
atom number density and N f =
0S0v f /2 is the number of
atoms incident into the dielectric surface per unit time. It is
clear that the transition rate D	f is proportional to the inci-
dence rate N f as well as the transition rate density R	f. We
emphasize that D	f is a characteristic for a macroscopic
atomic ensemble in the thermodynamic limit while G	f is a
measure for a single atom. When the length of the box, L,
and the number of atoms, N0, are finite, the dynamics of the
atoms cannot be described by the free-to-bound rate D	f di-
rectly. Instead, we must use the transition rate per atom
G	f =D	f /N0, which depends on the length L of the box that
contains the free atoms �see Eq. �43��.

In a thermal gas, the atoms have different velocities and,
therefore, different energies. For a thermal Maxwell-
Boltzmann gas with temperature T0, the distribution of the
kinetic energy E f of the atomic center-of-mass motion along
the x direction is

P�E f� =
1


�kBT0

e−Ef/kBT0


E f

. �45�

The transition rate to an arbitrary bound state �	� is then
given by G	T0

=�0
�G	fP�E f�dE f, i.e.,

G	T0
=

�D

L
�

0

�

e−Ef/kBT0R	fdE f , �46�

where �D= �2��2 /mkBT0�1/2 is the thermal de Broglie wave-
length. The phonon-mediated free-to-bound decay rate �ad-
sorption rate� is given by

GT0
= 	

	

G	T0
= �

0

�

GfP�E f�dE f . �47�

In the above equation, the summation over 	 includes only
bound levels. Note that Eq. �46� is in qualitative agreement
with the results of Refs. �5,16�.
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It is easy to extend the above results to the case of free-
to-free transitions. Indeed, it can be shown that the density of
the rate for the transition from a quasicontinuum state �nf�,
which corresponds to a free state �f�, to a different free state
�f�� is given by

Qf�f =
��

L
v fRf�f . �48�

For convenience, we introduce the notation Qf�f
e =Qf�f or 0

for E f��E f or E f��E f, respectively, and Qf�f
a =Qf�f or 0 for

E f��E f or E f��E f, respectively. Then, we have Qf�f =Qf�f
e , 0,

or Qf�f
a for E f��E f, E f�=E f, or E f��E f, respectively. The

downward �phonon-emission� and upward �phonon-
absorption� free-to-free decay rates for the free state �f� are
given by

Qf
e = �

0

Ef

Qf�f
e dE f� �49�

and

Qf
a = �

Ef

�

Qf�f
a dE f�, �50�

respectively. The total free-to-free decay rate for the free
state �f� is Qf =Qf

e+Qf
a=�0

�Qf�fdE f�.
For a thermal gas, we need to replace the transition rate

density Qf�f and the decay rate Qf by Qf�T0
=�0

�Qf�fP�E f�dE f and QT0
=�0

�QfP�E f�dE f, respectively,
which are the averages of Qf�f and Qf, respectively, with
respect to the energy distribution P�E f� of the initial state.
Like in the other cases, we have Qf�T0

=Qf�T0

e +Qf�T0

a and

QT0
=QT0

e +QT0

a , where

Qf�T0

e = �
Ef�

�

Qf�f
e P�E f�dE f ,

Qf�T0

a = �
0

Ef�

Qf�f
a P�E f�dE f �51�

are the downward and upward transition rate densities and

QT0

e = �
0

�

Qf
eP�E f�dE f ,

QT0

a = �
0

�

Qf
aP�E f�dE f �52�

are the downward and upward decay rates. The thermal de-
cay rates QT0

e and QT0

a describe the cooling and heating pro-
cesses, respectively. It can be easily shown that QT0

e �QT0

a ,
QT0

e �QT0

a , and QT0

e =QT0

a when T0�T, T0�T, and T0=T, re-
spectively. The relation QT0

e �QT0

a �QT0

e �QT0

a �, obtained for
T0�T �T0�T�, indicates the dominance of heating �cooling�
of free atoms by the surface.

C. Relaxation rates and frequency shifts in the framework of
the Debye model

In order to get insight into the relaxation rates and fre-
quency shifts, we approximate them using the bulk Debye
model for phonons. In this model, the phonon frequency �q
is related to the phonon wave number q as �q=vq, where v
is the sound velocity. Furthermore, the summation over the
first Brillouin zone is replaced by an integral over a sphere of
radius qD= �6�2N /V�1/3, where V is the volume of the solid.
The Debye frequency and the Debye temperature are given
by �D=vqD and TD=��D /kB, respectively. For fused silica,
we have v=5.96 km/s, NM /V=2.2 g/cm3, and M =9.98
�10−26 kg �18�. Using these parameters, we find qD
=109.29�106 cm−1, �D=10.4 THz, and TD=498 K. In or-
der to perform the summation over phonon states in the
framework of the Debye model, we invoke the thermody-
namic limit, i.e., replace

	
q

¯ =
V

8�3�
�q��qD

. . . dq =
3N

�D
3 �

0

�D

. . . �q
2d�q. �53�

Then, for transitions between an upper level l and a lower
level k, where 0��lk��D, Eqs. �34� and �35� yield

Rkl
e =

3�

M��D
3 �n̄lk + 1��lkFlk

2 �54�

and

Rlk
a =

3�

M��D
3 n̄lk�lkFlk

2 . �55�

Here, n̄lk is given by Eq. �20� with �q replaced by �lk. We
emphasize that, according to Eqs. �54� and �55�, the phonon-
emission rate Rkl

e and the phonon-absorption rate Rlk
a depend

not only on the matrix element Flk of the force but also on
the translational transition frequency �lk. The frequency de-
pendences of the transition rates are comprised of the fre-
quency dependences of the mean phonon number n̄lk, the
phonon mode density 3N�lk

2 /�D
3 , and the matrix element

Flk=−Ulk� =−m�lk
2 xlk of the force. An additional factor comes

from the presence of the phonon frequency in Eq. �5� for the
surface displacement and, consequently, in the atom-phonon
interaction Hamiltonian �6�. It is clear that an increase in the
phonon frequency leads to a decrease in the mean phonon
number and an increase in the phonon mode density. The
matrix element of the force usually first increases and then
decreases with increasing transition frequency. Due to the
existence of several competing factors, the frequency depen-
dences of the transition rates are rather complicated. They
usually first increase and then decrease with increasing tran-
sition frequency. We note that, for transitions with �lk��D,
we have Rkl

e =Rlk
a =0.

We conclude this section by noting that the use of Eq.
�53� in Eq. �40� yields the frequency shift

�lk = �lk
�0� + �lk

�T�, �56�

where
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�lk
�0� =

3

2M��D
3 	

�
�

0

�D � Fl�
2

�l� − �
+

F�k
2

��k + �
�� d� �57�

and

�lk
�T� =

3

M��D
3 	

�
�

0

�D � �l�Fl�
2

�l�
2 − �2 +

��kF�k
2

��k
2 − �2�n̄�� d�

�58�

are the zero- and finite-temperature contributions, respec-
tively. In Eq. �58�, n̄� is given by Eq. �20� with �q replaced
by �.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results based on
the analytical expressions derived in the previous section for
the phonon-mediated relaxation rates of the translational lev-
els of the atom. In particular, we use Eqs. �54� and �55�,
obtained in the framework of the Debye model, for our nu-
merical calculations. We consider transitions from bound
states as well as free states. The transitions from bound states
to other translational levels occur in the case where the atom
is initially already adsorbed or trapped near the surface. The
transitions from free states to other translational levels occur
in the processes of adsorbing, heating, and cooling of free
atoms by the surface. Due to the difference in physics of the
initial situations, we study the transitions from bound and
free states separately.

A. Transitions from bound states

We start from a given bound level and calculate the rates
of phonon-mediated atomic transitions, both downward and
upward. The profiles of the phonon-emission �downward-
transition� rate R	�	

e �see Eq. �54�� and the phonon-absorption
�upward-transition� rate R	�	

a �see Eq. �55�� are shown in
Figs. 3 and 4, respectively. The upper �lower� part of each of
these figures corresponds to the case of the initial level 	
=280 �	=120�, with energy E	=−156 MHz �E	=−8.4 THz�.
The left �right� panel of Fig. 4 corresponds to bound-to-
bound �bound-to-free� upward transitions. The temperature
of the surface is assumed to be T=300 K. As seen from Figs.
3 and 4, the transition rates have pronounced localized pro-
files. Due to the competing effects of the mean phonon num-
ber, the phonon mode density, and the matrix element of the
force, the transition rates usually first increase and then de-
crease with increasing transition frequency. It is clear from a
comparison of Figs. 3�a� and 3�b� and also a comparison of
Figs. 4�a� and 4�b� that transitions from shallow levels have
probabilities orders of magnitude lower than those from
deeper levels. The main reason is that the wave functions of
the shallow states are spread further away from the surface
than those for the deep states. Due to this difference, the
effects of the surface vibrations are weaker for the shallow
levels than for the deep levels. Another pertinent feature that
should be noted from the figure is the following: Since tran-
sition frequencies involved are large, they may overshoot the
Debye frequency �D=10.4 THz, leading to a cutoff on the

lower �higher� side of the frequency axis for the emission
�absorption� curve.

In order to see the overall effect of the individual transi-
tion rates shown above, we add them up. First we examine
the phonon-absorption rates of bound levels. The total
phonon-absorption rate �		

a of a bound level 	 is the sum of
the individual absorption rates R�	

a over all the upper levels
�, both bound and free �see Eq. �38��. We plot in Fig. 5 the
contributions to �		

a from two types of transitions, bound-to-
bound and bound-to-free �desorption� transitions. The solid
curve of the figure shows that the bound-to-bound phonon-
absorption rate is large �above 1010 s−1� for deep and inter-
mediate levels. However, it reduces dramatically with in-
creasing 	 in the region of large 	 and becomes very small
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FIG. 3. Phonon-emission rates R	�	
e from the vibrational levels

�a� 	=280 and �b� 	=120 to other levels 	� as functions of the
lower-level energy E	�. The arrows mark the initial states. The pa-
rameters of the solid are M =9.98�10−26 kg and �D=10.4 THz.
The temperature of the phonon bath is T=300 K. Other parameters
are as in Fig. 1.
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a from the vibrational levels

�a� 	=280 and �b� 	=120 to other levels 	� as functions of the
upper-level energy E	�. The left �right� panel in each row corre-
sponds to bound-to-bound �bound-to-free� transitions. The arrows
mark the initial states. The parameters used are as in Fig. 3. The
temperature of the phonon bath is T=300 K.
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�below 10−5 s−1� for shallow levels. Meanwhile, the dashed
curve of Fig. 5 shows that the bound-to-free phonon-
absorption rate �i.e., the desorption rate� is zero for deep
levels, since the energy required for the transition is greater
than the Debye energy �5�. However, the desorption rate is
substantial �above 105 s−1� for intermediate and shallow lev-
els. Thus the total phonon-absorption rate �		

a is mainly de-
termined by the bound-to-bound transitions in the case of
deep levels and by the bound-to-free transitions in the case
of shallow levels. One of the reasons for the dramatic reduc-
tion of the bound-to-bound phonon-absorption rate in the
region of shallow levels is that the number of upper bound
levels � becomes small. The second reason is that the fre-
quency of each individual transition becomes small, leading
to a decrease of the phonon mode density. The third reason is
that the center-of-mass wave functions of shallow levels are

spread far away from the surface, leading to a reduction of
the effect of phonons on the atom.

Unlike the bound-to-bound phonon-absorption rate, the
bound-to-free phonon-absorption rate is substantial in the re-
gion of shallow levels. This is because the free-state spec-
trum is continuous and the range of the bound-to-free tran-
sition frequency can be large �up to the Debye frequency
�D=10.4 THz�. The gradual reduction of the bound-to-free
phonon-absorption rate in the region of shallow levels is
mainly due to the reduction of the time that the atom spends
in the proximity of the surface.

The total phonon-emission rate �		
e �see Eq. �37�� and the

total phonon-absorption rate �		
a �see Eq. �38�� are shown in

Fig. 6 by the solid and dashed curves, respectively. It is clear
from the figure that the emission is comparable to but
slightly stronger than the absorption. Such a dominance is
due to the fact that phonon emission moves the atom to a
center-of-mass state closer to the surface while phonon ab-
sorption changes the atomic state in the opposite direction
�see Figs. 1 and 2�. Our results for the rates are in good
qualitative agreement with the results of Oria et al., albeit
with the Morse potential �5�. We stress that we include a
large number of vibrational levels as a consequence of the
deep silica-cesium potential. Note that the earlier work on
this theme involved much fewer levels �5�.

We next study the effect of temperature on the decay
rates. The results for the phonon-mediated decay rates for
T=30 K are shown in Fig. 7. In contrast to Fig. 6, the ab-
sorption rate is now much smaller than the corresponding
emission rate for both shallow and deep levels. Thus, while it
is difficult to distinguish the two log-scale curves for deep
and shallow levels at room temperature �see Fig. 6�, they are
well resolved at low temperature �see Fig. 7�.

B. Transitions from free states

We now calculate the rates for transitions from free states
to other levels. We first examine free-to-bound transitions,
which correspond to the adsorption process. According to
Eq. �43�, the free-to-bound �more exactly, quasicontinuum-
to-bound� transition rate G	f depends not only on the
continuum-to-bound transition rate density R	f but also on
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FIG. 6. Phonon-emission decay rate �		
e �solid lines� and

phonon-absorption decay rate �		
a �dashed lines� of a bound level as

functions of the vibrational quantum number 	. The inset shows the
rates in the linear scale to highlight the differences in the dissocia-
tion limit. The parameters used are as in Fig. 3. The temperature of
the phonon bath is T=300 K.
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FIG. 7. Same as in Fig. 6 except that T=30 K.
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the length L of the free-atom quantization box. To be spe-
cific, we use in our numerical calculations the value L
=1 mm, which is a typical size of atomic clouds in magneto-
optical traps �19�.

We plot in Fig. 8 the free-to-bound transition rate G	f �see
Eq. �43�� as a function of the vibrational quantum number 	.
The upper �lower� part of the figure corresponds to the case
of the initial-state energy E f =2 MHz �E f =3.1 THz�, which is
close to the average kinetic energy per atom in an ideal gas
with temperature T0=200 �K �T0=300 K�. We observe that
the free-to-bound transition rate first increases and then de-
creases with increasing transition frequency � f	= �E f −E	� /�.
Such behavior results from the competing effects of the
mean phonon number, the phonon mode density, and the
matrix element of the force, like in the case of bound-to-
bound transitions �see Fig. 3�. We also see a cutoff of the
transition frequency, which is associated with the Debye fre-
quency. Comparison of Figs. 8�a� and 8�b� shows that the
transitions from low-energy free states have probabilities or-
ders of magnitude smaller than those from high-energy free
states. One of the reasons is that the transition rate G	f is
proportional to the velocity v f = �2E f /m�1/2 �see Eq. �43��.
The dependence of the transition rate density R	f on the tran-
sition frequency � f	 also plays an important role. Because of
these reasons, the rates for the transitions from low-energy
free states to shallow bound levels are very small �see the
inset of Fig. 8�a��.

We show in Fig. 9 the free-to-bound decay rate Gf �see
Eq. �44��, which is a characteristic of the adsorption process,
as a function of the free-state energy E f. We see that Gf first
increases and then decreases with increasing E f. The increase
of Gf with increasing E f in the region of small E f �see the

inset� is mainly due to the increase in the atomic incidence
velocity v f. In this region, we have Gf �v f �
E f �see Eqs.
�43� and �44��. For E f in the range from 0 to 20 MHz, which
is typical for atoms in magneto-optical traps, the maximum
value of Gf is on the order of 104 s−1 �see the inset of Fig. 9�.
Such free-to-bound �adsorption� rates are several orders of
magnitude smaller than the bound-to-free �desorption� rates
�see the dashed curve in Fig. 5�. The decrease of Gf with
increasing E f in the region of large E f is mainly due to the
reduction of the atom-phonon coupling coefficients.

In a thermal gas, the adsorption process is characterized
by the transition rate G	T0

�see Eq. �46�� and the decay rate
GT0

�see Eq. �47��, which are the averages of the free-to-
bound transition rate G	f and the free-to-bound decay rate
Gf, respectively, over the free-state energy distribution �45�.
We plot the free-to-bound transition rate G	T0

and the free-
to-bound decay rate GT0

in Figs. 10 and 11, respectively.
Comparison between Figs. 10�a� and 8�a� shows that the
transition rates from low-temperature thermal states and low-
energy free states look quite similar to each other. The reason
is that the spread of the energy distribution is not substantial
in the case of low temperatures. The spread of the energy
distribution is however substantial in the case of high tem-
peratures, leading to the softening of the cutoff frequency
effect �compare Fig. 10�b� with Fig. 8�b��. Figure 11 shows
that the free-to-bound decay rate GT0

first increases and then
reduces with increasing atomic temperature T0. For T0 in the
range from 100 �K to 400 �K, which is typical for atoms in
magneto-optical traps, the maximum value of GT0

is on the
order of 104 s−1 �see Fig. 11�a��. Such free-to-bound �adsorp-
tion� rates are several orders of magnitude smaller than the
bound-to-free �desorption� rates �see the dashed curve in Fig.
5�. Figure 11�a� shows that, in the region of low atomic
temperature T0, one has GT0

�
T0, in agreement with the
asymptotic behavior of Eqs. �46� and �47�.

We now examine free-to-free transitions, both upward and
downward, which correspond to the heating and cooling pro-
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FIG. 8. Free-to-bound transition rates G	f for transitions from
the free plane-wave states with energies �a� E f =2 MHz and �b� E f

=3.1 THz to bound levels 	 as functions of the bound-level energy
E	. The arrows mark the energies of the initial free states. The insets
show G	f on the log scale versus E	 in the range from
−200 MHz to −0.2 MHz to highlight the rates to shallow bound
levels. The length of the free-atom quantization box is L=1 mm.
The temperature of the phonon bath is T=300 K. Other parameters
are as in Fig. 3.
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FIG. 9. Free-to-bound decay rate Gf as a function of the free-
state energy E f. The inset highlights the magnitude and profile of
the decay rate for E f in the range from 0 to 20 MHz. The tempera-
ture of the phonon bath is T=300 K. Other parameters are as in Fig.
8.
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cesses of free atoms by the surface. We plot in Fig. 12 the
free-to-free transition rate density Qf�f �see Eq. �48�� as a
function of the final-level energy E f�. The upper �lower� part
of the figure corresponds to the case of the initial-state en-
ergy E f =2 MHz �E f =3.1 THz�, which is close to the average
kinetic energy per atom in an ideal gas with temperature
T0=200 �K �T0=300 K�. The rate densities are shown for
the upward �phonon-absorption� and downward �phonon-
emission� transitions by the solid and dashed lines, respec-
tively. The figure shows that the free-to-free transition rate
density increases or decreases with increasing transition fre-
quency if the latter is not too large or is large enough, re-
spectively. We also observe a signature of the Debye cutoff
of the phonon frequency. Comparison of Figs. 12�a� and
12�b� shows that transitions from low-energy free states have

probabilities orders of magnitude smaller than those from
high-energy free states. Figure 12�a� and its inset show that,
when the energy of the free state is low, the free-to-free
downward �cooling� transition rate is very small as compared
to the free-to-free upward �heating� transition rate.

We show in Fig. 13 the free-to-free upward �phonon-
absorption� and downward �phonon-emission� decay rates Qf

a

�see Eq. �50�� and Qf
e �see Eq. �49�� as functions of the free-
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FIG. 10. Free-to-bound transition rates G	T0
for transitions from

the thermal states with temperatures �a� T0=200 �K and �b� T0

=300 K to bound levels 	 as functions of the bound-level energy
E	. The insets show G	T0

on the log scale versus E	 in the range
from −200 MHz to −0.2 MHz to highlight the rates to shallow
bound levels. The temperature of the phonon bath is T=300 K.
Other parameters are as in Fig. 8.
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FIG. 11. Free-to-bound decay rate GT0
as a function of the

atomic temperature T0 in the ranges �a� from 100 �K to 400 �K
and �b� from 50 K to 350 K. The temperature of the phonon bath is
T=300 K. Other parameters are as in Fig. 8.
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other free states �f�� as functions of the final-level energy E f�. The
arrows mark the energies of the initial free states. The inset in part
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the small magnitude of the rate density for downward transitions
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FIG. 13. Free-to-free upward and downward decay rates Qf
a

�solid lines� and Qf
e �dashed lines� as functions of the energy E f of

the initial free state. The insets highlight the magnitudes and pro-
files of the decay rates for E f in the range from 0 to 20 MHz. The
temperature of the phonon bath is T=300 K. Other parameters are
as in Fig. 8.
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state energy E f. We observe that Qf
a and Qf

e increase with
increasing E f in the range from 0 to 8 THz. The increase of
Qf

a with increasing E f in the region of small E f �see the left
inset� is mainly due to the increase in the atomic incidence
velocity v f. In this region, we have Qf

a�v f �
E f �see Eqs.
�48� and �50��. The increase of Qf

e with increasing E f in the
region of small E f �see the right inset� is due to not only the
increase in the atomic incidence velocity v f �see Eq. �48��
but also the increase of the transition rate density Qf�f

e and
the increase of the integration interval �0,E f� �see Eq. �49��.
In this region, the dependence of Qf

e on the energy E f is of
higher order than E f

3/2. The left inset of Fig. 13 shows that,
for E f in the range from 0 to 20 MHz, the maximum value of
Qf

a is on the order of 104 s−1. Such free-to-free upward �heat-
ing� decay rates are comparable to but about two times
smaller than the corresponding free-to-bound �adsorption�
decay rates �see the inset of Fig. 9�. Meanwhile, the right
inset of Fig. 13 shows that, in the region of small E f, the
free-to-free downward �cooling� decay rate Qf

e is very small.
In the case of a thermal gas, the phonon-mediated heat

transfer between the gas and the surface is characterized by
the free-to-free transition rate densities QfT0

a and QfT0

e �see
Eqs. �51�� and the free-to-free decay rates QT0

a and QT0

e �see
Eqs. �52��. We plot the free-to-free transition rate densities
QfT0

a and QfT0

e in Fig. 14. Comparison between Figs. 14�a�
and 12�a� shows that the transition rate densities from low-
temperature thermal states and low-energy free states are
quite similar to each other. The spread of the initial-state
energy distribution is not substantial in this case. However,
the energy spread of the initial state is substantial in the case
of high temperatures, concealing the cutoff frequency effect
�compare Fig. 14�b� with Fig. 12�b��. We display the free-to-
free decay rates QT0

a and QT0

e in Fig. 15. The solid and dashed

lines correspond to the upward �heating� and downward
�cooling� transitions, respectively. For comparison, the free-
to-bound decay rate �adsorption rate� GT0

is replotted from
Fig. 11 by the dotted lines. We observe that, for T0 in the
range from 100 �K to 400 �K �see Fig. 15�a��, the adsorp-
tion rate GT0

�dotted line� is about two times larger than the
heating rate QT0

a �solid line�, while the cooling rate QT0

e

�dashed line� is negligible. Figure 15�a� shows that, in the
region of low atomic temperatures, one has QT0

�QT0

a �
T0,
in agreement with the asymptotic behavior of expressions
�52�. The figure also shows that QT0

e quickly increases with
increasing atomic temperature T0. The relation QT0

e �QT0

a ,
obtained for T0�T, indicates the dominance of heating of
cold free atoms by the surface. The substantial magnitude of
the free-to-bound transition rate GT0

�dotted line� indicates
that a significant number of atoms can be adsorbed by the
surface. According to Fig. 15�b�, the free-to-free downward
transition rate QT0

e �dashed line� crosses the upward transition
rate QT0

a �solid line� when T0=T=300 K, and then becomes
the dominant decay rate. The relation QT0

e �QT0

a , obtained for
T0�T, indicates the dominance of cooling of hot free atoms
by the surface.

V. CONCLUSIONS

In conclusion, we have studied the phonon-mediated tran-
sitions of an atom in a surface-induced potential. We devel-
oped a general formalism, which is applicable for any
surface-atom potential. A systematic derivation of the corre-
sponding density-matrix equation enables us to investigate
the dynamics of both diagonal and off-diagonal elements. We
included a large number of vibrational levels originating
from the deep silica-cesium potential. We calculated the tran-
sition and decay rates from both bound and free levels. We
found that the rates of phonon-mediated transitions between
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FIG. 14. Free-to-free transition rate densities QfT0

a for upward
transitions �solid lines� and QfT0

e for downward transitions �dashed
lines� from the thermal states with temperatures �a� T0=200 �K
and �b� T0=300 K to free levels f as functions of the free-level
energy E f. The inset in part �a� shows the rate densities versus E f in
the range from 0 to 8 MHz to highlight the small magnitude of QfT0

e

�dashed line�. The temperature of the phonon bath is T=300 K.
Other parameters are as in Fig. 8.
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FIG. 15. Free-to-free decay rates QT0

a �solid lines� and QT0

e

�dashed lines� for upward and downward transitions, respectively,
as functions of the atomic temperature T0 in the ranges �a� from
100 �K to 400 �K and �b� from 50 K to 350 K. For comparison,
the free-to-bound decay rate GT0

is replotted from Fig. 11 by the
dotted lines. The temperature of the phonon bath is T=300 K. Other
parameters are as in Fig. 8.
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translational levels depend on the mean phonon number, the
phonon mode density, and the matrix element of the force
from the surface upon the atom. Due to the effects of these
competing factors, the transition rates usually first increase
and then reduce with increasing transition frequency. We fo-
cused on the transitions from bound states. Two specific ex-
amples, namely, when the initial level is a shallow level and
also when it can be one of the deep levels, have been worked
out. We have shown that there can be marked differences in
the absorption and emission behavior in the two cases. For
example, both the absorption and emission rates from the
deep bound levels can be several orders �in our case, six
orders� of magnitude larger than the corresponding rates
from the shallow bound levels. We also analyzed various

types of transitions from free states. We have shown that, for
thermal atomic cesium with temperature in the range from
100 �K to 400 �K in the vicinity of a silica surface with
temperature of 300 K, the adsorption �free-to-bound decay�
rate is about two times larger than the heating �free-to-free
upward decay� rate, while the cooling �free-to-free down-
ward decay� rate is negligible.
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