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Excitation of heavy hydrogenlike ions in relativistic collisions
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We study the excitation of heavy hydrogenlike ions occurring in high-energy collisions with many-electron
atoms by considering three theoretical approaches. In all of them the initial and final undistorted states of the
electron in the ion are described by relativistic Coulomb-Dirac wave functions. In two of these approaches the
interaction between the electron of the ion and the atom is described within the first order perturbation theory.
In the first approach the presence of the atomic electrons is neglected whereas the second approach takes them
into account. The comparison of results of these two approaches allows one to establish the range of collision
energies where the effect of the electrons of the atom on the excitation process is weak and can be neglected.
At these energies, however, the interaction between the electron of the ion and the nucleus of the atom may
become too strong for the first order theory to be a good approximation. In order to deal with this point we
present the third approach which is based on the symmetric eikonal approximation. Theoretical results are

compared with available experimental data.
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I. INTRODUCTION

In ion-atom collisions, where the collision velocity v ap-
proaches the speed of light ¢ (c=137 a.u.), the colliding
particles are exposed to electromagnetic fields which in gen-
eral substantially differ from fields produced in nonrelativis-
tic collisions. Besides, the internal motion of electrons in
very heavy ions is also noticeably influenced by the relativ-
istic effects. All this considerably alters the dynamics of ion-
atom collisions which involve heavy ions moving at high
velocities compared to results suggested by calculations per-
formed under the assumption that the speed of light is infi-
nite.

During the last two decades there has been accumulated
the considerable amount of experimental and theoretical re-
sults for the ionization of K shells of heavy atoms in relativ-
istic collisions with pointlike charges (see for a review [1-6]
where also a wealth of references to original papers can be
found). Besides, more recently there have been substantial
efforts devoted to the exploration of the electron loss from
heavy ions colliding with atoms at relativistic impact ener-
gies (for a review see [7]). The process of the excitation of
such ions, however, has been much less studied and both
experimental and theoretical results for this process are
scarce [6,8,9].

In the present paper we consider the excitation of heavy
hydrogenlike ions colliding with neutral many-electron at-
oms. The paper is organized as follows. The next section
(Sec. II) contains the general description of the theoretical
approaches which we use to treat the excitation process. In
Sec. III these approaches are employed to calculate excita-
tion cross sections. Atomic units are used throughout except
where otherwise stated.

II. GENERAL

The collision between an ion carrying an electron and an
atom involves at least four particles. A rigorous and compre-
hensive treatment of such a collision in the domain of rela-
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tivistic impact energies is a highly nontrivial task which is
beyond the scope of the present study. In this paper, in order
to treat the excitation of a highly charged ion in collisions
with a many-electron atom, we shall use a simplified picture
of the excitation process which consists of the following
main “ingredients.” First, the electron of the ion is regarded
as the only particle having the dynamical degrees of freedom
which are described by the wave equation. Second, the nu-
clei of the ion and the atom are described as classical par-
ticles which move along given (straight-line) trajectories and
are just the sources of the external electromagnetic field act-
ing on the electron of the ion. Third, the influence of the
electrons of the atom on the excitation process will be esti-
mated within the first order perturbation theory in the inter-
action between the electron of the ion and the atom. It will be
shown that, unless the collision energy reaches relatively
high values (which will not be of interest for the present
study), the role of the atomic electrons in the excitation of a
very tightly bound electron in the ion is just of minor impor-
tance and they can simply be neglected. Thus, within the
simplified picture the process of the excitation of the electron
of the ion is effectively reduced to a three-body problem of
the motion of the electron in the electromagnetic fields gen-
erated by two pointlike classical particles.

It is convenient to treat the excitation process using a
reference frame K in which the nucleus of the ion is at rest.
We take the position of the nucleus as the origin and assume
that in the frame K the nucleus of the atom moves along a
straight-line  classical trajectory R(f)=b+vz, where b
=(b,,b,,0) is the impact parameter, v=(0,0,v) is the colli-
sion velocity, and 7 is the time.

Disregarding for the moment the electrons of the atom,
the Dirac equation for the electron of the ion reads

2L = i+ WO, (1)

where
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N Z
Hy=ca-p-—L+ B (2)
r
is the electronic Hamiltonian for the undistorted ion. Further,

W() = - ®(r,1) + a- A(r,1) (3)

is the interaction between the electron of the ion and the
nucleus of the atom, where @ and A are the scalar and vector
potentials of the electromagnetic field generated by the
atomic nucleus. In the Lorentz family of gauges these poten-
tials are normally taken in the Lienard-Wiechert form (see,
e.g., [4,10])

74
D(r,1) = 22,
)

A(r.1) = ~O(r.1). )
Cc

In the above equations p is the electron momentum, @
=(a,, @, @) and S are the Dirac matrices, Z, and Z, are the
charges of the nucleus of the ion and the nucleus of the atom,
respectively, r=(x,y,z) are the electron coordinates with re-
spect to the nucleus of the ion, s=(s,,s,,s,)=[x-b,,y
—b,,y(z—v1)], and y=1/V1-v?/c? is the collisional Lorentz
factor.

The prior form of the semiclassical transition amplitude is
given by

+:x:
ag(b)=—i f AV O ()| (H — il a0 x (1)) (5)
In Eq. (5) W)(r) is the solution of the full Dirac equation (1)
and y;(r) is the solution of

Jd i A
,-7’; = [Ho+ V()i (6)

where V(¢) is a distortion potential. The initial condition
reads x;(t——%)— i; exp(—ig;t), where ¢; is the (undis-
torted) initial state of the electron of the ion with an energy
€.

In what follows it will be more convenient to work with
the transition amplitude in the momentum space S;(Q)
which is related to the amplitude (5) by the two-dimensional
Fourier transformation

Sfi(Q)=%T f d*bay;(b)exp(iQ - b). ()

In Eq. (7) Q is the two-dimensional transverse part of the
momentum transfer q to the ion, which is perpendicular to
the velocity v, Q-v=0.

A. First order approximation

The first order transition amplitude is obtained from Egs.
(5)=(7) by replacing the states y;(f) and ¥2(¢) by the undis-
torted initial, ¢;, and final, iy, states of the electron in the ion
as follows:
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xi(1) = Y(r)exp(-ig;1),

WO1) = gr)exp(—igs), (8)

where & is the energy of the electron in the final state of the

ion.

Using Egs. (3), (4), (7), and (8), the first order amplitude

is obtained to be

2iZ,
v

1

- %(lﬂfleXp(iq : r)azltm), )

where the momentum q, which is transferred to the electron
of the ion in the collision, is given by

q=(9:49,-9) = (Q:q,),

& —8[
g.=1—, (10)
U
and
q' =(909,.9./7) = (Q:q./v). (11)

Expression (9) presents the first order amplitude in its most
frequently used form (see, e.g., [3,4,6,8,9]). Note that the
first and second parts of Eq. (9) arise due to the contributions
of the coupling of the electron’s charge and current densities
to the scalar and vector potentials (4), respectively.

For the goals of the present paper it is useful to cast the
first order amplitude into a different form. This can be most
conveniently done by using the charge conservation condi-
tion for the transition density and the current of the electron
of the ion. This condition, expressed as the continuity equa-
tion in the momentum space (see, e.g., [7], p. 219), reads

%fwflexp(iq 1)) + (Wlexpliq - 1)q - afih) =0.

(12)

Using Eq. (12) one can replace the first term in parentheses
in Eq. (9) and obtain
2iZc 1
n

1
SP@="" q—(wflexp(iq-r)(qxax+qyay>|a/f,->
1

+ y2<¢f|eXp(iq ‘T)q.a, ¢i>>- (13)

Note that the change in the form of the first order transition
amplitude [compare Eq. (13) with Eq. (9)] corresponds to the
following gauge transformation of the potentials of the elec-
tromagnetic field of the nucleus of the atom:

O(r,1) — O'(r,1) = D(r,1) - 16—]0,
c ot
A(r,t) — A’ (r,t) = A(r,1) + Vf, (14)

where ®(r,7) and A(r,7) are given by Egs. (4) and the gauge
function f is chosen according to
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f=- EZ, In(vs +vs,). (15)

The transformation (14) and (15) leads to the gauge in which
the scalar potential of the atomic nucleus is zero and the
electromagnetic field generated by the nucleus of the atom is
described solely by the vector potential

d'(r,1) =0,
Z, 1
A'(r,z)=—b(i;s—";—>. (16)
US\S+S, s+s5. Y

The continuity equation (12) holds provided ¢; and ¢, are

exact eigenstates of the Hamiltonian I:IO. Therefore, if exact
Coulomb-Dirac wave functions are employed to describe the
initial and final undistorted states of the electron in the ion,
the first order transition amplitude is gauge independent and
both expressions (9) and (13) for the amplitude are fully
equivalent.

1. Effect of the atomic electrons

In general, there are two points which may invalidate the
application of the simple first order three-body model de-
scribed in the previous section. The first one is the presence
of the electrons of the atom. The second point is that in
collisions with atoms having relatively large atomic numbers
the first order approaches may fail because of the strong
interaction between the electron of the ion and the nucleus of
the atom. Both points limit the range of the applicability of
the simple three-body perturbation theory and demand the
development of more sophisticated approaches. We postpone
the discussion of the second point to the next subsections and
here briefly consider the effects of the atomic electrons.

In ion-atom collisions the motion of the electron of the
ion can also be affected by its interaction with atomic elec-
trons. According to theories, in which the interaction be-
tween the ion and the atom is treated within the first order
approximation, the influence of the atomic electrons on the
electron transitions in the ion is twofold (see, e.g., [11,12]).
On one hand, when in the ion-atom collisions the electrons
of the atom remain in the same initial (ground) state, their
presence leads to a partial screening of the field of the atomic
nucleus. This effect of the atomic electrons is called screen-
ing and it reduces the excitation cross sections compared to
results of a theoretical analysis which does not take these
electrons into account. On the other hand, because of the
collision the electrons of the atom can also make transitions.
These transitions lead to the additional contribution to the
cross sections for the excitation of the electron of the ion.
Such an effect is called “antiscreening.”

In collisions between very heavy hydrogenlike ions and
not too heavy many-electron atoms the influence of the
atomic electrons on the excitation process is not very impor-
tant unless the collision energy reaches sufficiently high val-
ues. Indeed, in collisions at y~ 1 the excitation of the elec-
tron, which is very tightly bound in a heavy ion, occurs
mainly at so small impact parameters where the atomic elec-
trons are not able to effectively screen the field of the atomic
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FIG. 1. Cross section for the total excitation into the 2p5,, states
of Bi®?* (1s,,,) in collisions with krypton (Z,=36) given as a func-
tion of the collision energy. Dashed and dotted curves display re-
sults of the first order calculations without and with taking into
account the screening effect of the atomic electrons, respectively.
For more information, results of the calculation with the eikonal
amplitude (28) are also shown (solid curve).

nucleus (see for illustration, Fig. 1). Concerning the contri-
bution to the excitation of the electron of the ion from the
antiscreening effect, one should note that this process,
viewed as a function of the collision energy, has a threshold
(see, e.g., [11,12]). Below the threshold, the process has a
vanishingly small probability. But even above the threshold,
the contribution of the antiscreening to the cross section for
the excitation of the electron of a highly charged ion is
roughly proportional to Z,, whereas the contribution to the
cross section given by the interaction with the nucleus of the
atom is proportional to th. Therefore, in the case of colli-
sions with many-electron atoms, where Z,> 1, the contribu-
tion of the antiscreening effect to the excitation of a tightly
bound electron always remains of minor importance.

B. Eikonal approximations

Below we concentrate our attention on collisions at rela-
tively low energies where the influence of the atomic elec-
trons on the excitation of the ion is weak and can be ignored.
At such energies, however, the interaction between the elec-
tron and the nucleus of the atom may be strong enough to
expect noticeable deviations from predictions of the first or-
der calculation.

1. Symmetric eikonal approximation

In an attempt to obtain a better description of the interac-
tion between the electron of the ion and the nucleus of the
atom we now approximate the initial and final states in Eq.
(5) by x; and x;, respectively, where

Xi(D) = ¢(x)(vs + v -s) " exp(—iejt),
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XA = YAr)(vs — v 8)"exp(—igt), (17)

with 7,=Z,/v. The (prior form of the) semiclassical transi-
tion amplitude is now given by

afi(b)=-i f dr(x (0| W (0)xi(1). (18)

—00

Using the explicit form of the Hamiltonian H one can show
that the action of the distortion interaction W (r)=H —id.—‘i on
the initial state is defined according to

Sel:k =
fi (Q) 27TU2')/ s

exp(—iq’-s
+ f d*s(vs )2 pl-ig’:s)
s

Performing in Eq. (21) the integration over the vector s we
obtain the following result for the transition amplitude:

: 2iZc 1 [q'\*™
54KQ) = —'—(—) (1 -i
P@="2 ) -

X((l —iv),Fi(1- iVninQZ;Qz/q,2)<¢f|exp(iq ‘T)
X(Qxa/x + any)|¢'i> + 2171(1 - ivﬂivt; 1 ;Q2/q,2)

1
X ?wfleXP(iq : r)qzazltﬁi)), (22)

where I'(z;) and ,F,(a,b;c;z,) are the Gamma function and
hypergeometric function, respectively (see, e.g., [13]).

2. Correspondence between the symmetric eikonal and first order
approximations

Taking into account that lim, ,I'(1-iv)=1 and
lim, o LF (1=iv,,iv;;m;z)=1 (see [13]) we find that in the
limit v,— 0 (v,<<1) the eikonal amplitude (22) reduces to the
first order amplitude (13). If, in addition, the initial and final
states of the electron of the ion are described by the
Coulomb-Dirac states, the amplitudes (9) and (13) are fully
equivalent and, thus, the eikonal amplitude (22) in the limit
v, << 1 reduces also to the “standard” first order amplitude (9).

The fact that in the limit v,— 0O the eikonal amplitude goes
over directly to the first order amplitude in the form (13)
[and not to Eq. (9)] is not surprising. Such a behavior of the
eikonal amplitude can be understood by remarking that the
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A cZ s+ s, @
B B ,
Woxi=——(s+Vv-s) ’Vf(—th = ‘+—Z>
v s+, v

X exp(—ig;t). (19)

Taking the above expression into account, the transition am-
plitude in the impact parameter space (19) reads

4 Ze [ -
aﬁﬁk(b):ijcf dt exp[i(sf—s,-)t]fd3r(vsL)‘2“’1¢/f_}-(r)

+ .
X(M N &)W), 20)
S+SZ '}’

where s L:\e"sz+s§. The corresponding transition amplitude

written in the momentum space is then given by

iZ,c i €XP(=iq’ -8) s, .
: U dPs(vs ) .y (Wlexpliq - r)a i)

. —iq’-s)1
Dy fexpliq - T)ey| ) + f Ps(vs, ) 2mSPE A0S —<wf|exp(iq'r>az|¢,->).
s+, S Y

21

introduction of the eikonal distortion factor into the initial
electron state is similar to performing the gauge transforma-
tion (14) and (15).

3. Symmetric eikonal approximation and spin-flip transitions

As we have seen, in the limit v,— 0 the symmetric eiko-
nal result for the excitation amplitude does go over into the
first order one. However, when the parameter v, increases the
amplitude (22) yields reasonable results only for transitions
not involving electron spin flip while its results for spin-flip
transitions start to deviate too strongly from the first order
ones rapidly reaching spuriously large values (see for illus-
tration, Fig. 2).

It is not difficult to trace the formal root of this problem.
The magnetic component of the electromagnetic field created
by the nucleus of the atom in the rest frame of the ion has
nonzero components only in the plane perpendicular to the
velocity v. However, according to the relativistic first order
approximation (13) proper results for the spin-flip transitions
are obtained due to the delicate inter-relation (near cancella-
tion) between the transition matrix elements involving, in
general, all the components of the electron transition current.
In the symmetric eikonal amplitude (22) the transverse (x,y)
and the longitudinal (z) components of the electron transition
current are modified by the distortion factors. These factors
coincide only at v,<<1 and become rather different when v,
increases. The latter point leads to the violation of the deli-
cate near cancellation mentioned above and results in
strongly overestimated values of the cross sections for spin-
flip transitions [14].
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FIG. 2. Cross section for the excitation of 200 MeV/u U™
(1sy(+1/2)) into the 2s,,,(—1/2) state given as a function of the
atomic number of the target. Solid curve: results of the first order
calculation. Dashed curve: results of calculations with the ampli-
tude (22). Dotted curve: results of calculations with the amplitude
(28).

One should also note that the symmetric eikonal approxi-
mation is well known to yield very unsatisfactory results for
the electron capture occurring in relativistic collisions (see
for discussions, e.g., [3-5]). One has to emphasize, however,
the important difference between the reasons of the failures
of the symmetric eikonal model in the cases of capture and
excitation. Namely, since the exact solution of the three-body
problem (an electron moving in the fields of two colliding
nuclei) is not available, in the case of capture the initial and
final undistorted states of the electron in the symmetric eiko-
nal approximation are described by wave functions belong-
ing to the different Hamiltonians. As a result, the difficulties
with the application of the symmetric eikonal approximation
in the case of electron capture are also closely related to the
general problem of gauge dependence [15]. In contrast, in
the case of excitation the initial and final undistorted states of
the electron belong to the same Hamiltonian and by using the
exact Coulomb-Dirac states the gauge dependence of the
first-order excitation cross section can be avoided. Therefore,
in the case of excitation the problem with the symmetric
eikonal approximation is much less severe than in the case of
capture.

The symmetric eikonal approximation has been a very
useful tool in the applications to nonrelativistic ion-atom col-
lisions [16]. Moreover, the version of the symmetric eikonal
model based on the nonrelativistic description of the electron
turned out to be quite successful in the description of colli-
sions between relativistically moving highly charged ions
and very light targets [17,18]. The general and very valuable
advantage of the eikonal-like approaches is that, on one
hand, they enable one in many cases to reach a much better
description of the collision process compared to the first
Born approximation and, on the other hand, are almost as
simple and not time consuming in applications as the latter.
Therefore, keeping this in mind and taking into account that
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the problem with the symmetric eikonal approximation in the
case of the excitation does not seem to be severe, it is worth
trying just to “fix” the amplitude (22) without resorting to
more sophisticated (and more complicated) approaches.

It is natural to set the following conditions for the cor-
rected amplitude. (i) This amplitude should be free of the
above discussed problem with the description of transitions
involving electron spin flip. (ii) In the case of weak pertur-
bations (v,<<1) this amplitude should go over into the first
order one given by Eq. (13). (iii) At larger perturbations for
transitions not involving electron spin flip [such as, e.g.,
Lsyp(1/2)—2s,,,(1/2)] the corrected amplitude should yield
results close to those obtained with the amplitude (22).

As was already mentioned, there exists the symmetric ei-
konal model for collisions at relativistic impact energies em-
ploying the Schrodinger-Pauli equation to treat the electron
motion. In this model, which is briefly described in the next
section, the problem with spin-flip transitions does not arise
at all. Therefore, it seems to be reasonable to set one more
condition that (iv) both the corrected eikonal amplitude ob-
tained with the Dirac equation and the eikonal amplitude
based on the Schrodinger-Pauli equation should yield close
results for the excitation of not very heavy ions where the
motion of the electron in the initial and final undistorted
states of the ion is only weakly affected by the relativistic
effects.

4. Symmetric eikonal approximation for nonrelativistic electron
description

In this subsection we very briefly consider the symmetric
eikonal model for the nonrelativistic electron [19,20]. In this
model the potentials @ and A are taken in the fully relativ-
istic form but the motion of the electron is treated nonrela-
tivistically by using the Schrodinger-Pauli equation. In the
case of the electron, which moves in the field of the ionic
nucleus and is also subjected to the field of a relativistically
moving atomic nucleus, this equation reads

o N N
= [Hy+ W(n)]W, (23)
where
~2
\ Z
H,= P % (24)
2m r

is the nonrelativistic electronic Hamiltonian for the undis-
torted ion. The interaction between the electron of the ion
and the nucleus of the atom is now given by

W(t) =—®(r,1) + i[A(r,z) Pp+P-Ar,)]

A’(r,) 1
—o - H(r,1), 25
22 T 2.C (r,1) (25)

where o=(0,,0,,0,) are the Pauli matrices, ® and A are the
scalar and vector potentials defined by Eq. (4), and H=V
X A is the magnetic part of the electromagnetic field gener-
ated by the atomic nucleus in the rest frame of the ion. For
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definiteness we shall assume that initially the electron spin is
directed along the collision velocity v.

At this place a brief remark concerning the term ~A?/2¢?
of the Schrodinger-Pauli equation may be appropriate. In the
consideration given in a well known paper [20] this term was
found to dominate in the transition amplitude at asymptoti-
cally high impact energies and to result in a wrong
asymptotic behavior of the cross sections. In order to over-
come this problem it was proposed in [20] to add into the
Schrodinger-Pauli equation a term proportional to —®?/2¢2.
However, it can be shown (see [21]) that the canonic form of
the Schrodinger-Pauli equation [Egs. (23)—(25)] is quite ca-
pable of yielding a proper description for a nonrelativistic
electron in the field generated by a relativistically moving
charge and must not be modified. It can be also shown (see
[21]) that the problem with an unphysical contribution from
the term ~A? obtained in the treatment of [20] is caused by

2iZc 1

PHYSICAL REVIEW A 75, 062716 (2007)

the fact that the interaction (25) (adopted in [20] as the start-
ing expression for the first order perturbation—see formula
(3.1) of [20]) as well as the interaction modified by adding
the term ~—®2/2¢? [see formula (3.2) of [20]], after being
“sandwiched” in the transition amplitude between the states

of the Hamiltonian I:IO, becomes not compatible with the
continuity equation for the electron transition charge and cur-
rent densities and thus violates the conservation of the elec-
tric charge. In the present paper we shall not consider this
point further and for its very detailed discussion refer to [21].
Here we just mention that, as is known [22], in the symmet-
ric eikonal approximation the problem with the contribution
from the term ~A? does not arise.

In the symmetric eikonal approximation the amplitude for
transitions without spin flip reads [22]

1\ 2iv,
no-fli q ! . . . . ’ . A A
S Q) = o q/2<_> <(1 —iv)T2(1 = iv),F\(1 = iv,iv;2;0%q ) @lexpliq - r)(q.p, + q,P)|@;)

2

Z

1
+ (1 = iv),F (1 - ivgiv;; 1 ;Qz/q’z)?wfleXp(iq “1)q.p,

®;)

2
. L. N .
121 = i), Fy(1 = iiv; 150%™ (g dexplia - vl

+ (1 -2iv,),F,(0.5 - iv,iv,;1;0%q'?)

where ¢; and ¢, are the initial and final eigenstates of the
Schrédinger Hamiltonian (24) [23] and ¢, is given by Eq.
(10), where the relativistic energies &; and &; have to be
replaced by the corresponding nonrelativistic values. Further,
one can show that the amplitude for electron spin-flip tran-
sitions in this model is given by

. lqu'l'lq q/ 2iv, ) )

Sﬁ”(Q)=—jT(z> (1=in)T(1 = iv,)
X, F (1 = iv,iv;2;0%q"*) ¢slexpliq - r)|@;).

(27)

By setting »,=0 in Eq. (27) we recover the corresponding
first order amplitude for the spin-flip transitions obtained by
using the Schrodinger-Pauli equation. It is obvious from the
very structure of the amplitude (27) that there is no problem
with the description of spin-flip transitions also at finite val-
ues of v,. As calculations show, in the limit v,<<1 the cross
sections for spin-flip transitions obtained with the amplitude
(27) practically coincide with those given by the correspond-
ing first order approximation. At larger v, the eikonal model
predicts that the spin-flip cross sections increase slower with
the increase in v, compared to the results of the first order
calculation [for illustration, see Fig. 3(a)].

wvq'
2

yqz<<pf|e><p(iq : r)l%)), (26)

The above discussed symmetric eikonal model is based on
the nonrelativistic electron description and, therefore, can be
sufficiently accurate only when applied to ions with not too
high values of Z; (Z;=<30-40). Besides, being an eikonal-
type model, it is expected in general to yield good results
only provided »,=<1, i.e., at not too low impact energies
where v=Z, On the other hand, the model does not have
limitations from the side of high impact energies (see
[19,20]): it can formally be applied even at y— o [24]. Thus,
the range of the validity of the symmetric eikonal model with
the nonrelativistic electron description to treat the excitation
by collisions with pointlike charges Z, is restricted to Z,<v
<c and Z;=30-40.

5. “Modified” eikonal amplitude

The electromagnetic force, exerted by the nucleus of the
moving atom on the electron of the ion, acts both in the plane
perpendicular to the collision velocity (the transverse direc-
tion) and parallel (or antiparallel) to this velocity (the longi-
tudinal direction). However, as is well known, in fast colli-
sions the most important part of this force is normally the
transverse force. In particular, it is the transverse part of the
electric field of the atomic nucleus whose action on the elec-
tron of the ion in collisions with sufficiently small impact
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FIG. 3. Cross section for the excitation of 200 MeV/u
Zr3%*(1s15(1/2)) into the 2sy,,(=1/2) state in collisions with a
pointlike charge Z, obtained by using the Schrodinger-Pauli equa-
tion (a) and the Dirac equation (b). (a) Dotted curve: results of
calculations with the amplitude (27). Solid curve: results of the first
order calculation [the calculation with Eq. (27) where in the eikonal
distortion factor v, is set to zero]. (b) Solid curve: results of the first
order calculation with the amplitude (13). Dashed and dotted
curves: results of the calculations with the amplitudes (22) and (28),
respectively.

parameters may become effectively too strong invalidating
the application of the first Born approximation. Therefore, it
is mostly the “transverse” part of the interaction between the
electron and the atomic nucleus which may need a treatment
beyond the framework of the first order approximation.

In this respect it is worth noting that the only (but impor-
tant) difference between the symmetric eikonal amplitudes
(20) and (21) and their first order counterpart is the presence
of the factor (vs,) > in Eqgs. (20) and (21). This factor
depends only on the transverse component of the vector s
and using the Fourier transformation it can be shown to re-
sult in the two-dimensional virtual momentum transfer which
is perpendicular to the collision velocity and describes the
additional (with respect to the first order consideration) ex-
change of virtual photons between the particles on the inter-
mediate stage of the collision process. Because of its mani-
festly transverse character the factor (vs, )" per se neither
carries any relativity effects nor attempts to improve the de-
scription of the interactions in the transverse and longitudinal
directions in a harmonious manner.

According to the Schrodinger-Pauli equation electron
transitions with and without spin flip can always be separated
and the spin may be affected by the magnetic field only. In
the relativistic description the situation is quite different. In
particular, the electron spin couples both to the magnetic and
electric parts of the electromagnetic field generated in the
collision. In contrast to the magnetic field, the electric field
has nonzero components not only in the plane perpendicular
to the collision velocity but also parallel to it.

The subtleties inherent to the relativistic electron descrip-
tion put in general much more demand to the quality of
collision models, especially those which go beyond the first
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order approximation. Compared to the first order approach
the symmetric eikonal model attempts to improve the treat-
ment of the interaction between the electron and the field of
the atomic nucleus focusing on the transverse direction with-
out taking much care about the longitudinal one. This par-
tially violates that subtle harmony in the description of the
interaction of the relativistic electron with the transverse and
longitudinal components of the electric field which is present
in the first order approximation. It seems plausible to assume
that the problem with spin-flip transitions which the symmet-
ric eikonal model faces being applied to the Dirac electron is
directly related to this and such an assumption is indeed
supported by the fact that the problem actually disappears in
collisions at sufficiently high y in which the longitudinal
component of the electric field generated by the moving
atomic nucleus becomes very small.

The observation made in Sec. II B 3 about the formal root
of the problem with treating spin-flip transitions by using the
amplitude (22) suggests that one can try to improve the am-
plitude (22) by simply “correcting” the eikonal distortion
factors coupled to the x, y, and z components of the electron
transition current in such a way that all of them become
equal. Taking into account what has been said in the above
paragraphs of this section one may try to improve the de-
scription of the collision by altering in the amplitude (22) the
eikonal distortion factor coupled to the z component of the
electron transition current so that this distortion factor be-
comes equal to those for x and y components [25]. Note also
that such a procedure minimizes possible changes in the ei-
konal distortion factors in the amplitude (22).

With this change we get the following amplitude:

2iZc 1 [q'\*™
Si(Q) = ; <—)
i 02 q 2qZ 2

XT2(1 = iv)(1 = iv,),F (1 = iv,iv,;2;0%q"?)

X <<¢f|exp(lq : r)(q.xax + qy“y)' lﬂz)

1
- ?OlffleXp(iq : r)qzazldf)) - (28)

Enforcing the distortion factors to be equal, of course, does
not mean that unphysical equivalence between the transverse
(x,y) and the longitudinal (z) directions has been tacitly im-
posed. Indeed, the components of the electron transition cur-
rent do not enter the amplitude (28) on an equal footing and
the asymmetry between these directions is explicitly embod-
ied in Eq. (28) where the z component of the current is mul-
tiplied by a factor 1/97 that distinguishes the z direction and
reflects the relativistic flattening of the field generated by a
fast moving charge.

We have compared results for the excitation of intermedi-
ately heavy ions (Z;~30-40) obtained by using the ampli-
tude (28) with results given by the application of the eikonal
amplitudes (26) and (27). In all cases tested the amplitude
(28) yielded cross section values which were close to results
obtained with the amplitudes (26) and (27), including the
case of spin-flip transitions (see for illustration, Fig. 3).
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FIG. 4. Cross section for the excitation of 150 MeV/u
U%%*(1s,,5(1/2)) into the 2s,,(1/2) state (a) and into the 2p4/,(3/2)
state (b) given as a function of the atomic number of the target.
Solid curves: results of the calculations with the amplitude (13).
Dotted and dashed curves: results of calculations with the ampli-
tudes (28) and (22), respectively.

Concerning the application of the corrected eikonal am-
plitude to the treatment of the excitation of heavy ions, in
which the motion of the electron has to be described by the
Dirac equation and where the comparison with the eikonal
amplitudes (26) and (27) is no longer relevant, one should
note the following. First, as is obvious from the very struc-
ture of the amplitude (28), in the limit v,—0 (v,<<1) this
amplitude reduces to the relativistic first order amplitude
(13). Second, at larger v,, for which the difference between
the amplitudes (28) and (13) begins to become noticeable,
the calculations show that the amplitude (28) yields cross
sections which increase slower with the increase in the
strength of the perturbation compared to the results obtained
in the first order approximation. Such a relation between the
first order and eikonal results is pretty much in accord with
the experience accumulated in the field of energetic ion-atom
collisions which tells us that the first order calculations tend
to overestimate excitation and ionization or loss cross sec-
tions when the perturbation increases.

Further, there is no problem with the application of the
amplitude (28) for the description of transitions which in-
volve electron spin flip. For such transitions, in sharp con-
trast to calculations with the amplitude (22), the amplitude
(28) yields cross sections whose values always remain below
those obtained from the first order calculations (see for illus-
tration, Figs. 2 and 3). In particular, the relative difference
between the relativistic first order and corrected eikonal re-
sults for spin-flip transitions is very similar to that between
the spin flip cross sections calculated with the amplitude (27)
and its first order counterpart (compare, for instance, results
in Figs. 2 and 3).

Note also that our test calculations have shown that the
amplitudes (22) and (28) give close cross section values for
transitions in heavy ions which do not involve electron spin
flip (see for illustration, Fig. 4). Besides, at sufficiently high
values of 7, both the amplitudes (22) and (28) yield practi-
cally identical results for all transitions. The latter is, of
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course, not surprising since at very high impact energies,
because of the presence of the factor 1/9? coupled to the z
component of the electron transition current, the difference
between Egs. (22) and (28) simply vanishes.

Thus, summarizing the above discussion one can con-
clude that the amplitude (28) satisfies all the conditions for-
mulated in Sec. II B 3. Therefore, there are the very substan-
tial grounds to expect the amplitude to be a good
approximation for calculating the excitation of heavy ions by
relativistic collisions with point like charges Z, when the ef-
fective perturbation strength is not too strong, v,=Z,/v=<1.

III. RESULTS AND DISCUSSION

Experimental data for the excitation of relativistic heavy
hydrogenlike ions were reported in [8,9] for collisions of 82
and 119 MeV/u Bi®**(1s) with solid state targets of carbon,
aluminum, and nickel. As was mentioned in [9], the accuracy
of the experimental data for the 82 MeV/u projectiles was
substantially affected by the electron capture process which,
because of the very high projectile charge, is still strong at
this impact energy. Therefore, in what follows we restrict a
comparison of our theoretical results only to the excitation of
119 MeV/u Bi®**(1s).

At this energy the screening effect of the atomic electrons
is quite weak. The effective energy threshold for the antis-
creening in collisions with Bi®?*(1s) is about 140 MeV/u.
Therefore, the antiscreening effect is very weak as well and
the influence of the atomic electrons on the excitation pro-
cess can be safely neglected.

In Fig. 5 we show results for the excitation of 119 MeV/u
Bi®?*(1s) given as a function of the atomic number of the
target. Since at this impact energy the influence of the atomic
electrons on the excitation process is weak, theoretical re-
sults for the cross sections displayed in the figure were ob-
tained by treating the process as a three-body problem which
involves the electron of the ion and the nuclei of the ion and
atom.

Figure 5 contains two sections. In section (a) dashes and
dotted curves show results obtained with the first order am-
plitude (13) for the excitation of the ion into the states with
n=2,j=1/2 and n=2,j=3/2, respectively, where n is the
principal quantum number and j is the total angular momen-
tum of the electron. Dashed and dotted curves in section (b)
display results for the same transitions but are calculated
with the amplitude (28). In both sections solid curves show
the total cross section for the transitions to all the states with
n=2 obtained with the corresponding amplitudes. Both sec-
tions in Fig. 5 also contain the (same set of) experimental
data from [8,9].

It is seen in the figure that both the first order and eikonal
transition amplitudes yield very close results for the excita-
tion cross sections in collisions with very light atoms (Z,
=10) where the interaction of the electron with the nucleus
of the atom is weak. In collisions with atoms having larger
atomic numbers the difference between the predictions of the
first order and eikonal approaches starts to appear. When the
atomic number of the target increases further, this difference

062716-8



EXCITATION OF HEAVY HYDROGENLIKE IONS IN...

10 T T

(a) (b)

cross section (kb)

0.01 L .
10 10

target atomic number target atomic number

FIG. 5. (Color online) Cross sections for the excitation into
states with n=2,j=1/2, with n=2,j=3/2 and for the total excita-
tion into n=2 states of 119 MeV/u Bi*?*(1s,),) in collisions with
atomic targets whose atomic numbers run between 1 and 54. (a)
Results of the first order calculation. Dashed curve: n=2,j=1/2;
dotted curve: n=2,j=3/2; and solid curve: n=2. (b) Results ob-
tained with the amplitude (28). Dashed curve: n=2,j=1/2; dotted
curve: n=2,j=3/2; and solid curve: n=2. Circles, squares, and
triangles (with the corresponding error bars) in (a) and (b) display
experimental results from [8,9] for the excitation into the states with
n=2 and j=1/2, n=2 and j=3/2, and n=2, respectively, which
were measured in collisions with solid state targets of carbon (Z,
=6), aluminum (Z,=13), and nickel (Z,=28).

rapidly increases and reaches almost a factor of two at Z,
=50.

Amongst targets, for which experimental data are avail-
able, nickel (Z,=28) has the highest atomic number. For the
excitation of 119 MeV/u Bi®*?*(1s) in collisions with this
target the eikonal calculation predicts the reduction of the
excitation cross section approximately by 30% compared to
the results of the first order model. However, the uncertainty
in the experimental point is also about 30% and both the
eikonal and first order calculations are in good overall agree-
ment with the experiment (for the first order calculation this
was already noticed in [8,9]). Thus, the accuracy of the ex-
perimental data does not enable one to make a conclusion
about which calculation describes better the experiment.

In Fig. 6 we compare results for the ratio o(n=2,;j
=3/2)/0(n=2,j=1/2) where o(n=2,j=1/2) and o(n=2,;
=3/2) are the cross sections for the excitation to the states
with n=2,j=1/2 and n=2,j=3/2, respectively. The figure
shows that, for the excitation to different final states, the
deviations between the results, obtained with the first order
and eikonal transition amplitudes, are accumulating at a dif-
ferent pace. In particular, the deviation from the first order
results is somewhat stronger for the excitation into the states
with n=2,j=3/2. Note also that, in contrast to the case of
the absolute cross sections where the available experimental
data do not allow us to prefer one of the two calculations, the
experimental data for the cross section ratio seem to be more
in favor of the results obtained with the amplitude (28).
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FIG. 6. The ratio o(n=2,j=3/2)/a(n=2,j=1/2) between the
cross sections for the excitation of 119 MeV/u Bi%**(1s,,,) into the
states with n=2,j=1/2 and n=2,j=3/2. The ratio is given as a
function of the atomic number of the target. Dashed line: results of
the first order calculation. Solid curve: results obtained with the
amplitude (28). Circles with error bars: experimental data from
[8,9].

IV. CONCLUSIONS

We have considered the excitation of highly charged hy-
drogenlike ions in collisions with many-electron atoms. We
have discussed two models in which the interaction between
the electron of the ion and the atom is treated within first
order perturbation theory and also proposed a model which
goes beyond the first order approximation.

In the more simple of the first order models the presence
of the electrons of the atom is ignored. In the second of these
models the screening effect of the atomic electrons is taken
into account. In agreement with the general expectations this
effect was found to become of importance only when the
collision energy (per nucleon) reaches sufficiently large val-
ues.

Experimental data on the excitation of very heavy ions are
available only for relatively low collision energies. At these
energies, which were of main interest for the present study,
the role of the atomic electrons is of minor importance and
their influence on the excitation process can be neglected. At
these energies, however, our calculations suggest that the de-
viations from predictions of the first order consideration are
much more substantial than it was expected in the earlier
studies of the excitation process [8,9].

The transition amplitude (28), proposed in the paper for
calculating excitation cross sections, has rather a simple
form. As a result, calculations performed with this amplitude
are computationally almost as straightforward and not time
consuming as the first order calculations. The amplitude (28)
represents a corrected version of the amplitude (22). The
latter, which was derived within the symmetric eikonal ap-
proximation, has been shown to yield unphysical results for
spin-flip transitions. Having discussed the source of the prob-
lem with the amplitude (22), we have made an attempt to
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“fix” it and arrived at the corrected amplitude (28) which has
minimum changes with respect to the amplitude (22).

(i) For the excitation of not too heavy ions, in which the
electron motion in the initial and final undistorted states of
the ion is only weakly influenced by the relativistic effects,
the amplitude (28) leads to cross sections which are in rea-
sonable agreement with results of the symmetric eikonal
model based on the nonrelativistic electron description. (ii)
In the case of weak perturbations »,<<1 the amplitude (28)
goes over into the first order relativistic amplitude (13). (iii)
For the excitation of both light and heavy ions the amplitude
(28) yields very reasonable results for spin-flip transitions.
(iv) Results obtained with the amplitudes (28) and (22) for
transitions not involving electron spin flip are quite close and
(v) at y>1 the amplitudes (28) and (22) actually coincide.
All these points, despite the amplitude (28) has not been
derived in a rigorous way, lend very substantial support to
the use of the amplitude (28) in calculations of the excitation
of heavy ions in relativistic collisions.

Calculations with the amplitude (28) suggest that the first
order approximation may very substantially overestimate the
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excitation cross sections. These calculations also predict that
for the excitation to different states the deviations from the
first order results develop at a different pace. In particular,
the pace is different for the states with n=2,j=1/2 and n
=2,j=3/2.

According to our results, the differences between cross
section values calculated with the amplitude (28) and ob-
tained in the first order approximation can be rather substan-
tial at the impact energies studied experimentally. However,
neither of the calculated cross sections contradicts to the
available experimental data. The reason for this is that the
experimental data have been reported only for targets not
heavier than nickel where the predicted deviations from the
first order results lie below 30% and, thus, do not exceed the
experimental error bars. In collisions of relativistic highly
charged ions with heavier atoms, such as e.g., xenon, the
predicted deviations should be already accessible for an ex-
perimental verification. Therefore, experimental data for the
excitation of relativistic ions in collisions with heavier tar-
gets (or for targets such as nickel but with better accuracy)
would be very desirable [26].
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sidered in the present paper can be applied. Our calculations
for the total loss cross section have indeed proved that the
amplitude (28) has a great advantage over the first order one
when the parameter v,=Z;/v approaches 1. For instance, for
the single electron loss from 100 MeV/u U (1s?) in colli-
sions with gold the first Born approximation overestimates the
experimental data by an order of magnitude while the eikonal
amplitude (28) yields the result which is in agreement with the
experiment. The topic of the electron loss will be considered in
a forthcoming paper.



