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We formulate a relativistic algebraic method of scattering for systems with spatially dependent mass based
on the J-matrix method. The reference Hamiltonian is the three-dimensional Dirac Hamiltonian but with a
mass that is position-dependent with a constant asymptotic limit. Additionally, this effective mass distribution
is locally represented in a finite dimensional function subspace. The spinor couples to spherically symmetric
vector and pseudo scalar potentials that are short-range such that they are accurately represented by their
matrix elements in the same finite dimensional subspace. We calculate the relativistic phase shift as a function
of energy for a given configuration and study the effect of spatial variation of the mass on the energy resonance
structure.
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I. INTRODUCTION

Calculations of physical quantities relevant to semicon-
ductors are sometimes done using the effective mass ap-
proximation. Initially this approximation has been used to
describe impurities in crystals �1� where much of the inter-
action with the host lattice is being parameterized through an
effective mass parameter in the impurity Hamiltonian. The
effective mass is also an important parameter in Landau’s
Fermi liquid theory that deals with low-level excited states of
strongly interacting systems in a very appealing single par-
ticle approximation �2�. Since then, the effective mass ap-
proximation has become an essential ingredient in describing
the transport properties of semi-conductor hetero-junctions
and quantum dots �3�. One of the main features of these
hetero-junctions or graded semiconductors is that the effec-
tive mass of the charge carriers is position dependent and is,
frequently, the result of discontinuities across the hetero-
junction with abrupt interfaces. Thus, one is lead to study
quantum mechanical problems with position-dependent ef-
fective mass. However, such treatment encounters a non-
trivial problem related to ordering ambiguity in the quanti-
zation of the momentum and mass operators in the kinetic
energy term of the effective Hamiltonian.

On the other hand, relativistic effects have significant in-
fluence on the electronic properties of materials containing
heavy atoms or those with heavy ion doping. This is because
the charge carriers in such materials attain higher velocities
comparable to lighter ones. Relativistic effects also include
spin-orbit and spin-spin couplings which are purely relativ-
istic corrections to the nonrelativistic Hamiltonians. Spin-
orbit interaction, in particular, alters the spectroscopic prop-
erties of molecules containing heavy elements to a
considerable extent. Thus, the solution of the Dirac equation
under the circumstance where the mass depends on the po-
sition of electrons will be of interest in studying materials
containing heavy elements.

The quantization of non-relativistic Hamiltonians of
position-dependent mass systems is always hindered by or-
dering ambiguities in the kinetic energy term. On the other
hand, its relativistic counterpart, the relativistic Dirac equa-
tion, does not suffer from such ambiguity. This ordering am-
biguity of mass and momentum is due to the fact that these
two quantities no longer commute when the mass is space
dependent. An effective approach towards the resolution of
this ambiguity is to start with the relativistic Dirac wave
equation, which does not suffer from any ordering problem,
then take the nonrelativistic limit �which is well-defined and
unique� up to order 1 /c2. There have been several attempts
in defining the correct hermitian kinetic energy operator for a
variable mass system based on current conservation �3�, Gal-
ilean invariance �4�, or the recent supersymmetric treatment
of the effective mass Hamiltonians �5�. We believe that the
work of Cavalcante et al. �6� is a measurable contribution
towards the resolution of the ordering ambiguity problem of
the quantum kinetic-energy operator with spatially varying
effective mass. In our present work, we opted for an alge-
braic method of quantum scattering, the J-matrix method, to
deal with the scattering problem for space dependent mass
systems. This method will enable us to obtain a highly accu-
rate numerical solution of the relativistic scattering problem
with space dependent mass distribution �while avoiding the
ordering ambiguity� that is confined to a finite region in
space but asymptotically constant.

The J-matrix is an algebraic method of quantum scatter-
ing developed almost thirty years ago �7�. The method ex-
ploits the fact that the unperturbed reference problem can be
solved analytically in a certain complete set of L2 basis func-
tions. The basis set is chosen such that the matrix represen-
tation of the unperturbed Hamiltonian is tridiagonal �Jaco-
bian�. This property enables us to employ the analytical
power associated with orthogonal polynomials. However, the
tridiagonal requirement of the reference Hamiltonian restricts
the type of L2 basis functions only to those that allow for
such a tridiagonal representation of the unperturbed Hamil-
tonian �8�. Under these circumstances, the eigenvalue equa-
tion of the reference Hamiltonian gives rise to three-term
recursion relation for the expansion coefficient of the unper-*Corresponding author. Email address: haidari@mailaps.org
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turbed wave function. The short-range scattering potential is
then confined to an N-box in function space so that its matrix
elements are zero outside this box �i.e., Vnm=0 for n ,m�N,
where N is some large enough integer�. This approximation
provides us with a numerical mean to extract the necessary
scattering information relevant to the problem at hand. Thus,
the J-matrix structure in function space parallels that of the
R-matrix method in configuration space �9�. A relativistic
extension of the J-matrix has been proposed by Horodecki
�10� for the Coulomb free interaction and by Alhaidari et al.
�11�. It is the purpose of the present paper to formulate an
algebraic relativistic method of potential scattering for sys-
tems with position dependent mass based on the J-matrix
method.

The rest of our paper is organized as follows. In Sec. II,
we give some preliminaries about the 3D Dirac Hamiltonian
with position-dependent mass and define our reference
Hamiltonian. In Sec. III, the J-matrix solution of the refer-
ence problem in the asymptotic region will be presented. The
scattering matrix and associated phase shift are obtained in
Sec. IV. Discussion of the numerical results obtained for a
single channel scattering model is presented in Sec. V.

II. PRELIMINARIES

We consider the Dirac Hamiltonian in 3+1 dimensions
with spherical symmetry and position-dependent mass M�r�
where the spinor couples to vector and pseudo-scalar poten-
tials. That is, we study the three-dimensional relativistic
problem with the following radial Dirac Hamiltonian:

H =� m�r� + �2V�r� i���
r

+ W�r� −
d

dr
�

− i���
r

+ W�r� +
d

dr
� − m�r� + �2V�r� � , �1�

where m�r� is a dimensionless positive function that is re-
lated to the position-dependent mass by m�r�=M�r� /m0. The
radial functions V�r� and W�r� are the “vector” and pseudo-
scalar potentials, respectively. We used units in which �
=m0=1 and, thus, the Compton wavelength �=� /m0c=1/c.
� is the spin-orbit quantum number with values ±1, ±2, . . .,
and it is related to the orbital angular momentum quantum
number l by �= ± �l+ 1

2
�− 1

2 . Our choice of units over the
conventional relativistic units �where �=c=1� is made to
allow us to take the nonrelativistic limit, c→� ��→0�, in a
very simple, intuitive, and straightforward manner which is
not possible in the latter units since c=1. Additionally, it is
easier to compare our results with those in atomic physics
�where �=m0=e=1� since the same system of units are used
with � being the fine structure constant times the atomic
length scale 4��0�

2 /m0e2 �e.g., the Bohr radius�. Note also
that mc2→� is not a good measure of the nonrelativistic
limit for position-dependent mass systems, because this limit
could be satisfied in regions where m→� despite that the
system might be highly relativistic �e.g., for systems with
singular mass distribution, such as m	 1

r �. The time-
independent wave equation to be solved is �H−��	=0,
where � is the relativistic energy measured in units of m0c2

and 	 is the two-component spinor, which we write for posi-
tive energy as � i
+


− �e−i�t. We study the class of problems in
which we can write m�r�=1+�2S�r� �12�. In these cases, S�r�
plays the same role as that of a scalar potential in problems
with constant mass. The Dirac equation could, thus, be writ-
ten as

� 1 + �2V+ − � �
�
r

+ W −
d

dr
�

�
�
r

+ W +
d

dr
� − 1 + �2V− − � �

+


− � = 0, �2�

where V±=V±S.
We can study several types of scattering problems de-

pending on the choice of potentials to be included in the
reference Hamiltonian such that the reference problem is ex-
actly solvable and the matrix representation of the reference
Hamiltonian is tridiagonal. The remaining potentials, W
and/or V±, that are not included in the reference Hamiltonian
are assumed to be short-range. That is, �W�r��r�R=0 and/or
�V±�r��r�R=0, respectively, where R is the effective range of

the potentials. For example, we could take the following ref-
erence Hamiltonian:

� 1 �
�
r

+ W −
d

dr
�

�
�
r

+ W +
d

dr
� − 1 � , �3�

where �V±�r��r�R=0. Nonetheless, in our present work we
choose the free Dirac Hamiltonian as reference. That is, we
take

H0 =� 1 �
�
r

−
d

dr
�

�
�
r

+
d

dr
� − 1 � , �4�

where �V±�r��r�R=0 and �W�r��r�R=0. Therefore, the refer-
ence Hamiltonian results in the free Dirac wave equation,
�H0−����r ,��=0. Writing ��r ,�� in terms of its two spinor
components as �= �+

− �, this equation becomes

� 1 − � �
�
r

−
d

dr
�

�
�
r

+
d

dr
� − 1 − � �
+

− � = 0, �5�

which gives in the “kinetic balance” relations �13�

� =
�

� ± 1

�

r
±

d

dr
�±, �6�

resulting in the uncoupled Schrödinger-like second order dif-
ferential equations

� d2

dr2 −
��� ± 1�

r2 +
�2 − 1

�2 �±�r,�� = 0. �7�
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There are two independent scattering solutions �where
����1� of this equation, one of them is regular �at the origin�
and the other is not. For the upper spinor component, these
solutions are written in terms of the spherical Bessel and
Neumann functions as follows �14�:

reg
+ �r,�� = 2

�
��r�� j���r� , � � 0

j−�−1��r� , � � 0,
� �8a�

irr
+ �r,�� = 2

�
��r�� n���r� , � � 0

n−�−1��r� , � � 0,
� �8b�

where �2= ��2−1� /�2. Near the origin, these upper compo-
nents behave as follows:

reg
+ → �r�+1, � � 0

r−�, � � 0
� and irr

+ → � r−�, � � 0

r�+1, � � 0
� .

On the other hand, asymptotically �r→�� they are sinu-
soidal,

reg
+ → 2

�
� � sin��r − ��/2� , � � 0

cos��r + ��/2� , � � 0
�

and

irr
+ → 2

�
� �− cos��r − ��/2� , � � 0

sin��r + ��/2� , � � 0
� .

To obtain the lower spinor component, −, we use the “ki-
netic balance” relation �13� and the differential properties of
the Bessel and Neumann functions �14� giving

reg
− �r,�� = 2

�
� − 1

� + 1
��r�� j�−1��r� , � � 0

− j−���r� , � � 0,
�

�9a�

irr
− �r,�� = 2

�
� − 1

� + 1
��r�� n�−1��r� , � � 0

− n−���r� , � � 0.
�

�9b�

Note that in the nonrelativistic limit ��→0, �→1+�2E,
where E is the nonrelativistic energy� the lower components
vanish. It should also be noted that the choice �=−1 is not
allowed in the kinetic balance relation �6� used to obtain −.
Now, since �=−1 belongs to the negative energy spectrum,
then this implies that the solution obtained above does not
include the negative energy solution of the relativistic prob-
lem. To obtain this negative energy solution one has to solve
Eq. �7� for − and use the dual kinetic balance relation +

= �
�−1

��
r − d

dr
�− to obtain +. It is, however, easy to verify that

one solution is obtained from the other by the map �→−�,
�→−�, and +↔−. Therefore, in this work and from this
point forward we will only be considering the positive en-
ergy solution of the problem. Using the orthogonality prop-
erty of the Bessel functions one may verify that the regular
solution is energy normalized in the sense that ��reg ��reg� �
= �reg

+ �reg�+ �+ �reg
− �reg�− �= 2�

�+1���−���=2��−1
�+1���−���.

However, the irregular solution is not square integrable �with
respect to the integration measure, dr�. In the following sec-

tion we utilize the J-matrix method to obtain the asymptotic
solution of the reference problem.

III. TRIDIAGONAL J-MATRIX REPRESENTATION:
KINEMATICS

Due to the higher degree of symmetry of the reference
problem, it is sometimes possible to find a special square
integrable two-component spinor basis, ��n�n=0

� , such that the
matrix representation of the reference wave operator, H0−�,
is tridiagonal for all �. Precisely, ��n�H0−���m�=Jn,m��� such
that Jn,m=0 for �n−m��1, where n ,m=0,1 ,2 , . . .. This will
allow for an algebraic solution of the reference wave equa-
tion for continuous values of the energy; a property which is
desirable for scattering. The diagonal representation, on the
other hand, can only admit discrete eigenenergies that are
compatible with bound states. However, because the basis is
square integrable and regular everywhere, then a faithful rep-
resentation in this basis could only be obtained for the regu-
lar solution of the reference problem. As for the irregular
solution, we can never hope to match its behavior every-
where using this basis. Nonetheless, it is still possible that
this could be done asymptotically, where it matters most for
the scattering problem. Therefore, we construct two indepen-
dent functions as infinite series in terms of the spinor basis
��n�n=0

� . We write one of them as �sin�r ,��=�nsn����n�r� and
call it the “sine-like” solution. A “cosine-like” solution, on
the other hand, is written as �cos�r ,��=�ncn����n�r�, where
the expansion coefficients �sn�n=0

� and �cn�n=0
� are indepen-

dent. The sine-like solution will be identified with the regular
solution of the reference H0-problem, �reg. Therefore, the
“sine-like” expansion coefficients �sn�n=0

� will be obtained in
terms of orthogonal polynomials that satisfy the three-term
recursion relation resulting from the matrix-equivalent refer-
ence wave equation, �mJnmsm=�m=n,n±1Jnmsm=0. Subse-
quently, we show that these sine-like expansion coefficients,
�sn�n=0

� , satisfy a second order linear differential equation in
the energy. Hence, we find another independent set of solu-
tions to this equation. These are precisely the “cosine-like”
expansion coefficients �cn����n=0

� . However, we will find out
that these expansion coefficients satisfy the same three-term
recursion relation as �sn� except for the initial relation �n
=0�. That is, �mJnmcm=0 for all n�0. Precisely, �mJnmcm

=��n0, where � is real and energy dependent. Therefore, the
corresponding spinor wave function �cos�r ,��
=�ncn����n�r�, referred to also as the “regularized” wave
function, does not satisfy the reference wave equation. It
satisfies a regularized nonhomogeneous wave equation that
reads

�H0 − ����cos� = ������̃0� , �10�

where �̃0 is an element of the set ��̃n�n=0
� which is orthogonal

to ��n�n=0
� �i.e., ��n � �̃m�= ��̃n ��m�=�nm�. We emphasize again

that since �n is L2 and regular everywhere so is �cos�r ,��.
However, asymptotically it is sinusoidal and identical to the
irregular solution of the reference problem �irr�r ,��. There-
fore, the singular solution becomes regularized in the sense
that it solves the modified wave equation �10�.
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Let us write �n=��n
+

�n
− �, then the following expression for

�n
+ could be taken as a general L2 function compatible with a

series expansion of the upper component of the regular so-
lution �8a�

�n
+�r� = e−x/2�an

+��r��+1Ln
�+�x� , � � 0

an
−��r�−�Ln

�−�x� , � � 0,
� �11�

where x= ��r��, Ln
��x� are the Laguerre polynomials �14�, and

the normalization constants are an
±=���n+1� /��n+�±+1�.

The basis parameters �� ,� ,�±� are real and such that ��0,

��0, �±�−1. Here we choose to work in, what is referred
as, the “Laguerre basis” where �=1. However, in the Appen-
dix we give solutions in the “oscillator basis” where �=2.
Now, since the spinor components of the regular solution
�8a� and �9a� are related by the kinetic balance relation, then
so too are the components of the basis. Therefore, the lower
component of the spinor basis should be related to the upper
as �n

−= ��
�+1

��
x + d

dx
��n

+. Using the differential relation and re-
cursion properties of the Laguerre polynomials, Ln

��x�, we
obtain the following expression for the lower component of
the spinor basis:

�n
−�r� =

1

2

��

� + 1
e−x/2�an

+x���4� − �+ + 1�Ln
�+ − �n + �+�Ln−1

�+ + �n + 1�Ln+1
�+ � , � � 0

an
−x−�−1�− ��− + 1�Ln

�− − �n + �−�Ln−1
�− + �n + 1�Ln+1

�− � , � � 0
�

=
1

2

��

� + 1
x���e−x/2�an

+��n + �+�Ln
�+−1 + �n + 1�Ln+1

�+−1 + 2�2� + 1 − �+�Ln
�+� , � � 0

− an
−�Ln

�−+1 + Ln−1
�−+1� , � � 0.

� �12�

This expression shows that the basis in this representation is energy-dependent, a property which is not desirable from
numerical point of view. This is because any calculation in such a basis has to be repeated for all energies in the range of
interest. Nonetheless, we will find out shortly that this basis is only necessary for the analytic solution of the reference problem
that ends at finding the coefficients �sn ,cn�. Numerical computations, on the other hand, will be carried out in a different, finite,
and energy independent basis that will be given in the following section. Therefore, calculation in that energy independent
basis �e.g., diagonalization of the Hamiltonian, phase shift analysis, etc.� will be done once and for all energies.

Now, the matrix representation of the free Dirac operator H0−� in the energy-dependent basis, ��n�, becomes

Jn,m = ��n�H0 − ���m� = �1 − ����n
+��m

+ � + �1 + ����n
−��m

− � , �13�

where we have used integration by parts since �n
+�r��m

− �r� vanish at the boundaries �r=0,r→��. Moreover, integration by
parts also allows us to write

��n
−��m

− � = 
 ��

� + 1
�2

��n
+��−

d2

dx2 +
��� + 1�

x2 ���m
+ � . �14�

Using the differential equation, differential formula, and recursion relations of the Laguerre polynomials, we can show that the
matrix representation of the Dirac operator �13� is tridiagonal if and only if �±= ± �2�+1�=2���±1=2l+1. Thus, the spinor
basis in Eqs. �11� and �12� could be written collectively for all � as follows:

�n�r,�� = anxle−x/2� xLn
2l+1�x�

1

2

��

� + 1
�2�Ln

2l+1�x� − �n + 2l + 1�Ln−1
2l+1�x� + �n + 1�Ln+1

2l+1�x�� � , �15�

with an=���n+1� /��n+2l+2�. Using the identity formu-
las of the Laguerre polynomials we can rewrite this, for posi-
tive �, to read

�n�r,��

= anxle−x/2� �n + 2l + 1�Ln
2l�x� − �n + 1�Ln+1

2l �x�
1

2

��

� + 1
��n + 2l + 1�Ln

2l�x� + �n + 1�Ln+1
2l �x�� � ,

�16a�

� = 1,2,3, . . . ,

whereas, for negative �, it simplifies to

�n�r,�� = anxl+1e−x/2� Ln
2l+2�x� − Ln−1

2l+2�x�

−
1

2

��

� + 1
�Ln

2l+2�x� + Ln−1
2l+2�x�� � ,

�16b�
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� = − 1,− 2,− 3, . . .

Now, after some simple, but somewhat lengthy, manipula-
tions we obtain

��n
+��m

+ � = 2�n + l + 1��n,m − n�n + 2l + 1��n−1,m

− �n + 1��n + 2l + 2��n+1,m, �17a�

��n
−��m

− � =
1

4

 ��

� + 1
�2

�2�n + l + 1��n,m + n�n + 2l + 1��n−1,m

+ �n + 1��n + 2l + 2��n+1,m� . �17b�

Substituting these in Eq. �13� gives the following tridiagonal
matrix representation of the reference wave operator,

Jnm��� = ��n�H0 − ���m� =
�2�2

� + 1

2E

�2 +
1

4
�

� �− 2�
2E

�2 −
1

4

2E

�2 +
1

4
��n + l + 1��nm

+ n�n + 2l + 1��n,m+1 + �n + 1��n + 2l + 2��n,m−1� ,

�17c�

where E������2−1� /2�2= 1
2�

2. In fact, in the nonrelativistic
limit ��→0� E becomes the system’s energy. Now, because
the sine-like expansion coefficients �sn�n=0

� , satisfy the
matrix-equivalent reference wave equation �m=0

� Jn,msm���
=0, then Eq. �17c� gives the following three-term recursion
relation

2�n + l + 1��cos ��sn��� = n�n + 2l + 1�sn−1���

+ �n + 1��n + 2l + 2�sn+1��� ,

�18�

where cos �= � 2E
�2 − 1

4
� / � 2E

�2 + 1
4
�= � �2−1

�2�2 − 1
4
� / � �2−1

�2�2 + 1
4
�

= ��2

�2 − 1
4
� / ��2

�2 + 1
4
�, and 0����. Using the orthogonality re-

lation of the Laguerre polynomials in the expansion
reg

+ �r ,��=�nsn����n
+�r�, we can project out sn��� as

sn��� =
1

�
�

�
an�

0

�

xl+1/2e−x/2Ln
2l+1�x�Jl+1/2
�

�
x�dx ,

�19�

where we have written the spherical Bessel function in terms
of the regular Bessel function as j��x�= �

2xJ�+ 1
2
�x�. This in-

tegral could be evaluated analytically using the method pro-
posed in �15� giving

sn��� =
an

�2�
2l+1��l + 1��sin ��l+1Cn

l+1�cos �� , �20�

where Cn
��z� is the Gegenbauer �ultra-spherical� polynomial

�14�. Using the recursion relation of the Cn
��z�, one can easily

verify that sn��� as given by �20� satisfies the recursion rela-
tion �18� along with the initial condition 2�l+1�cos �s0

−2�l+1�s1=0. Additionally, with the help of the differential
equation of the Gegenbauer polynomials, one can easily
show that sn��� satisfies the following second order differen-
tial equation in the energy variable y=cos �

��1 − y2�
d2

dy2 − y
d

dy
−

l�l + 1�
1 − y2 + �n + l + 1�2�sn��� = 0.

�21�

Now, we look for a second independent solution to this sec-
ond order differential equation. Let’s call it cn���. Using the
fact that y= ±1 are regular singularities of the equation, then
Frobenius method dictates that the solution has the following
form �16�:

cn��� = �1 − y���1 + y��fn��,�;y� , �22�

where � and � are real parameters such that � is non-
negative ���0� to prevent infrared divergence �at �=1,
where y=−1�. It should be obvious that the solution which
simultaneously satisfies the recursion relation �18� and the
differential equation �21� will be determined uniquely
modulo an arbitrary overall factor, which is independent of,
� and n. That is, it will only depend on l �i.e., depends only
on �� and we refer to it as Al. Substituting �22� in place of
sn��� in Eq. �21� shows that fn�� ,� ;y� satisfies the same
differential equation as the hyper-geometric function

2F1
�a ,b ;c ; 1−y

2
� �14� provided that

�1� c = 2� +
1

2
, a = � + � − �n + l + 1� , �23a�

b = � + � + �n + l + 1� ,

�2� 
� −
1

4
�2

+ 
� −
1

4
�2

=
1

2

l +

1

2
�2

, �23b�

�3� 
� −
1

4
�2

= 
� −
1

4
�2

. �23c�

The last equation �23c� gives two possibilities: �=� or �
=−�+ 1

2 . For each one of these two possibilities, Eq. �23b�
results in two alternative values for �: �= 1

2 �l+1� or �=
− 1

2 l. However, maintaining positivity of �, the latter is ac-
ceptable only for S-wave, where l=0 �i.e., �=−1�, giving
�=0. Therefore, for S-wave, we end up with two indepen-
dent solutions corresponding to �= 1

2 and �=0. In the fol-
lowing subsections, we study the two cases given by �23c�
separately.
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A. The case �=�

We start by studying the solution that corresponds to �
= 1

2 �l+1� which is valid for all values of the spin-orbit quan-
tum number � �i.e., for all l�. In this case, Eqs. �23� give

� = � =
1

2
�l + 1�, a = − n, b = n + 2l + 2, and c = l +

3

2
.

�24�

Substituting these parameters in �22� results in the expansion
coefficients of the regular solution �reg�r ,�� which we have
already found in �20� and called it sn���. This could easily be
seen by noting that 2F1

�−n ,n+2l+2; l+ 3
2 ; 1−y

2
� is propor-

tional to Cn
l+1�y�, whereas �1−y���1+y��= �1−y2�

1
2

�l+1�

= �sin ��l+1. However, for S-wave �l=0� there exists another
independent solution where

� = � = 0, a = − b = − n − 1, and c =
1

2
, �25�

corresponding to 2F1
�−n−1,n+1; 1

2 ; 1−y
2

�, which is the
Chebyshev polynomial of the first kind, Tn+1�y� �14�. There-
fore, the energy dependence of cn��� is now determined as
Tn+1�y�. On the other hand, the n-dependent factor is deter-
mined from the recursion relation �18�, which is satisfied by
this cn��� with l=0 but for n�0. With the help of the recur-
sion relation of the Chebyshev polynomials this factor is
obtained as 1/n+1. Thus, this expansion coefficients of the
reference wave function becomes

cn��� =
C

n + 1
Tn+1�cos �� =

C
n + 1

cos�n + 1�� , �26�

where C is a constant factor, which is independent of the
energy � and the index n. Now, this solution satisfies the
three term recursion relation �18� with l=0, but not the initial
relation �i.e., for n=0�. That is why we called it cn��� and not
sn���. In fact, using the recursion relation of the Chebyshev
polynomials one can easily verify that it satisfies the follow-
ing inhomogeneous initial relation

2yc0 = 2c1 + C . �27�

This is a crucial point. As stated at the beginning of this
section, it means that the associated regularized wave func-
tion, �cos�r ,��=�ncn����n�r�, does not solve the reference
wave equation since �mJnmcm�0. However, Eq. �27� and the
expression for Jnm given by Eq. �17c� imply that

�
m

Jnmcm = −
�2�2

� + 1

2E

�2 +
1

4
�C�n0 = −

�2��C

�� + 1�sin �
�n0.

�28�

This means that �cos for l=0 solves the following regular-
ized inhomogeneous wave equation

�H0 − ����cos� = −
�2��C

�� + 1�sin �
��̃0� . �29�

The tridiagonal requirement of the orthogonal conjugate ba-
sis ��̃n�n=0

� and that it should satisfy ��n � �̃m�= ��̃n ��m�=�nm

dictate that the two components of �̃n must be a linear com-
bination of x���e−x/2Lm

2����x�, where m=n ,n±1 for ±��0. We
obtain after some manipulations

�̃n�r,�� =
1

4l
anxl

�e−x/2� �n + 2l + 1�Ln
2l�x� + �n + 1�Ln+1

2l �x�

2
� + 1

��
��n + 2l + 1�Ln

2l�x� − �n + 1�Ln+1
2l �x�� � ,

�30a�

� � 0,

�̃n�r,�� =
1/4

l + 1
anxl+1e−x/2� Ln

2l+2�x� + Ln−1
2l+2�x�

− 2
� + 1

��
�Ln

2l+2�x� − Ln−1
2l+2�x�� � ,

�30b�

� � 0.

For l=0, we obtain

�̃0 =
1

4
�xe−x/2� 1

− 2
� + 1

��
� . �31�

Therefore, the right-hand side of Eq. �29� vanishes in the
asymptotic region where r→�. That is, asymptotically �cos
satisfies the same reference wave equation as does �irr.
Moreover, by equating the asymptotic behavior of �cos�r ,��
with that of �irr�r ,�� and making use of the nonrelativistic
limit, one can find the value of C, which is equal to −2/��.
This will be confirmed in the following subsection.

B. The case �=−�+ 1
2

In this case, similar to the previous one, there are two
alternative values for �: �= 1

2 �l+1� and �=− 1
2 l. However,

maintaining non-negativity of �, the second alternative is
valid only for l=0. Considering the first alternative, which is
valid for all �, Eqs. �23� give

� = − � +
1

2
= −

1

2
l, a = − n − l −

1

2
, b = n + l +

3

2
,

�32�

and

c = − l +
1

2
.

Thus, the resulting energy dependence of cn��� is given as


sin
�

2
�−l
cos

�

2
�l+1

2F1
− n − l −
1

2
,n + l +

3

2
;− l

+
1

2
;sin2 �

2
� . �33�

This hypergeometric function is a non-terminating series be-
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cause none of the first two arguments will ever be a negative
integer. However, we can use the transformation �14�,

2F1�a,b;c;z� = �1 − z�c−a−b
2F1�c − a,c − b;c;z� , �34�

to write it in the following alternative, but equivalent form

�sin ��−l
2F1
− n − 2l − 1,n + 1;− l +

1

2
;sin2 �

2
� . �35�

Now, this hypergeometric function is a finite polynomial of
order n+2l+1 in sin2 �

2 . Requiring that this energy dependent
function satisfy the three-term recursion relation �18� for n
�0 determines the n-dependence, which turns out to be pro-
portional to an, giving the following

cn��� =
1

�
Alan�sin ��−l

2F1
− n − 2l − 1,n + 1;

− l +
1

2
;sin2 �

2
� , �36�

where Al is an overall constant factor, which is independent
of the energy � and the index n. It could be evaluated by
equating the asymptotic behavior of �cos�r ,�� with that of
�irr�r ,��. However, a simpler and more straight-forward
method is by taking the non-relativistic limit ��→0, �→1
+�2E� of this result. Doing so gives the nonrelativistic
cosine-like expansion coefficients cn�E� in the Laguerre basis
for the case corresponding to �+=2l+1 �i.e., ��0� �7�. Pay-
ing special attention to the choice of normalization of the
regular solution and basis in �7� that differs from ours, we

obtain Al=− 1
�2l+ 1

2��l+ 1
2

�. One can verify that cn��� satisfies
the three-term recursion relation �18� but not the initial rela-
tion �when n=0�. Instead, it satisfies the following inhomo-
geneous initial relation

2�l + 1�yc0 = 2l + 2c1 + Al 2l + 1

���2l + 1�
�sin ��−l.

�37�

Therefore, the corresponding wave function does not satisfy
the reference wave equation but an inhomogeneous one that
reads

�H0 − ����cos� = − Al��2l + 1�
��2l + 1�

�2�

� + 1
�sin ��−l−1��̃0� ,

�38�

where �̃0�r ,�� is now given for all � by Eq. �30� as �̃0

	x���e−x/2�a±+b±x�� 1

±2�+1
��

�, where a± and b± are �-dependent

constants. It is not difficult to verify that the S-wave solution
obtained above in �26� is a special case of �36� with l=0
��=−1� and C=A0 /�. Similar to the previous case ��=��,
we also find another independent special solution for S-wave
�l=0� where,

� =
1

2
, � = 0, a = − n −

1

2
, b = n +

3

2
, and c =

3

2
,

�39�

corresponding to �1−y�
1
2 2F1

�−n− 1
2 ,n+ 3

2 ; 3
2 ; 1−y

2
�. Using the

transformation �34� this could be rewritten as �sin ��2F1
�−n ,n+2; 3

2 ; 1−y
2

�. Alternatively, we could write it as
sin �
n+1 Un�y�, where Un�y� is the Chebyshev polynomial of the
second kind �14�. Moreover, requiring that this solution sat-
isfy the three-term recursion relation �18� for l=0 gives the
following expansion coefficients of the reference wave func-
tion

sn��� =
B sin �
n + 1

Un�cos �� =
B

n + 1
sin�n + 1�� , �40�

where B is a constant factor, which is independent of the
energy � and the index n. One can easily verify that this
solution satisfies the initial relation �n=0� of �18� with l=0
��=−1�. That is why it was referred to as sn���. In fact, one
can easily show that this solution is a special case of that in
�20� with l=0 and B=2/��.

In summary, we have obtained two independent solutions
of the reference problem �the 3D free Dirac equation with
spherical symmetry� which are valid asymptotically. These
are �reg=�sin=�nsn�n and �cos=�ncn�n, where sn and cn are
given by Eqs. �20� and �36�, respectively. Now, since the
potential functions and effective mass are assumed finite in
range, then these two solutions are also related to the total
spinor wave function in the asymptotic region. We can write

lim
r→�

	�r,�� = �−�r,�� + e2i�����+�r,�� , �41�

where �±�r ,��=�cos�r ,��±i�sin�r ,�� and ���� is the
energy-dependent phase shift for a given effective mass dis-
tribution S�r� and potential functions V�r� and W�r�.

Contrary to the asymptotic reference solutions, which are
obtained above analytically, the phase shift will be obtained
numerically. One can calculate ���� using any convenient
approach based on the chosen scattering method. In the fol-
lowing section, we use the relativistic J-matrix method
�10,11� to obtain ����.

IV. RELATIVISTIC J-MATRIX SCATTERING MATRIX:
DYNAMICS

The vector and pseudo scalar potentials, V�r� and W�r�,
are assumed short-range such that they are represented accu-
rately by their matrix elements in a finite set of L2 basis
functions ��n�r��n=0

N−1, for some large enough integer N. The
relativistic effective mass, S�r�, is also localized accurately
in the same finite basis. In contrast to the kinematic basis
�15� this finite basis, which is evidently a two-component
spinor basis, should be energy independent. Moreover, it is
required to sample the objects defined in the interior scatter-
ing region �i.e., objects like V, W, and S that are short-range�
to a high degree of accuracy. That is, the following finite N
�N matrix representation of the potential V�r�:
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Vnm = ���n�V��m�; n,m = 0,1, . . ,N − 1

0; n,m � N ,
� �42�

is an approximation that is accurate enough for some given
integer N. This should also hold true for the matrix represen-
tation of both W�r� and S�r�.

We write the total spinor wave function 	�r ,��, which is
a solution of Eq. �2�, as the sum of two parts. One belongs to
the inner �scattering� region in function space, which is writ-
ten in terms of the energy-independent basis ��n�r��n=0

N−1. The
other belongs to the outer �asymptotic� region, which is writ-
ten in terms of the energy-dependent basis ��n�r ,���n=N

� .
Now, if we define P��� as the projection operator in the
space spanned by the total spinor wave function �	�. Then it
will be the sum of two parts, P���=Pin+Pout���. The “inside”

projection operator, Pin=�n=0
N−1��n���̃n�, is of dimension N,

whereas the “outside” projection operator, Pout���
=�n=N

� ��n���̃n�, is energy-dependent and of infinite dimen-
sion. The basis elements with the tilde symbol on top are
those that span the orthogonal conjugate subspace �e.g.,

��n � �̃m�= ��̃n ��m�=�nm�. Moreover, the two subspaces do not

overlap. That is, ��̃n ��m�= ��̃m ��n�=0 for all n=0,1 , . . . ,N
−1 and m�N. Consequently, we can write the total spinor
wave function as

�	�r,��� = �
n=0

N−1

pn�����n�r�� + �
n=N

�

qn�����n�r,��� , �43�

where pn= ��̃n �	� and qn= ��̃n �	�. The J-matrix representa-
tion of the total wave function in the asymptotic region is
shown in Eq. �41� and could be rewritten as

Pout�	� = �
n=N

�

��cn − isn� + e2i��cn + isn����n� . �44�

Therefore, qn= �cn−isn�+e2i��cn+isn� and the solution of the
full scattering problem is obtained if we could calculate the
N+1 unknowns: the coefficients �pn�n=0

N−1 and phase shift �.
The J-matrix method provides a platform for such a solution
�7�.

Evidently, Eq. �43� indicates that the basis for the total
solution space of the problem splits into an inner and outer
components that is collectively written as

��0,�1, . . . ,�N−1,�N,�N+1,�N+2, . . . � , �45�

where �n=� �n
+

�n
− �. The requirement that the reference wave op-

erator, J=H0−�, maintains its tridiagonal structure outside
the inner scattering region in function space �i.e., ��n�J��m�
=0 for n=0,1 , . . . ,N−1 and m�N, except that ��N−1�J��N�
= ��N�J��N−1��0� dictates that �n

+�r�=�n
+�r� and gives

��n�J��m�= ��n�J��m�. We propose an expression for the lower
component �n

− that results in a tridiagonal overlap matrix
��n ��m�. This, of course, is not necessary, but has the advan-
tage of making the calculation of the matrix elements of the
potentials, effective mass, and reference Hamiltonian sim-
pler. These calculations could be carried out using Gauss
quadrature integral approximation �17�. Moreover, the ex-

pression of the Green’s function associated with the finite
N�N total Hamiltonian, which enters in the computation of
the scattering matrix, becomes also neat and simple. The
proposed ansatz for �n

− is the energy-independent “kinetic-
balance-like” relation �n

−= ��
�

��
x + d

dx
��n

+, where � is a �second�
real basis parameter �13�. Therefore, we can rewrite �n

− as
�n

−= �+1
� �n

− and thus the two-component spinor basis element
�n�r� now becomes

�n�r� = anxle−x/2� �n + 2l + 1�Ln
2l�x� − �n + 1�Ln+1

2l �x�
��

2�
��n + 2l + 1�Ln

2l�x� + �n + 1�Ln+1
2l �x�� � ,

�46a�

� � 0,

�n�r� = anxl+1e−x/2� Ln
2l+2�x� − Ln−1

2l+2�x�

−
��

2�
�Ln

2l+2�x� + Ln−1
2l+2�x�� �, � � 0.

�46b�

The resulting overlap matrix is tridiagonal and reads as fol-
lows:

��n��m� = 2 +�n + l + 1��nm,

−  −�n�n + 2l + 1��n,m+1 + �n + 1��n + 2l + 2��n,m−1� ,

�47�

where  ±=1± ��� /2��2. Additionally, the matrix representa-
tion of the reference Hamiltonian �the free Dirac Hamil-
tonian H0� in this inner basis is tridiagonal and is written as
follows:

�H0�n,m = ��n�H0��m� = 2�+�n + l + 1��n,m

− �−�n�n + 2l + 1��n,m+1

+ �n + 1��n + 2l + 2��n,m−1� , �48�

where �±=1± �2�−1���� /2��2. Taking the nonrelativistic

limit ��→0� gives H0→1+�2Ĥ0, where Ĥ0 is the nonrela-
tivistic reference Hamiltonian. In matrix notation, �H0�nm

→ ��n��m�+�2�Ĥ0�nm= ��n
+ ��m

+ �+�2���n
− ��m

− ��−2�+�2�Ĥ0�nm.

For the case �+=2l+1 �i.e., ��0�, �Ĥ0�nm become the matrix
elements of the nonrelativistic J-matrix representation of the
reference Hamiltonian in the Laguerre basis �7�. This identi-
fication results in the choice �=2. However, we will keep the
value of � at present arbitrary.

Now, the matrix representation of the 2�2 short range
mass-potential function, V=���V+

W
W
�V−

�, in the same inner sub-
space is as follows:

Vnm = ��n�V��m� = �2���n
+�V+��m

+ � + ��n
−�V−��m

− �� + ����n
+�W��m

− �

+ ��n
−�W��m

+ �� , �49�

where n ,m=0,1 , . . . ,N−1. Let us define the �n ,m� sampling
element of a real radial function F�r�, which is not necessar-
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ily differentiable, by the Laguerre polynomials as the value
of the integral

Fnm
� = ��n + 1���m + 1�

��n + � + 1���m + � + 1��0

�

x�e−xLn
��x�F�x/��

�Lm
� �x�dx . �50�

Then substituting the components �n
± from Eq. �46� into �49�

and using this integral definition, we obtain for ±��0

��n
+�V+��m

+ � = �U+�nm
2l+1, �51a�

��n
+�W��m

− � + ��n
−�W��m

+ � = ±
��

�
��n± + 2�����m± + 2����Wn,m

2���

− n±m±Wn±1,m±1
2��� � , �51b�

��n
−�V−��m

− � = 
��
2�

�2

��n± + 2�����m± + 2�����V−�n,m
2���

+ n±m±�V−�n±1,m±1
2��� + m±�n± + 2�����V−�n,m±1

2���

+ n±�m± + 2�����V−�m,n±1
2��� � , �51c�

where n+=n+1 and n−=n for ��0 and ��0, respectively.
The radial function U+ in Eq. �51a� is defined as U+�r�
= ��r�V+�r�. These formulas show that the contribution of
V+�r� and W�r� to the matrix elements of the total Hamil-
tonian is second order in the relativistic parameter �the
Compton wavelength� �, whereas for V−�r� it is fourth order.
For an integer K�N, we use Gauss quadrature �17� to give
the following approximation for the integral �50�

Fnm
� � �

k=0

K−1

!nk
� !mk

� F��k
�/�� , �52�

where �!nk
� �n=0

K−1 is the normalized eigenvector associated with
the eigenvalue �k

� of the K�K tridiagonal symmetric matrix
of the quadrature associated with the Laguerre polynomials
�Ln

��. That is, the matrix whose elements are �2n+�+1��n,m

−n�n+���n,m+1−�n+1��n+�+1��n,m−1 for n ,m
=0,1 ,2 , . . ,K−1. Thus, the reference Hamiltonian, H0, is
fully accounted for in the whole representation space �45� as
given by Eq. �48� and in Eq. �17c�. However, the mass-
potential matrix V is approximated by its representation in a
subset of the basis. That is,

Hnm ���H0�nm + Vnm; n,m � N − 1

�H0�nm; n,m � N − 1.
� �53�

This representation is the fundamental underlying structure
of certain algebraic scattering methods, such as the R-matrix
�9� and J-matrix methods �7�. One may confine investigation
to the finite N�N matrix representation of the potential V
and the reference Hamiltonian H0. However, taking into ac-
count the full contribution of the reference Hamiltonian, as
will be done in this work, should result in a substantial im-
provement on the accuracy of the results. Now, if we define
the “J-matrix coefficients”

Tn��� =
cn��� − isn���
cn��� + isn���

, Rn
±��� =

cn��� ± isn���
cn−1��� ± isn−1���

,

�54�

then the J-matrix method gives the following expression for
the Nth order relativistic S-matrix �11�,

S�N���� = TN−1���
1 + GN−1,N−1���JN−1,N���RN

−���
1 + GN−1,N−1���JN−1,N���RN

+���
= e2i����,

�55�

where GN−1,N−1��� is the �N−1,N−1� component of the fi-
nite Green’s matrix function which contains the dynamics by
incorporating the contribution of the 2�2 short-range mass-
potential matrix V,

GN−1,N−1��� = ��̃N−1��H0 + V − � � I�−1��̃N−1� , �56�

where I is the 2�2 unit matrix. Due to the fact that the basis
of the L2 subspace, ��n�n=0

N−1, is trithogonal, the finite Green’s
functions should be calculated as shown in Appendix B of
the first reference in �11�. Using the recursion relation �18�,
satisfied by the coefficients cn and sn for n�1, we can evalu-
ate TN−1 and RN

± recursively starting with T0 and R1
± as

Rn+1
sgn ��� =

1
�n + 1��n + 2l + 2�

�2�n + l + 1��cos ��

− n�n + 2l + 1�/Rn
sgn���� , �57�

Tn��� = Tn−1����Rn
−���/Rn

+���� , �58�

for n=1,2 , . . ,N−1, and where the superscript “sgn” on the
J-matrix coefficient R stands for the " sign.

In the following section we calculate the scattering phase
shift for a given configuration specified by the choice of
potential functions V�r� and W�r� and for an effective mass
distribution S�r�. Taking �=2, the results will be shown to be
independent of the spinor basis parameter � once we reach
the plateau of computational stability. The computer code
�RMJ-07.01� used in the calculation was developed using the

( )1 ( )NS ��

0 1 2 3 4 5 6

2.0

1.5

1.0

0.5

0.0

E(�) (a.u.)

FIG. 1. A plot of �1−S�N����� for S-wave scattering as a function
of the energy variable E��� and for constant mass �M =m0�. The
potential matrix is defined by Eqs. �59� and �60� with the physical
parameters: V0=3.0 a.u., r0=3.0 a.u., and with a basis size N=50
and �=10 a.u. The solid curve is the relativistic result ��
=0.2 a.u.� whereas the dashed curve corresponds to the nonrelativ-
istic limit ��=0.001 a.u.�.
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Mathcad® �20� software package, and is available upon re-
quest from the corresponding author.

V. RESULTS AND DISCUSSION

To illustrate the utility and accuracy of our development,
we choose the following mass-potential example in a single
channel configuration:

V±�r� = V±
0h�r�, W�r� = 0, �59�

where V±
0 =V0±S0 are real parameters, and we consider the

following radial potential function parameterized by the
length parameter r0:

h�r� = e−�r − r0�2/4 − 2e−r2/5. �60�

The calculation will be carried out in the Laguerre basis
given above in Eqs. �46a� and �46b�. However, the same
calculation could as well be done in the oscillator basis given
by Eqs. �A12a� and �A12b� in the Appendix below. We start
by considering the constant mass case where M�r�=m0 �i.e.,
S0=0�. Figure 1 is a plot of �1−S�N����� for S-wave scattering
as a function of the energy variable E��� defined below Eq.
�17c�. The physical parameters were taken as V0=3.0 and
r0=3.0 �all in atomic units�. Moreover, we took a basis size
N=50 and �=10 �a.u.�. The solid curve is the relativistic

result corresponding to �=0.2 �a.u.�, whereas the dashed
curve corresponds to the nonrelativistic limit where �
=0.001 �a.u.�. That is, for the nonrelativistic limit the speed
of light was ascribed a value that is 200 times larger than c.
Now, as stated in the Introduction, nonrelativistic position-
dependent mass systems have ordering ambiguity that makes
their solution not unique. Consequently, a consistency check
of our results �in the limit� could only be made by compari-
son with those of constant mass. Figure 2 is the result of the
nonrelativistic calculation for the same problem with con-
stant mass, which was performed using the standard nonrel-
ativistic J-matrix method in the Laguerre basis with the same
parameters. The agreement between Fig. 2 and the dashed
curve in Fig. 1 is obvious. As expected, no significant differ-
ences exist at lower energies between the relativistic and
nonrelativistic results. However, it is clear that the sharp
resonance at the higher energy E=2.2 �a.u.� in Fig. 1 be-
comes, in the nonrelativistic limit, less pronounced �broader�
and shifts a little towards higher energy at E=2.3 �a.u.�.
Moreover, the broad resonance near E	3.2 �a.u.� also be-
comes harder to resolve in the nonrelativistic limit. In fact, a
more precise calculation of the resonance structure for this
potential could be performed using, for example, the com-
plex scaling method �18�. Such calculation gives the relativ-
istic resonances: E=2.2098−i 0.0548 and E=3.5786
−i 0.9663 �a.u.�. On the other hand, the nonrelativistic reso-
nance energies are E=2.3272−i 0.10486 and E=3.5482
− i 1.2210 �a.u.�. Figure 3 gives the integrated phase shift

( )1 ( )NS E�
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2.0

1.5

1.0

0.5

0.0
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FIG. 2. Pure nonrelativistic calculation of the scattering matrix
for the same problem as in Fig. 1 �with constant mass� that was
performed using the standard nonrelativistic J-matrix method in the
Laguerre basis with the same parameters. The agreement with the
dashed curve in Fig. 1 is obvious.
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FIG. 3. The integrated phase shift ���� as a function of energy
for the same problem as in Fig. 1 �using �= 1

2 arg S�N��. The relativ-
istic �nonrelativistic� result is the solid �dashed� curve.
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FIG. 4. A reproduction of Fig. 1 but for spatially dependent
mass, where we took S0=1.0 �a.u.�. The effect of the spatial varia-
tion of mass is very obvious as pointed out at the end of Sec. V. The
relativistic �nonrelativistic� result is the solid �dashed� curve.
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FIG. 5. A reproduction of Fig. 3 for spatially dependent mass
with S0=1.0 �a.u.�. The relativistic �nonrelativistic� result is the
solid �dashed� curve.
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��E� as a function of the energy for the relativistic �solid
curve� and nonrelativistic �dashed curve� case. Now we turn
to the most relevant contribution of our work: the effect of
spatial variation of the mass on the relativistic scattering ma-
trix. Figures 4 and 5 are reproductions of Figs. 1 and 3 for
the same system but for non-vanishing S0. We took S0
=1.0 �a.u.�, making m�r�=1+�2h�r�. One of the obvious ef-
fects is the extreme sharpening and downshift of the reso-
nance at E=2.1 a.u. �relativistic� and E=2.3 a.u. �nonrelativ-
istic�. In fact, the relativistic resonance structure of the
system with this position-dependent mass becomes E
=2.1211−i 0.003 185 and E=3.9429−i 0.4512 �a.u.�. The
nonrelativistic limit of this structure is E=2.303 33
−i 0.009111 and E=3.9270−i 0.6693 �a.u.�. Nonetheless,
the full effect on the S-matrix for all energies �in the range of
interest� is shown in Figs. 4 and 5.

Finally, we would like to remark that the extension of the
above-development to multi-channel scattering is straightfor-
ward, which could be carried out following the same scheme
as in the classic J-matrix method �19�.

ACKNOWLEDGMENTS

The authors acknowledge the support of King Fahd Uni-
versity of Petroleum and Minerals via project FT-2006/05.
Fruitful discussions with H. A. Yamani are highly appreci-
ated. A.D.A. is grateful to Amjad A. Al-Haidari �AUS� for
providing literature resources in support of this work.

APPENDIX: J-MATRIX REPRESENTATION IN THE
OSCILLATOR BASIS

In the upper component of this spinor basis given by Eq.
�11�, we replace x by z=x2= ��r�2. The lower spinor compo-
nent is calculated using the kinetic balance relation, which
now reads �n

−=2 ��
�+1x��/2

z + d
dz

��n
+. Thus, we obtain the energy-

dependent spinor basis for the outer function space �n�N�
as

�n�r,�� = an
±x�±−1/2e−x2/2� xLn

�±�x2�
��

� + 1
�
� −

1

2
�Ln

�±�x2� − �n + �±�Ln−1
�± �x2� + �n + 1�Ln+1

�± �x2�� � , �A1�

corresponding to ±��0. Equivalently, we can write this as

�n�r,�� = an
±x�±−1/2e−x2/2� xLn

�±�x2�
��

� + 1
�
� + �± +

1

2
�Ln

�±�x2� − x2�Ln
�±+1�x2� + Ln−1

�±+1�x2��� � . �A2�

Due to the factor 1
2� in the integration measure in this basis,

which is �0
�dr= 1

2��0
� 1

z
dz, the normalization constant is taken

as an
±=2���n+1� /��n+�±+1�. Now, requiring that the

matrix representation of the free Dirac operator in this basis
be tridiagonal dictates that �±= ± ��+ 1

2
�= ���± 1

2 = l+ 1
2 . Using

the recursion relation of the Laguerre polynomials and their
orthogonality relation, we obtain the following:

Jn,m��� = ��n�H0 − ���m� =
�2�2

� + 1
�−

�2 − 1

�2�2 �n,m + 
2n + l

+
3

2
��n,m +n
n + l +

1

2
��n,m+1

+�n + 1�
n + l +
3

2
��n,m−1� , �A3�

Consequently, the reference wave equation becomes equiva-
lent to the following three term recursion relation for the
expansion coefficients of the wave function

ysn��� = 
2n + l +
3

2
�sn��� +n
n + l +

1

2
�sn−1���

+�n + 1�
n + l +
3

2
�sn+1��� , �A4�

where y= ��
�

�2= �2−1
�2�2 = 2E

�2 . Using the orthogonality relation of
the Laguerre polynomials in the expansion reg

+ �r ,��
=�nsn����n

+�r�, we can project out sn��� as

sn��� =
1

�
�

�
an�

0

�

xl+3/2e−x2/2Ln
l+1/2�x2�Jl+1/2
�

�
x�dx ,

�A5�

where an=2���n+1� /��n+ l+ 3
2

�. Contrary to the integral
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�19� above, which is not found in all known tables of inte-
grals, this integral is available in most of them giving

sn��� = �− 1�n 1

�
an
�

�
�l+1

e−�2/2�2
Ln

l+1/2��2/�2� . �A6�

Writing sn���	y�l+1�/2e−y/2Ln
l+1/2�y� and using the differential

equation of the Laguerre polynomials, we can show that
sn��� satisfies the following second order differential equa-
tion in y:

�y
d2

dy2 +
1

2

d

dy
−

l�l + 1�
4y

−
1

4
y +

1

2

2n + l +

3

2
��sn��� = 0.

�A7�

A second independent solution of this equation could be ob-
tained by writing cn���=y�e−�yfn�� ,� ;y�, where ��0. The
resulting differential equation for fn�� ,� ;y� will be the same
as that of the confluent hyper-geometric function 1F1�a ;c ;y�
�14� provided that

�1� � = 1/2 and c = 2� +
1

2
, �A8a�

�2� 
� −
1

4
�2

=
1

4

l +

1

2
�2

, �A8b�

and

�3� a = − n + � −
1

2
�l + 1� . �A8c�

The case where �= 1
2 �l+1� reproduces sn���. However, �=

− 1
2 l gives the new independent solution: cn���

	y−l/2e−y/2
1F1

�−n− l− 1
2 ;−l+ 1

2 ;y�. Requiring that this solu-
tion satisfies the three-term recursion relation �A4� �for n

�0� and using the following relation of the confluent hyper-
geometric series �14�:

z1F1�a;c;z� = �c − 2a�1F1�a;c;z� + a1F1�a + 1;c;z�

+ �a − c�1F1�a − 1;c;z� , �A9�

will determine the n-dependent factor in cn��� as �−1�nan.
Thus, we are left with an overall factor that is independent of
the energy and the index n �designated as Al� giving

cn��� =
1

�
Al�− 1�nan��/��−le−�2/2�2

1F1
− n − l −
1

2
;

− l +
1

2
;�2/�2� . �A10�

Taking the nonrelativistic limit ��→0� �7� gives Al=
2
� ��l

+ 1
2

�. The confluent hyper-geometric series in �A10� is non-
terminating since the negative of the first argument is half of
odd integer. Therefore, for large values of N and higher en-
ergies, �, numerical instability could, in principle, occur
when trying to evaluate cN��� needed for the calculation of
the scattering matrix. This is due to the fact that in such
circumstances �as shown in Eq. �A10�� we would be multi-
plying a very small number coming from the decaying expo-
nential e−�2/2�2

with very large numbers in 1F1�−N− l− 1
2 ;

−l+ 1
2 ; �

2

�2 �. However, what saves the day is the expression
�55� which is given in terms of the J-matrix coefficients Tn
and Rn

± as ratios of cn and sn. Thus, the small values in
e−�2/2�2

factor out and cancel whereas the large values in

1F1�−N− l− 1
2 ;−l+ 1

2 ; �
2

�2 � will be divided out.
The tridiagonal requirement on the time-independent

spinor basis for the inner function space �n=0,1 , . . ,N−1�
gives �n

+�r�=�n
+�r� and �n

−= �+1
� �n

−. Thus, we obtain

�n�r� = anxle−x2/2� xLn
l+1/2�x2�

��

�
��� + l + 1�Ln

l+1/2�x2� − x2�Ln
l+3/2�x2� + Ln−1

l+3/2�x2��� � , �A11�

where � is a real basis parameter. An alternative, but equivalent, expression that could be more useful for performing integrals
using Gauss quadrature approximation is as follows:

�n�r� = anxl−1e−x2/2� 
n + l +
1

2
�Ln

l−1/2�x2� − �n + 1�Ln+1
l−1/2�x2�

��

�
x�
n + l +

1

2
�Ln

l−1/2�x2� + �n + 1�Ln+1
l−1/2�x2�� �, � � 0, �A12a�
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�n�r� = anxl+1e−x2/2� Ln
l+3/2�x2� − Ln−1

l+3/2�x2�

−
��

�
x�Ln

l+3/2�x2� + Ln−1
l+3/2�x2�� �, � � 0.

�A12b�

The overlap matrix of this oscillator basis becomes

��n��m� = �n,m + 
��
�
�2�
2n + l +

3

2
��n,m

+n
n + l +
1

2
��n,m+1

+�n + 1�
n + l +
3

2
��n,m−1� . �A13�

On the other hand, the matrix representation of the reference
Hamiltonian in this basis is

�H0�n,m = ��n�H0��m� = �n,m + �2� − 1�
��
�
�2

��
2n + l +
3

2
��n,m +n
n + l +

1

2
��n,m+1

+�n + 1�
n + l +
3

2
��n,m−1� . �A14�

Taking the nonrelativistic limit H0→1+�2Ĥ0, where Ĥ0 is
the nonrelativistic reference Hamiltonian �in the oscillator
basis as shown in �7� but for a different normalization� gives
�=2. The finite N�N matrix representation of the radial

potentials and effective mass in the oscillator basis is ap-
proximated using Gauss quadrature as

��n
+�V+��m

+ � = �V+�nm
l+1/2, �A15a�

��n
+�W��m

− � + ��n
−�W��m

+ �

= ± 2
��

�
�
n + ��� +

1

2
�
m + ��� +

1

2
��U−�n,m

����1/2

− n±m±�U−�n±1,m±1
����1/2 � , �A15b�

��n
−�V−��m

− � = 
��
�
�2�
n + ��� +

1

2
�
m + ��� +

1

2
�

��V−�n,m
����1/2 + n±m±�V−�n±1,m±1

����1/2

+m±
n + ��� +
1

2
��V−�n,m±1

����1/2

+n±
m + ��� +
1

2
��V−�m,n±1

����1/2� , �A15c�

where n+=n+1 and n−=n for ��0 and ��0, respectively.
The radial function U− in Eq. �A15b� is defined as U−�r�
= 1
�rW�r�. However, one should note that in the oscillator

basis the approximation series for the integral in Eq. �50�
should be replaced by

Fnm
� � �

k=0

K−1

!nk
� !mk

� F��k
�/�� . �A16�
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