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The Siegert pseudostate (SPS) formulation of scattering theory, originally developed by Tolstikhin, Ostro-
vsky, and Nakamura [Phys. Rev. A, 58, 2077 (1998)] for s-wave scattering in a spherically symmetric finite-
range potential, is generalized to nonzero angular momenta. The orthogonality and completeness properties of
SPSs are established and SPS expansions for the outgoing-wave Green’s function, physical states, and scatter-
ing matrix are obtained. The present formulation completes the theory of SPSs in the one-channel case, making
its application to three-dimensional problems possible. The results are illustrated by calculations for several

model potentials.
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I. INTRODUCTION

Siegert states (SSs) are the solutions to the stationary
Schrodinger equation, i.e., eigenfunctions of the Hamil-
tonian, which are regular everywhere and have only one type
of waves, incoming or outgoing, in the asymptotic region.
These boundary conditions can be satisfied simultaneously
only for isolated generally complex values of the energy. The
corresponding eigenvalue problem was first formulated in
1939 by Siegert [1] for s-wave scattering in a spherically
symmetric finite-range potential.

The set of SSs is purely discrete. This is an important
advantage over the more familiar set of physical states con-
ventionally considered in scattering theory [2,3], which con-
sists of discrete and continuous parts. At the same time, the
two sets can be uniquely expressed in terms of each other.
Thus it should be possible to reformulate scattering theory in
terms of SSs. The goal of such an undertaking is an alterna-
tive approach to the theory of processes in the continuum
which opens new analytical and computational perspectives
in atomic physics.

Since the pioneering paper [1], the different issues in the
theory of SSs have been addressed by many authors; the
results are summarized in [3—6]. The main obstacle in the
development of the theory is that, apart from a finite number
of SSs representing bound states of the system, the SS eigen-
functions exponentially grow in the asymptotic region. As a
consequence, SSs possess unusual orthogonality and com-
pleteness properties which hindered their incorporation into
the formalism of scattering theory. The traditional approach
based on the differential equations turned out to be not very
fruitful in overcoming these difficulties; the available results
[3-6] are fragmentary. Besides, they long remained useless
for practical calculations because there was no an efficient
method to numerically generate SSs.

The situation has changed after an algebraic approach and
the concept of Siegert pseudostates (SPSs) were introduced
in [7]. SPSs are a finite-basis representation of SSs for finite-
range or cutoff potentials. The theory of SPSs gives an ex-
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tension of the theory of SSs to finite values of N, where N is
the dimension of the basis, in the same sense as quantum
mechanics gives an extension of classical mechanics to non-
zero values of 7. This means that all basic equations in the
theory of SSs have their counterparts in terms of SPSs and
can be obtained from the latter in the limit N—o. SPSs
suggest a very simple and transparent algebraic approach to
the theory of SSs, which enables one not only to advance the
theory, clarifying some of its mathematical aspects that are
not readily apparent from the original differential equations,
but also to implement the results.

So far, the theory of SPSs has been thoroughly developed
only for s-wave scattering in one-channel [8] and two-
channel [9] cases; recently, these formulations were supple-
mented by a discussion of the SPS perturbation theory [10].
In both cases, the task of generating the complete set of SPSs
needed for the expansions in their terms to converge was
reduced to a single-matrix diagonalization. The efficiency of
this approach has been demonstrated by calculations for a
number of model and realistic systems in the stationary
[7-19] and time-dependent [20-24] frameworks. To make
the approach applicable to more challenging three-
dimensional problems it is necessary to extend it to higher
partial waves.

In the present paper, the one-channel theory of [8] is gen-
eralized to nonzero angular momenta. Our presentation par-
allels that in [8]; however, the generalization is not straight-
forward. In Sec. II, we define the SPSs and establish their
orthogonality, completeness, and some other properties. In
Sec. III, all major objects of stationary scattering theory—
namely, the outgoing-wave Green’s function, physical states,
and scattering matrix—are expressed in terms of SPSs. The
corresponding results in terms of SSs follow in the limit N
— . Some of the relations obtained have been known from
previous studies, we simply rederive them in terms of SPSs,
which is needed for consistency of the formulation as well as
for its implementation, whereas others, to the best of our
knowledge, have not appeared in the literature. We cite,
where appropriate, only major original contributions to the

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.75.062704

PAVEL A. BATISHCHEV AND OLEG I. TOLSTIKHIN

subject; a concise review of the literature was given in [8],
and much more extensive bibliography can be found in
[3-6]. The results are illustrated by calculations of partial,
differential, and total scattering cross sections and photoion-
ization for several model potentials in Sec. IV. Section V
concludes the paper.

II. SIEGERT PSEUDOSTATES AND THEIR PROPERTIES

In this section, we define the SPSs and establish their
basic properties. The presentation may seem to be too tech-
nical, even though we try to skip details, but this is necessary
for laying down a comprehensive foundation for the next
section as well as future applications.

A. Siegert states: Basic differential equations

The radial Schrodinger equation describing the motion of
a particle with angular momentum / in a spherically symmet-
ric potential V(r) reads [2,3] (a system of units in which %
=m=1 and all the quantities involved in the analysis are
dimensionless is used throughout the paper)

(H,—E)¢(r)=0, (1)
where

14> 1(l+1)
=-S5t
2dr 277

+ V(r). (2)

We shall assume that the potential V(r) has a finite range,

V(r)|r>a=07 (3)

or decays sufficiently rapidly as » grows, so that cutting off
its tail beyond r=a does not produce any appreciable effect
on the observables. The SSs are the solutions to Eq. (1) sat-
isfying the regularity boundary condition at the origin,

#(0)=0, 4)
and the outgoing-wave boundary condition in the asymptotic

region,

=0, (5)

r—o

(£-ahe

where the energy £ and momentum k are related by
E=K2. (6)

This is an eigenvalue problem. The SS momentum and en-
ergy eigenvalues and eigenfunctions will be denoted by k,,
Enzkil 2, and ¢,(r). All the objects of scattering theory con-
sidered in this paper will be indicated by a subscript /, as in
Eq. (2), in order to emphasize their dependence on the angu-
lar momentum; for brevity, we omit such a subscript in the
notation for the SSs, but it should be remembered that they
also depend on /.

We restrict our treatment to potentials that are not too
singular at the origin,

r*V(r)],_o=0. (7)

In this case, the regularity boundary condition (4) can be
specified as
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B(r)] g (8)

The outgoing-wave boundary condition (5) plays the central
role in the present approach. It is well known that Eq. (5)
uniquely selects one of the two linearly independent solu-
tions to Eq. (1) at r—o only if Im k=0 [2]. Taking into
account Eq. (3), it is possible to present the outgoing-wave
boundary condition in a form applicable to any complex k.
To this end, we note that Eq. (1) in the outer region r=a has
a pair of linearly independent solutions e;(kr) with the
asymptotic behavior e;(xkr)|,_...=e**", where the function
e/(z) is defined by Egs. (A8) and (A9). Equation (5) implies
that

()], =, = ej(kr). ©)
From this and Eq. (A10) one obtains

=0, (10)

!

d 1

(——ik+—2 .—Z”’—)qs(r)
dr r =t lkr+zll,

r=a

where z;, are the zeros of the reverse Bessel polynomial
0,(z); see the Appendix . Introducing the function and deriva-
tive value operators at r=a,

F=08r-a), D:5(r—a)%, (11)

one can rewrite Eq. (10) as
I

D(r) = (,-k_lz —Z’”—)J’d)(r)- (12)

a,- ika + z;,

This form of the outgoing-wave boundary condition will be
used in the following.

B. Siegert pseudostates: Finite-basis representation

Let ‘H denote the Hilbert space of functions square inte-
grable on the interval 0 =r=ga and satisfying the regularity
boundary condition (8). The SSs belong to H. Let fi(r), i

=1,2,..., be a real, orthonormal, and complete basis in H,
ie.,
fi(r)|r~>00crl+l? (133)
f finf(r)dr= 5, (13b)
0
L(r,r)Y=68(r=r"), O0=r, r =a, (13¢)
where
N
Iy(rr") = 2 fi(nf(r). (14)
i=1

It will be assumed that for any well-behaved near r=a func-
tion from H its expansion in terms of this basis converges at
r=a; otherwise, the basis may be arbitrary. To transform the
above differential equations to an algebraic form, we employ
a finite basis set
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fi(r), (15)

The N-dimensional space spanned by this basis will be de-
noted by Hy. Function (14) is a projection of the unity op-
erator onto this space.

The operator D, Eq. (11), up to a constant factor, coin-
cides with the Bloch operator [25], which is a well-known
means to incorporate boundary conditions into the differen-
tial equation. Let us introduce Hermitized Hamiltonian

i=1,2,...,N.

~ 1
H12H1+ ED (16)
For any functions u(r) and v(r) from H we have
f u(r)]-?p(r)dr: f v(r)f]lu(r)dr; (17)
0 0

i.e., H, is a symmetric operator. Substituting Eq. (16) into Eq.
(1), multiplying from the left by fi(r), and integrating over
the interval 0 =r=a, we obtain

f f,-(r)(fll - %D - E) &(r)dr=0. (18)
0

Since only the values of ¢(r) for re[0,a] appear in this
equation, we can expand ¢(r) in terms of the basis (15),

N

()= cfr), 0=r=a. (19)
i=1

Substituting this expansion into Eq. (18) and using Egs. (6)

and (12), we arrive at the algebraic eigenvalue problem

1
~ 1 1 \?
H--(r=->—2—|F+>1|c=0. (20)
2 a,-y Na+z, 2
Here, the eigenvalue \ is defined by

k=X, (21)

the eigenvector ¢ is a column vector of the dimension N
composed of the coefficients ¢; in Eq. (19) (the correspond-
ing row vector will be denoted by ¢’, where T stands for
transpose), H; and F are real symmetric matrices of the di-

mension N X N representing the operators H ; and F and hav-
ing the elements

_ a _ 1 (¢ dF(P) dF(r
Hy ;= J S (r)dr =2 f dfin) dfi(r) .
0

0 dr dr
+ fafi(r){ l(12+21) + V(r)}fj(r)dr, (22a)
0 r ‘
Fy= f FOFFDdr=fla)f @),  (22b)
0

and I is an N X N unit matrix representing the unity operator
(14). In this paper, 0 always denotes a generally rectangular
zero matrix of appropriate dimension—e.g., a zero column
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vector in Eq. (20). It is convenient to introduce a vector f
with the elements

fi=fla), i=1,2,....N. (23)
Then from Eq. (19) we have
dla) =fTc=c'f, (24)
and Eq. (22b) can be written as
F=ff" (25)

The fact that matrix F can be factorized in this way is very
important for the following.

Equation (20) is a representation of the SS eigenvalue
problem, Egs. (1), (8), and (10), in the finite basis (15). The
SPSs are the solutions to Eq. (20). The SPS eigenvalues and
eigenvectors in the finite-basis representation will be denoted
by A\, and ¢,, where, for brevity, we again omit the subscript
1. SPSs belong to H . Since the basis (15) becomes complete
in H when its dimension N grows, SPSs converge to SSs in
the limit N— c. However, for any finite N the SPSs and SSs
are distinct; to emphasize this difference we have introduced
a special notation A\ for the SPS eigenvalue. All the results
below will be derived in the finite-basis representation and
expressed in terms of A, and c,. The final formulas will be
given also in the coordinate representation. We shall use the
same notation k, and ¢,(r) for SPSs in the coordinate repre-
sentation as for SSs; the transformation between the two rep-
resentations is defined by Egs. (19), (21), and (24). Setting in
the final formulas N— %, one obtains corresponding results
in the basis-independent form in terms of SSs. In this form
the present results can be compared with previous achieve-
ments in the theory of SSs.

C. General restrictions on the location of SPS eigenvalues

Some properties of the SPS eigenvalues A, can be de-
duced from Eq. (20) without solving the equation. First, us-

ing the properties of matrices ﬁl and F and zeros z;, (see the
Appendix), it can be seen that if N is an eigenvalue of Eq.
(20), then \" also is an eigenvalue. This means that the ei-
genvalues A, are either pure real or occur in complex conju-
gate pairs \, and \,. Second, multiplying Eq. (20) from the
left by ¢'7 and taking the imaginary part of the result, one
obtains

Im(\)[2Re(N)e e — w)(- ha)e TFe] =0, (26)

where w(z) is a universal (for the given /) function defined
by Eq. (All). This equation is evidently satisfied if Im A
=0; i.e., there may exist pure real eigenvalues. If Im\ #0,
then Eq. (26) imposes some restrictions on the location of \
in the complex plane. Indeed, ¢"”c and ¢"”Fc are positive and
non-negative real numbers, respectively. The function w,(z)
is real for all complex z, and w;(z) <0 [w/(z)=0, w(z) >0]
inside (on the boundary of, outside) a singly connected
bounded domain €,(z) which lies in the left half of the com-
plex z plane, is symmetric with respect to the real axis, and
touches the imaginary axis at the single point z=0 (see the
Appendix). Then it can be seen from Eq. (26) that complex
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eigenvalues with Im A # 0 may appear only in the right half
plane, Re A >0, excluding the domain );(—Aa). For [=0 we
have wy(z)=1; hence, the domain 4(z) is empty.

In the coordinate representation Eq. (26) reads

Re(k){z Im(k) f |p(r)Pdr + /(- ika)|p(a)|* | = 0.
0

(27)

Translating the above results to the complex k plane, the SPS
momentum eigenvalues k, can be located either on the
imaginary axis or occur in pairs k, and —k: located in the
lower half plane excluding the domain ),(—ika). Thus SPSs
can be conventionally divided into four groups, according to
the position of k,: bound (Re k,=0, Imk,>0), antibound
(Re k,=0, Im k,<0), incoming (Re k,>0, Im k,<<0), and
outgoing (Re k,, <0, Im k,<0). In the following, the set of
subscripts n corresponding to the bound SPSs will be de-
noted by {b}. This classification remains unchanged from the
case [=0 [8]. Equation (27) does not contain N, so it holds
also for SSs, and hence the same classification applies to
SSs. The corresponding well-known restrictions on the loca-
tion of the SS eigenvalues are usually derived from the ana-
lytic properties of the Jost function [2,3]. The present deri-
vation in terms of SPSs is solely based on the properties of
function w,(z). It reveals a fact that, as far as we know, has
not been noticed by previous authors: for /# 0, there exists a
dead zone Q(—ika) in the lower half plane where incoming
and outgoing eigenvalues k, cannot appear. The physical im-
plications of this result will be discussed below (see Sec.
IV B).

As can be seen from Eq. (9), the eigenfunctions ¢,(r) for
the bound SSs decay in the asymptotic region, while for the
other three groups they grow. Only bound SSs have a physi-
cal meaning—i.e., are observable—individually; all the other
SSs serve to collectively represent the continuum. Yet there
may appear SSs that, not being bound, approximately have
the nature of individual states. Such SSs are associated with
resonances, by which we mean sharp peaks in the scattering
cross section. They can be distinguished from the others by
some additional properties. We note that Eq. (27) does not
forbid the eigenvalue k to lie on the real axis; i.e., there
might exist a pair of incoming and outgoing SSs with
Im k,=0 and Re k,, # 0, which would correspond to a discrete
state embedded in the continuum. The eigenfunctions for
such states must satisfy ¢,(a)=0. One may argue that in this
case the derivative ¢, (a) is also zero, as follows from Eq.
(10), so such a solution to the second-order differential equa-
tion (1) must turn identically zero. That is true; strictly
speaking, Im &, can vanish only simultaneously with Re k,,.
However, |Im k,| may have an arbitrarily small value. This
may happen, e.g., if the sum of V(r) and the centrifugal term
in Eq. (2) has a barrier separating a potential well at r<a
from the asymptotic region, the situation commonly known
as a shape resonance. Thus there may exist a pair of SSs for
which |Re k,| > [Im k,|. The outgoing member of the pair
satisfies
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E,=E-iI'2, T<E. (28)
It will reveal itself as a resonance at the energy E=E& with
width I". Another possibility is the existence of an SS with
zero eigenvalue, k,=0. As follows from Eq. (10), the eigen-
function for such a state must satisfy ¢, (a)=-I¢,(a)/a. By a
small variation of the potential V(r) this state can be turned
into an antibound SS with a very small |[Im k,,|, often called a
virtual state, which will reveal itself as a resonance at zero
energy. In both cases, the eigenvalue k, must lie close to the
real axis, just below it. The degree of this closeness deter-
mines whether the SS reveals itself as a resonance. It can be
controlled by varying some parameters defining the poten-
tial, which shows that resonance is an asymptotic notion.

D. Linearization

The SPS eigenvalue problem, Eq. (20), is nonlinear with
respect to A. This nonlinearity prevents the direct use of the
standard methods of linear algebra. Indeed, it is not even
clear at the moment how many solutions Eq. (20) has, i.e.,
how many SPS are there for a given value of N. A crucial
observation is that Eq. (20) can be exactly linearized by in-
creasing the dimension of the Hilbert space. To this end, let
us introduce additional notation, in the coordinate and finite-
basis representations,

B(r)=ikp(r), T=Xe, (29)

and

_ le¢(a) _

ika + z;, )\a+z1‘,,’

Z lprC

§p= p=1,...,l. (30)

The set of equations (20), (29), and (30) can be presented in
the form

0 I 0 0 c
—2H, F f/a f/a &
—znfl'/a 0 —A £1=9
...........
I —aff Ja O 1 \& 31)

Here and in the following, boxed objects denote square di-
agonal matrices of dimension /X[ with the elements inside
the box standing on the diagonal; e.g., the box in Eq. (31) is
an [X[ diagonal matrix with the elements -z;,,/a, p
=1,...,l. There is a one-to-one correspondence between the
solutions to Egs. (20) and (31) established by Egs. (29) and
(30); for this reason, the solutions to Eq. (31) will be also
called SPSs and denoted by \,, ¢,, €,, and &,,. At the same
time, Eq. (31) is a linear eigenvalue problem, which brings
us to the solid grounds of simple linear algebra. Now it be-
comes clear that there are exactly 2N+/ SPSs for a given N,
this number being the dimension of the matrix in Eq. (31).
Let us introduce an extended (2N+I)-dimensional Hilbert

space H(zl[)v defined by the direct product
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H) =Hy® Hy o C, (32)

where the first two factors stand for ¢ and ¢, and the
I-dimensional complex vector space C! corresponds to the set
of &,. The solutions to Eq. (31) belong to H(ZII)\, As we shall
see, this is the natural space for the theory of SPSs. For
example, the properties of SPSs look most simple in H(Zl])\,
The linearization of the SPS eigenvalue problem on the step
from Eq. (20) to Eq. (31), accompanied by the increase of
the dimension of the Hilbert space from N to 2N+, gener-
alizes the construction used in [8] to arbitrary values of [.
Equation (31) is a simple eigenvalue problem. It is suit-
able for the numerical solution, but for the discussion to
follow it is convenient to transform it to another form. Mul-
tiplying Eq. (31) from the left by the weight matrix

~FIO0..0
I 00...0
W=110 o0 »
...... =1/
0 0

(33)

we obtain a generalized eigenvalue problem with symmetric
matrices,

[ —2H, 0 f/a ... f/a 1 (e
o I o0 ... 0 C
fT/a 0 — \W & =0.
........
/a0
\ J\e)

The orthogonality and completeness properties of SPSs im-
mediately follow from this equation.

E. Orthogonality and normalization condition

Assuming that all SPS eigenvalues A, are distinct, the
solutions to Eq. (34) are orthogonal with respect to the inner
product

cm

<,
(CZ," Ez,- fln e gln)\W glm = 2)\'15nm‘ (35)

§Im

Substituting here Eq. (33), we obtain
I
1
€\C e, + 3 b |5 (36)
)\n + )\m p=1 Lip

In the coordinate representation this equation reads
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fo (1) b, (r)dr + otk

(37

!
X {1+E Slp = Spm-

p=1 (ikna + le)(ikma + le)
It remains to explain our choice of the normalization factor
on the right-hand side of Eq. (35). We can specify Eq. (9) as
el(kr)
e/ka)’

Using this and Eq. (A8), it can be verified that if both n and
m correspond to bound SPSs, Eq. (37) can be rewritten as

¢n(r)|r2cz = d)n(a) (38)

f ¢n(r)¢m(r)dr= 5nm? n,m e {b}7 (39)
0

which coincides with the ordinary orthonormalization condi-
tion for bound states. Equations (36) and (37) express the
orthonormalization condition for SPSs, generalizing the cor-
responding results of [8] to arbitrary 1.

Equation (37) does not contain N, so it applies also to
SSs. The normalization of SSs was a big problem in the
development of the theory. The usual definition of the inner
product is clearly not applicable because of the divergence of
SS eigenfunctions at r—oo. This difficulty was resolved in
[26] for the case [=0 by a regularization of the normalization
integral. Another approach, based on the analytic continua-
tion of the normalization condition for bound states (39) to
the lower half of the complex k plane, was proposed inde-
pendently in [27] for /=0 and in [28] for arbitrary [. In the
most general form, which is applicable also to finite-range
potentials without spherical symmetry, the orthonormaliza-
tion condition for SSs was given in [29]. In the present no-
tation, the result of [29] reads

¢,;((1) d)m(a) - d)n(a) ¢;n(a) _
. =2

nm:-*

f Gu(r) (r)dr +
0

(40)

Using Eq. (10), it can be easily seen that this coincides with
Eq. (37). The orthonormalization condition for SSs in the
form (37), as far as we know, has not appeared in the litera-
ture.

The inner product for SSs defined by the left-hand side of
Eq. (37) or, equivalently, Eq. (40), differs from the usual
inner product for physical states in three respects: the inte-
gration in the volume term extends over a finite interval r
€[0,a], there is an additional surface term, and there is no
complex conjugation. The algebraic derivation of this result
in terms of SPSs complements the approaches used in
[26-29], making the issue of normalization of SSs very
simple. Indeed, Eq. (35) shows that SPSs are orthogonal in
the usual sense of the word, but in the extended space H;l])\,
and with a nonunit weight (33), while Egs. (36) and (37)
result from the projection of Eq. (35) onto the original Hil-
bert space Hy. This projection and the structure of the
weight matrix (33) explain the structure of Egs. (37) and
(40).
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F. Completeness relations

The solutions to Eq. (34), being linearly independent,
form a complete set in H(zl]l, This fact is expressed by

cl‘l
W c,
S| G [@Ea, e = @
n=1 &M
&
where
0 I 0 0
F 0 0
Wl={ 0 0

(42)

is the inverse of the weight matrix (33). Equation (41)
amounts to the relations

2N+l c cT
> oy, (43a)
n=1 )\n
2N+
> c,el=21, (43b)
n=1
2N+l
> \eqel=2F, (43¢)
n=1
2N+l f ¢
==, (434)
n=1 )\n
2N+l
E gpncn - 07 (436)
n=1
2N+l g é
> J’)\—q— =-22,,6,,. (43f)

n=1 n

Using Eqgs. (30), one can notice that Eq. (43d) is a conse-
quence of Egs. (43a) and (43e). Equation (43f) is a conse-
quence of Eq. (43d) for p # ¢, but is an independent relation
for p=¢g. In the coordinate representation, these relations
read

2N+l

1
> 5, (r) =0, (44a)
n=1 L n
2N+1
> (Db, () =20\(r,r"), (44b)
n=1
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2N+1
2 ik, (NG, (r') = 2U(ra)\(r' @), (44c)
n=1
2N+l
Sul@)b(r)
n=1 ikn(ikna + Z]p) N 0, (44d)
2N+l
E qs‘n(a)d)n(r) — 0’ (446)
a1 tkya+zg,
< [pu(a)] L VR
n=1 ikn(ikna + le)(ikna + Zlq) - 2Ip ’

where 0=r, r' <a. Equations (43) and (44) express the com-
pleteness properties of SPSs, generalizing the corresponding
results of [8] to arbitrary /.

The completeness properties of SSs follow from Egs. (44)
in the limit N—oo. To obtain them, one has to extend the
summations to infinity and substitute Eq. (13¢) into the right-
hand sides of Egs. (44b) and (44c); for brevity, we do not
reproduce the results here. The SS analogs of Egs. (44a) and
(44b) were first established for a S-function potential and [
=0 in [30] and then proved for a more general class of finite-
range potentials and arbitrary [ in [31]. In a somewhat less
rigorous way these relations were obtained in [32]. In both
cases, the derivation was based on the Mittag-Leffler expan-
sion for the outgoing-wave Green’s function [33]. Equation
(44c) for I=0 was obtained within the SPS formulation in
[8]. The properties of SSs following in the limit N— o from
the other three relations, Egs. (44d)—(44f), as far as we know,
have never appeared in the literature.

As follows from Egs. (44), the set of SS eigenfunctions
¢,(r) is linearly dependent and hence overcomplete in H.
This overcompleteness was another big problem in the de-
velopment of the theory. The algebraic derivation of the
completeness properties of SSs in terms of SPSs comple-
ments the approaches used in [30-32], clarifying the nature
of the overcompleteness. Indeed, SPSs form a normal com-
plete set [see Eq. (41)], but in the extended space H(Zl[z,, while
Egs. (43) and (44) result from the projection of Eq. (41) onto
the original Hilbert space Hy. The overcompleteness of SSs
is a consequence of this projection. This issue is further dis-
cussed from another viewpoint in the next subsection.

G. Expansion in terms of SPSs

Given a function ¢(r) € H, can it be expanded in terms of
SS eigenfunctions ¢,(r)? Is the expansion unique? How to
find the coefficients? Many possible applications of SSs in
atomic physics require answers to these questions. The over-
completeness of SSs makes the questions nontrivial. The
SPS formulation enables one to find the answers.

Let ¢(r) and ¢(r) be two arbitrary functions from H,, i.e.,
they can be expanded on the interval 0=r=a as
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N

(r) = E sifi(r),

i=1

N
Wr) = 2 5ifAr), (45)
i=1

and N D=1, ... ,1, are arbitrary complex numbers. Let s and
'S be N-dimensional vectors composed of the coefficients in
Eqs (45). Then the vector (s”,57,7,,...,7)" belongs to
HZN, hence, it can be expanded in terms of the solutions to
Eq. (34),

s c,
s 2N+ c,
m =2 a)| é, | (46)
n=1
Y &in
Using Eq. (35), we find the coefficients
!
a,= 2—)\n c,f()\ns +73) - c,{Fs - E %ﬂ . (47)

In the coordinate representation the last two equations read

i(r) bu(1)

) | v | @u(r)

o |=2al &, (48)
n=1

Y/ &

and

= [ || i)+ 001 - 0

1
- M] . (49)
p=1 Zp

In the limit N — oo, Egs. (48) and (49) define the correspond-
ing expansion in terms of SSs. These equations generalize
the expansion discussed in [23] to arbitrary 1.

Let us return to the above questions. Our derivation of
Eqgs. (48) and (49) shows that any function ¢(r) from H can
be expanded in terms of SS eigenfunctions ¢,(r), but the
expansion is not unique. To make it unique, one has to con-

sider a vector composed of (r), another function ¢(r) from
‘H, and [ complex numbers Mp» P= 1,...,.. Such a vector has
a unique expansion in terms of SSs following from Eq. (48)
in the limit N — oo, where the coefficients a,, are given by Eq.

(49).

H. Spectral matrix and its inverse

Let us introduce a matrix-valued function

!
M(\) = H, - 1<>\— I's —ZL>F+ )‘—1 (50)

2 a,—y Na+z, 2

which coincides with the matrix standing in the square
brackets in Eq. (20). We call it the spectral matrix because its
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determinant turns zero whenever \ coincides with one of the
SPS eigenvalues \,. Let us calculate det{fM(\)]. The deter-
minant of a matrix is known to be independent of the basis.
It is convenient to switch to a basis in which matrix F is
diagonal; this can be done by an orthogonal transformation
of the original basis (15). As follows from Eq. (25), F has
rank 1 and hence only one nonzero eigenvalue. Using this, it
can be shown that

2N+l

1
_a H(x o) (51)

detfM(N)] =

MOV]= 57,50
The inverse matrix has the following spectral resolution in
terms of SPSs:

2N+

T
PO L (52)

—1 _
M ()\)_ n=1 )\n()\_)\n)

The validity of this formula can be verified using Egs. (20),
(25), (30), and (43).

1. Surface amplitudes

The values of the SPS eigenfunctions at r=a—i.e.,
¢,(a)—which we call the surface amplitudes, play an impor-
tant role in the present approach. Given the eigenvectors c,,
they can be calculated from Eq. (24). It turns out that their
squares can be calculated in another way, using only the
eigenvalues \,,.

From Eqgs. (50) and (A17) we have

N )2
M(\) = M(=\) =— N7 (53)
01()\(1) 01(— )\Cl)
Multiplying this equation from the right by M~'(\) we ob-
tain

Nira)?

NN
+91(>\a)0,(—>\a)FM M =MEMNMT'(N).  (54)

An N-dimensional square matrix P is called a projector-type
matrix if it can be presented in the form P=uv’, where u and
v are N-dimensional vectors. It can be shown that for such a
matrix det(I+P)=1+tr(P) (see Appendix A in [8]). F is a
projector-type matrix [see Eq. (25)] and hence so is
FM~!(\). Then we obtain from Egs. (51) and (54)

2N+

N, + A
FM~'(\)]= —
ulFM™' (V)] = HHIM—A

6/(\a)
01(— \a)

NOVI &
* 6;(= \a)

Taking the residues of both sides of this equation at A —\,,
using Eq. (52), we find

02( A a) 2N+l

T

Fc,=-2\, . 56

T ) gm N, Am 0

In the coordinate representation the last two equations read
lika) | ikka)? 5 [d@P 1 katk o
(- ika) = 6}(~ ika) poy kalk,—k) oy k,—k

and
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2N+l

02 k
<(k,,,l>"5’a )1;[ ok, O

It may seem that the left-hand side of Eq. (57) is singular at
k=iz;,/a, where 6(—ika) standing in the denominators van-
ishes, which would contradict the equality, because the right-
hand side is regular there. But this is not the case: using Eqgs.
(44d) and (A17), it can be shown that all singular terms (the
first- and second-order poles) at k=iz;,/a on the left-hand
side of Eq. (57) cancel.

Equations (55)—(58) generalize the corresponding results
of [8] to arbitrary I. They reveal the existence of a nontrivial
relation between the eigenvalues A, and eigenvectors c,
which results from the projector-type structure of matrix F.
As a consequence, the surface amplitudes ¢,(a) squared can
be expressed in terms of the eigenvalues only, without know-
ing the eigenvectors. The corresponding properties of SSs
follow from Egs. (57) and (58) in the limit N— . As far as
we know, they have never appeared in the literature, al-
though the necessity of relations of this kind was pointed out
in [34].

[fu(@)] =~

J. Sum rules

Another kind of relations, which we call the sum rules,
reveal an interdependence between the eigenvalues \,,. There
are / such relations, and hence they exist only for />0, rep-
resenting a property absent in the case /=0 [8]. Let us rewrite
Eq. (55) as

N2 2N+
PO - P(=N) = Zl((’fil) IT O = NuFM' V)],
n=1
(59)
where
2N+I
POV =6(-xa) [T (\, +N) (60)

n=1

is a polynomial of order 2(N+I). Consider Eq. (59) for A
— 0. All the even powers of N on the left-hand side exactly
cancel. The first term in the expansion of the right-hand side
is «\?*! which means that the coefficients of the odd pow-
ers in P(\) from 1 through 2/—1 must vanish. This leads to
the [ relations mentioned above. In the most compact form,
they can be expressed in terms of the elementary symmetric
polynomials ay(x;,...,x,) defined as coefficients in the ex-
pansion [35]

n n
H (-x - xi) = 2 (_ ])n_ko-n—k(xl’ oo 7-xn)xk' (6])
i=1 k=0
One can easily find
oplxp, . . x) =1, (62a)
oGy X)) = D X (62b)
I1=i=n
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oy(xy, ..ux,) = > xiXj, (62¢)
I=i<j=n
etc. Let us define a set of x;, i=1,...,2(N+I):
x,=1/\, n=1,... 2N+, (63a)
Xongip=alzy, p=1,....1 (63b)
Then the relations of interest read
0‘2”1()61, ""'xz(N+l))=0’ S=O,1, ...,l—l. (64)

We give here only the first of these relations in the coordi-
nate representation. Setting in Eq. (64) s=0 and using Eq.
(A7), we obtain

—ia, [=1. (65)

IIME

"1
1k,
The corresponding properties of SS eigenvalues k, follow
from Egs. (64) and (65) in the limit N—o. As far as we
know, they do not have counterparts in the literature.

As can be seen from the derivation, Egs. (64) are a con-
sequence of Eq. (55). The peculiarity of these equations is
that they relate the eigenvalues A, only. The relations ob-
tained from the higher terms in the expansion of Eq. (59) in
powers of N involve both eigenvalues and eigenvectors. For
example, equating the coefficient of \2*! to zero, we obtain

2N+

A 2640
21 [d)”( ! - (iclz§21)0'21+1(x1’ o Xogp). (66)

One can proceed with the expansion and obtain higher rela-
tions of this type.

II1. STATIONARY SCATTERING THEORY

In this section, on the basis of the above results we derive
the expansions for all the major objects of stationary scatter-
ing theory in terms of SPSs. These expansions complete the
present formulation, opening the way for its applications to
many problems in atomic physics.

A. Outgoing-wave Green’s function

The outgoing-wave Green’s function is defined by

(H,— E)G((r,r";k)=8(r—r"), (67a)
G0, 3k) =0, (67b)

d .
(E’ - lk) G/(r,r';k) =0. (67¢)

Taking into account the assumed properties of the potential,
Egs. (3) and (7), the regularity (67b) and outgoing-wave
(67¢) boundary conditions can be specified similarly to Egs.
(8) and (10) as

Gir,r" k)|, P, 7 >0, (683)

and
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1

d 1

=ik =X | Gy(r.r k) =0,
dr () lkr+z1[,

0=r'"<a. (69)

r=a,

The solution to these equations in the inner region can be
sought as an expansion in terms of the basis (15),

N
Gi(r,r'sk) = 2 GiNf(f(r), 0=r, ' =a.

ij=1
(70)

Substituting this into Eq. (67a) and acting as in the derivation
of Eq. (20), we arrive at the algebraic equation

-1 14 g \2
H--|A-—-2> —2Z—|F+—I|G\) =L (71)
2 ap:l )\d'f‘ZlP 2

where G()\) is a matrix composed of the coefficients in Eq.
(70). Using Eq. (52), we obtain

W T
G =2 —*—. (72)
n=1 )\n()\ - )\n)
In the coordinate representation this equation reads
2N+l ,
G(r,r' k)= > LAGLAG 0=r,r=a. (73)

n=1 kn(kn_k) '
The expansion of the outgoing-wave Green’s function in
terms of SSs follows from Eq. (73) in the limit N—c°. This
fundamental result was obtained in [33]. These and the ma-
jority of other authors in the field followed the same logical
route based on the argument of analyticity first employed in
[36]: namely, under certain conditions satisfied by the poten-
tial, G(r,r" ;k) is a meromorphic function of k, and then the
SS analog of Eq. (73) results from the Mittag-Leffler expan-
sion theorem [37]. In the SPS formulation, Eq. (73) follows
from the completeness properties of SPSs expressed by Eqs.
(43) and (44), which are rather simple algebraic relations.
Remarkably, expansion (73) has the same form for all /, pro-
vided that by k, and ¢,(r) one means appropriate SPSs, only
the number of terms changes in accordance with the number
of SPSs.

B. Physical states

The set of stationary states conventionally considered in
scattering theory [2,3] includes bound states ¢,(r), n
=1,2,..., and scattering states ¢;(r,k), 0=k <. The bound
states satisfy the Schrddinger equation (1), the regularity
boundary condition (4), and the asymptotic boundary condi-
tion

(pnl(r)|r—>00 =0. (74)
Upon appropriate enumeration of SPSs, bound states coin-
cide with the corresponding bound SPSs,
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1) = ¢, (1), n e {b}. (75)

The scattering states satisfy Egs. (1) and (4) and the
asymptotic boundary condition

PR = e = (= IS ),

0=r< o,

(76)

where S,(k) is the scattering matrix. Taking into account Eq.
(3), in the outer region we have [see Egs. (A9)]

01, K)| =g = ef(= kr) = (= 1)!S,(k)e,(kr). (77)
This function is related to G,(r,r’;k) by
i
Gl(r’r, >k) = %‘P[(r<9k)el(kr>)9 r- = a, (78)

where r_ (r~) is the smaller (larger) of r and r’. Setting r’
=a, we find

—ikG(r,a;k

ary= GG ooy a9)
e/(ka)
Substituting here Eq. (73), we obtain
2N+l
i (_ ika)l ¢n(r) ¢n(a)
k) = — ike~*a , 0=r=
(Pl(r ) e 01(_ lka) g kn(kn - k) : ¢

(80)

The expansion of the scattering state wave function in terms
of SSs follows from Eq. (80) in the limit N— oo, It was first
obtained for /=0 in [38] by directly applying the Mittag-
Leffler expansion theorem to ¢,(r,k) as a function of k.
Later, the same result for /=0 was rederived in [39] by sub-
stituting the Mittag-Leffler expansion for G,(r,r';k) [33]
into Eq. (79). The second approach is applicable to any , as
was pointed out in [31], and we have used it in the above
derivation.

It is instructive to take a look at Eq. (80) from the view-
point of the expansion discussed in Sec. I G. Setting in Eq.

(48) (r)=¢,(r,k), what are the corresponding #(r) and 7,
that lead to Eq. (80)? Using Egs. (44), it can be shown that

) = ke (r, ), apeila:k)

=— . 81
np lka + le ( )

These equations are similar to Egs. (29) and (30) for an
individual SPS. They are essential for the extension of the
time-dependent approach proposed in [23] to arbitrary I.

C. Scattering matrix

The final goal of scattering theory is the scattering matrix,
and this applies to the present formulation as well. In the
one-channel case under consideration, the scattering matrix
S;(k) is simply a complex number defined by Eq. (76). From
Eqgs. (77) and (79), requiring continuity of ¢,(r,k) at r=a, we
find

)| el=ka)
e/(ka)

ikGa,a;k)
e,z(ka)

Sik) = (=1) (82)

Substituting here Eq. (73) and using Eq. (A8), we obtain an
expansion for S;(k),
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Gl(ika) )21 2N+l

+
01(— lka)

ik(ka
0[2(_ lka) n=

2
PN [4,(@)] ]

1 kn(kn - k)

(83)
Following [8], we shall call this expansion the sum formula.
To implement it, one needs to know the SPS eigenvalues &,

and surface amplitudes ¢,(a). Equation (83) shows that S;(k)
has simple poles at k=k, with the residues

—ie " (k,a)"[ p,(a)]*
012(_ ikna)

(k= k) S e, = (84)

We note that the right-hand side of Eq. (83) is regular at k
=iz;,/a, where 6(—ika) vanishes, as has been explained just
after Eq. (58). Using Eq. (57), we obtain from Eq. (83) an-
other expansion for S;(k),

2N+l k +k
S(k)=e 2 [] m (85)
n=1 "*n—

This will be called the product formula. For its implementa-
tion, it is sufficient to know only the SPS eigenvalues k,.
Even though Egs. (83) and (85) look very different, they are
algebraically equivalent, as has been shown above. These
equations generalize the sum and product formulas obtained
in [8] to arbitrary /.

The corresponding expansions for the scattering matrix in
terms of SSs follow from Egs. (83) and (85) in the limit N
— 0, The traditional approach to the derivation of the sum
formula based on the argument of analyticity and Mittag-
Leffler expansion theorem failed: all the expansions of the
type (83) discussed in the literature contain some undefined
quantities (see, e.g., [3]). The closed-form expression follow-
ing from Eq. (83) in the limit N — oo was first obtained within
the SPS formulation for /=0 in [8]. The product formula was
first given without due proof in [40]. Later, it was rigorously
derived using Hadamard’s form of the Weierstrass expansion
theorem [37] for potentials decaying faster than any expo-
nential function and /=0 in [41]. Within the SPS formula-
tion, the product formula (85) follows from relation (57)
which has simple algebraic origin. The fact that the scatter-
ing matrix can be expressed in terms of its poles—i.e., SS
eigenvalues k,—only, without knowing the residues, can be
understood from Eq. (58) which shows that the residues [see
Eq. (84)] can be expressed in terms of the poles.

Equation (85) explicitly ensures unitarity of the scattering
matrix. Hence S;(k) can be conventionally presented in the
form

Si(k) = exp[2i5(k)], (86)

where & (k) is the phase shift. The partial o;(k), differential
do(6,k)/dQ), and total o, (k) scattering cross sections are
given in terms of §(k) by standard formulas [3,42].

The present approach, being in a sense variational, does
not reproduce the correct behavior of S;(k) in the Born re-
gion; the validity of Eqgs. (83) and (85) at high energies is
limited by the finite dimension N of the basis (15). But it
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should be noted that for any finite N Eqgs. (83) and (85) are in
accordance with the Wigner threshold low. Indeed, at low
energies &(k) behaves as [3,42]

5(k) = A (ka)*™', k—0. (87)

The same behavior follows from Eq. (83). We obtain using

Eq. (A19)
- Y [¢,,<a>]2
) [ 20+ 1 2a 2 ' (88)

Using Egs. (58) or (66), this coefficient can be expressed in
terms of the eigenvalues k, only. We consider only the scat-
tering length a=-Aa, which is of main interest for applica-
tions. Its expansion can be obtained by substituting Eq. (66)
into Eq. (88) or directly from Eq. (85),

N
ok j
_ b s L (89)
k k—0 n=1 kn

In the limit N— oo, this formula gives an expansion for « in
terms of SSs. This result pertains to the case /=0 treated in
[8], but was not given there explicitly.

IV. ILLUSTRATIVE EXAMPLES

In this section we illustrate the above results by calcula-
tions for several model potentials. While the purpose of more
extensive calculations for the case /=0 reported in [8] was to
provide sufficient and convincing evidences that the SPS for-
mulation works at all, the experience gained since then
[7-24]has left no doubts in its consistency and efficiency. So
in the calculations below we restrict ourselves to fewer ex-
amples.

A. Computational aspects

To implement the present approach, we use the numerical
procedure described in [8]. It is based on a discrete variable
representation (DVR) [43-45] constructed from Jacobi poly-
nomials compatible with the boundary conditions (8) and
(10). For the numerical treatment, instead of r it is conve-
nient to introduce a new variable x,

r=a(l +x)/2. (90)

This equation transforms the interval 0=r=a into -1 =x
=1. Let
0,0 =(1+)'P2P(), n=12,....N, (91

and

m(x) = E T,.0,(x), i=12,...,N, (92)

where

- Nog,n)

ni — (l+xi)l . (93)

Here ﬁio’m(x) are the normalized Jacobi polynomials, x; and
w; are the abscissas and weights of the corresponding Gauss-
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ian quadrature, and 7,; is an orthogonal matrix defining the
transformation from the polynomials (91) to the DVR basis
7;(x). Then the basis (15) is defined by

(94)
1

These functions satisfy Eqs. (13) if the integrals are calcu-
lated using the Gaussian quadrature. In the same way the
matrix elements of the Hamiltonian (22a) can be calculated
(see Appendix C in [8]). This is a global basis, since func-
tions (94) extend all over the interval 0<r=a. Our experi-
ence shows that it gives very high rate of convergence, pro-
vided that the potential V(r) is an infinitely differentiable
function on the interval 0 =r=gq. If this is not the case, finite
elements [18,22] or any other local basis may turn out to be
more preferable.

The matrix in the SPS eigenvalue problem (31) is com-
plex, because the zeros z;, are generally complex. For the
numerical solution, it is better to switch to a real matrix: this
saves computation time and ensures that all eigenvalues are
either exactly real or appear in complex conjugate pairs. To
this end, we note that all complex zeros z;, occur in complex
conjugate pairs (see the Appendix). Let z;, and z,, be such a
pair, i.e., z1q=z;p. Let us introduce instead of §, and &, a pair
of new variables,

§+¢& & - ¢
r_ 2P 29 r_2P >4
gp_ 2 > gq_ 2l . (95)

Switching in Eq. (31) to such variables for each pair of com-
plex conjugate zeros z;,, one obtains an algebraic eigenvalue
problem with a real matrix. This problem can be solved by
any standard linear algebra routine.

We calculate zeros z,, p=1,...,1, as roots of the polyno-
mial 6,(z) [see Eq. (A2)] using Laguerre’s method imple-
mented in the IMSL library. This algorithm works for /
=28, but does not converge for larger /. The procedure of
recovering z;, from the coefficients in Eq. (A2) becomes un-
stable in this case. This difficulty should not be fatal, since
the table of z;, up to a sufficiently large / is to be generated
only once for all times. However, this remains an open prob-
lem. Therefore, in the present calculations we are limited to
1=28.

One should distinguish truly finite-range potentials, when
Eq. (3) is exactly satisfied for some «, and cutoff potentials.
In the former case, the dimension N of the basis is the only
parameter of the computational scheme. The larger N, the
higher the maximum energy up to which Egs. (73), (80),
(83), and (85) yield converged results. This convergence is
rather rapid and similar to that demonstrated for /=0 in [8],
so we shall not discuss it here; all the results presented below
are converged with respect to N. In the latter case, there is an
additional parameter, the cutoff radius a. The convergence
with respect to a is an important issue and will be illustrated
below.

Finally, although the sum (83) and product (85) formulas
were shown to be algebraically equivalent, they are quite
different in implementation. The sum formula involves SPS
surface amplitudes ¢,(a), which exponentially grow with a.
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FIG. 1. (Color online) SPS momentum eigenvalues k, for the
rectangular potential (96). The arrows indicate states responsible for
the appearance of resonance peaks seen in Fig. 3.

Hence, for a sufficiently large a, the numerical value of the
sum in Eq. (83) may be severely affected by round-off errors.
The product formula involves only SPS eigenvalues k, and is
much more robust against such kind of errors. This situation
is similar to that discussed in [8,9]. We have confirmed that
both formulas yield identical results when round-off errors
can be ignored. In the calculations below we use Eq. (85).

B. Rectangular potential: General features
We start with a rectangular potential well

V() = {Vo,

0, r>a,

r=a,

(96)

with the same values of the parameters Vy=-112.5 and a
=1 as were used in [8]. This is the simplest example of a
finite-range potential. Numerical studies of SSs were pio-
neered in [46] by the analysis of poles of the scattering ma-
trix for this model as functions of V|, for /=0. Recently, this
analysis has been extended to complex V,, and higher [ [47].

The distributions of SPS eigenvalues k, in the complex k
plane for several lowest / are shown in Fig. 1. For [=0,
potential (96) supports five bound states. As [ grows, the
centrifugal term in Eq. (2) also grows, the number of bound
states decreases, and eventually there remains none for [
=11. The behavior of the bound state poles as [ varies ex-
plains the origin of resonances. Let us discuss this behavior,
temporarily treating / as a continuous variable. The critical
values of / for which there exists a bound state with zero
energy, and hence the number of bound states jumps by 1,
can be found from

ZJl+3/2(Z) -2+ 1)Jl+1/2(Z) =0,

where z=xa and »x= V’TVO. For the present case z=15 and
Eq. (97) has five roots, [.=~0.54, 2.64, 4.97, 7.65, and 10.97,
which agrees with the results in Fig. 1. In fact, it can be
shown that at these critical values of / pairs of poles coalesce
at k=0. As [ approaches one of the /. from below, a pair of

97)
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resonance

bound state

m(k)

FIG. 2. (Color online) (a) Sum of the rectangular (96) and cen-
trifugal potentials for /=8. There is one bound state and one pro-
nounced resonance in this case (see Fig. 3). (b) Solid circles, SPS
eigenvalues k,,, same as in the /=8 panel in Fig. 1. Open circles,
poles iz,/a, p=1,...,l, of the function w/(~ika) in Eq. (27). Solid
curve outlines the dead zone Q/(—ika) [see Eq. (A16)].

bound and antibound poles approach the point k=0 from
opposite sides in the vertical direction. They coalesce at k
=0 for /=1, and then turn into a pair of incoming and outgo-
ing poles receding from each other in the horizontal direction
as [ grows further. Now, we recall that there is a dead zone
Q/(—ika) in the lower half plane, inside which incoming and
outgoing eigenvalues cannot appear (see Sec. I1C). It
touches the real axis at k=0; therefore, the receding poles are
confined for a while to a narrow corridor between the real
axis and Q(—ika), as is illustrated in Fig. 2(b) for /=8. In
this interval of /, the outgoing member of the pair satisfies
Eq. (28) and may reveal itself as a resonance in the corre-
sponding partial cross section. The poles leave the corridor
as they reach a distance ~//a from the imaginary axis. This
distance is determined by the size of the domain ,(-ika)
(see Appendix) and can be simply estimated on semiclassical
grounds by equating the energy of the resonance pole k*/2 to
the height of the centrifugal barrier /(I+1)/2a* [see Fig.
2(a)]. As [ grows even further, the poles depart from the real
axis and rapidly lose the character of resonance. Figure 1
shows snapshots of this behavior taken at integer values of /.

The partial and total scattering cross sections are shown in
Fig. 3. The numerical results obtained from Eq. (85) coincide
with the analytical ones available for this model. Conver-
gence of g (k) in the interval of k considered is achieved
with /= 15. The behavior of o, (k) in this interval is domi-
nated by a number of more or less pronounce resonance
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FIG. 3. (Color online) The thick curve, total cross section a.(k)
for the rectangular potential (96). Thin curves labeled by /, partial
cross sections (k). The individual SPSs giving rise to the reso-
nance peaks for /=11 are indicated in Fig. 1 by arrows. The two
peaks at k~0.958 (/=11) and k=0.986 (/=5) almost overlap.

peaks, each coming from an individual partial-wave contri-
bution. The SPS formulation enables one to trace each of
these peaks to an individual SPS (see Fig. 1).

We have also calculated the scattering length. The result
a=1.057 066 227 obtained from Eq. (89) with only N=17 is
in full agreement with the analytical result for the present
model, a=a—-'tan xa.

C. Eckart potential: Convergence with respect to the cutoff
radius

To illustrate convergence with respect to the cutoff radius
a, we consider an Eckart potential well

21
cosh?r’

V(ir)=- (98)
For [=0, this potential supports three bound states with en-
ergies —12.5, —4.5, and —0.5 [42,48]. The distributions of
SPS eigenvalues k, calculated with a=10 for the three values
of [ at which the number of bound states decreases by 1 are
shown in Fig. 4. These distributions look similar to the pre-
vious case. In particular, the mechanism of transformation of
bound-state poles into resonances as / grows remains the
same. A new feature of this model is that, except for a finite

=1 [=2 1=4

E leeesse tes secesces Jeesecsareterecssarsfocccecicstsrccctonnas

- Re(k)

FIG. 4. (Color online) SPS momentum eigenvalues k, for the
Eckart potential (98) calculated with the cutoff radius a=10. The
arrows indicate resonances seen in Fig. 5.
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FIG. 5. (Color online) (a) Convergence of the total cross section
for the Eckart potential (98) with respect to the cutoff radius a. (b)
The converged results for the total (the thick curve) and partial
wave (thin curves labeled by /) cross sections.

number of states observable individually—i.e., bound states
and resonances—all the other SPSs now essentially depend
on a. Nevertheless, the scattering results obtained from Eqs.
(83), (85), and (89) rapidly converge as a grows.
Convergence of bound states and resonances is similar to
the case [=0 [8], so we shall not discuss it here. Convergence
of the scattering length calculated from Eq. (89) is shown in
Table I. Note that larger a naturally require larger N, but with
the present basis the rate of growth of N is close to the
minimum. Figure 5(a) illustrates convergence of the total
cross section. At lower energies this convergence is slower,
because lower partial waves, which dominantly contribute
there [see Fig. 5(b)] are more affected by the cutoff. At
higher energies, the dominant contribution comes from

TABLE I. Convergence of the scattering length « for the Eckart
potential (98) with respect to the cutoff radius a. For each a, N
gives the minimal dimension of our basis for which all digits quoted
are converged.

a N a
29 2.458 575
8 33 2.450 348
10 37 2.450011
12 40 2.450 000
Exact [48] 2.45

PHYSICAL REVIEW A 75, 062704 (2007)

0 30 60 '9'0'
0 (deg)

120 150 180

FIG. 6. (Color online) Convergence of differential cross sections
for the Eckart potential (98) at three energies (see Fig. 5).

higher partial waves and the convergence becomes faster.
The upper boundary of the energy interval shown in Fig. 5 is
limited by the maximum number of partial waves, /=28,
that can be included in the present calculations. Similarly to
the previous case, one can clearly see three resonance peaks
in the total cross section coming from partial waves with [
=1, 2, and 4 (one can also notice a shoulder of the fourth
peak from /=5); the corresponding resonance states are indi-
cated in Fig. 4 by arrows. Figure 6 illustrates convergence of
the differential cross section. At E=0.1, there are non-
negligible contributions from only three lowest [ [see Fig.
5(b)]; in this case, the results obtained with a=3 are far from
convergence. At E=10, the dominant contributions come
from higher partial waves and even the results for a=3 are
uniformly in 6 not too different from the converged ones.
The approach based on Eq. (3) could be called a “hard
cutoff.” It works well for potentials decaying exponentially
or faster, ensuring rapid monotonic convergence with respect
to a. For potentials decaying as powers of 1/r the conver-
gence is also achievable, but it may be nonmonotonic. Arti-
ficial reflections from the stepwise discontinuity at »=a may
cause oscillations in the partial cross sections. In this case,
the use of a “soft cutoff,” when the original potential V(r) is
multiplied by a smooth switching off function rapidly ap-
proaching 1 (0) at r<<a (r>a), accelerates the convergence.

D. Yukawa potential: Photoionization

As the last example, we consider photoionization of a
particle bound by the Yukawa potential
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FIG. 7. (Color online) Dashed curves: the photoionization cross
section from the s state in the Yukawa potential (99) calculated
using Eq. (100). Solid curve: similar results for the Coulomb poten-
tial obtained from Eq. (102).

e

V(r)=- (99)
This will illustrate the performance of the approach for po-
tentials with the Coulomb singularity at r=0.

The photoionization cross section from a ground ls state

to a continuum p state by a photon with the energy w is
given by [49]

277w * 2
() = ok J e1(Nre,(rky)dr| -, (100)
ph 0
where
kphz \”2Eph, Eph=E]S+w. (101)

The bound and scattering states were calculated using Eqgs.
(75), (77), and (80). The results for several values of 7 are
shown in Fig. 7. For y=1, 0.1, and 0.03, the ground-state
energy is E1,=—-0.010 286, —0.407 058, and —0.470 662 and
convergence of the results in Fig. 7 is achieved with the
minimal parameters (a,N)=(4,20), (35,70), and (90,130),
respectively, with a affecting the convergence near the
threshold and N at large energies. As y— 0, the matrix ele-
ment in Eq. (100) becomes insensitive to a difference be-
tween the Yukawa and Coulomb potentials, and the calcu-
lated results converge to the photoionization cross section
from the Coulomb potential given by [49]

3277 exp(— 4x arccot x)

Oph() (102)

" 3cw* 1—exp(-2mx)
where x=1/k,;. This type of convergence illustrates the soft
cutoff approach mentioned above. One of the most interest-
ing applications of SPSs is to use them as a basis for the
expansion in the problem of an atom interacting with a
strong laser field. The results in Fig. 7 show that the effects
of the Coulomb tail of the atomic potential can be recovered
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by using the Yukawa potential (99) and achieving conver-
gence as y— 0.

V. CONCLUSIONS

This work generalizes the SPS formulation of scattering
theory, originally developed in [8] for s-wave scattering in a
spherically symmetric finite-range potential, to arbitrary an-
gular momenta /. Its main results consist in defining the SPSs
as the solutions to a linear eigenvalue problem in the ex-
tended Hilbert space [Egs. (31) and (34)], establishing their
basic orthogonality [Egs. (36) and (37)] and completeness
[Egs. (43) and (44)] properties, and the derivation of SPS
expansions for the outgoing-wave Green’s function [Eq.
(73)], physical states [Eqs. (75), (77), and (80)], and scatter-
ing matrix [Eqs. (83) and (85)]. This completes the theory of
SPSs in the one-channel case, making its application to
three-dimensional problems possible. The results are illus-
trated by calculations for several model potentials.

Technical merits of SPSs as a computational tool in com-
parison with other computational approaches in scattering
theory, especially with the R-matrix method, were discussed
in the concluding section in [8]; all the arguments remain the
same, so we do not repeat them here. The only difference is
that the size of the matrix to be diagonalized in the general
case is 2N+1. Fortunately, this is not much larger than 2N, as
in the case /=0 [8], at least in situations when the partial-
wave expansion is expected to converge within reasonably
moderate values of /. The main conceptual advantage of the
SPS formulation is that the whole spectrum of scattering
phenomena can be described by means of a pure discrete set
of states. This advantage becomes even more important in
the nonstationary framework. An extension of the present
formulation to the nonstationary case along the lines of the
approach initiated in [23] is the next goal in the development
of the theory.

APPENDIX: BESSEL POLYNOMIALS AND RELATED
FUNCTIONS

The Bessel polynomials are defined by [50]

Lo(lem)

yi(z) = 2

—, Al
o m ! (I—m)! 2" (Al

and the reverse Bessel polynomials are defined by [51]

1

s Q2l-m)! z

om!(—m)2m

m

6,(z) = 2'y/(1/z) = (A2)

For our purposes, it is more convenient to work with 6;(z).
The relevance of these polynomials to the present subject is

seen from the fact that spherical Hankel functions [52] can

be expressed in their terms,
W) = F iet g7 i). (A3)

Here, we summarize some properties of 6;(z) used in the
above discussion.
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The polynomials 6)(z) satisfy the recurrence relations

O(2)=1, 6,(z)=z+1, (Ada)
0(2)=I-1)6,_,(2) +2%0,,(z), =2, (A4b)
and
do)z
1) =0/(2)-z26,(z), [=1. (A5)
dz
Let z;,, p=1,...,1, denote the zeros of ,(z). Then
i
0(2) =11 (z-z,). (A6)
p=1

The zeros z;, are well studied [53]. We mention only several
of their properties: for even /, there are no real zeros and all
the zeros occur in complex conjugate pairs; for odd /, there is
only one unpaired real zero; all the zeros are simple and lie
in the half plane Re z=-1, approximately on an arc joining
z=—il and z=il. Using Egs. (A2) and (A6) it can be shown
that

'

> —=-1.

p=1 le

(A7)

The position of z;, in the complex plane for several lowest /
is shown in Fig. 8.
It is convenient to introduce a function
. 0[(— ZZ)
ef2) =e"———,
(—iz)!
which, up to a constant phase factor, coincides with zhfl)(z).
It satisfies

(A8)

&> I(l+1)

|:d—Z2—T+ 1 |e/z)=0, (A9a)
(@) = €. (A9D)
Using Eq. (A6), we obtain
1

1 d 1
L) 1s (A10)
ez) dz 7o i+ 7y,

This equation enables one to formulate the outgoing-wave
boundary condition for SSs (see Sec. IT A).
Consider the function
!
Z
wfe) =1+ ——

= , 1=1.
p=1 (Z—le)(Z —Zzp)

(A11)

Its properties are needed for the discussion of the distribution
of SS eigenvalues in the complex plane (see Sec. II C). We
are not aware of any studies of this function in the literature,
so it is worthwhile to give some details here. Using the prop-
erties of z;,, it can be shown that w/(z) takes real values for
all complex z. The most important for the present purposes
results are

w(0) =0, (Al2a)
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FIG. 8. (Color online) Symbols show the zeros s P=1,.0001,
of inverse Bessel polynomials 6,(z). Curves outline domains ,(z)
defined by Eq. (A16).

w(2) >0, |z>0, -wmR2=argz=n/2.

(A12b)

Equation (Al12a) follows from Eq. (A7). Let us prove in-
equality (A12b). It is sufficient to consider the first quadrant
O0=arg z= /2 because w,(z)=w,(z"). The proof is based on
the equation which follows from Egs. (A5) and (A6),

Imz X w(z) =Im F/(z), (A13)
where
_ Z 0-1(z)
Fi(z) = o) (A14)

We proceed in three steps. First, consider the ray |z| >0,
arg z=/2. Using Eqgs. (A4), function (A14) satisfies the re-
currence

Z2

F1(2)=1—+Z, (Al5a)

Z2

—, [=2.
20-1+F_(2)

Fi(z) = (A15b)
Substituting here z=iy, where y >0 is real, it can be shown
that Im F,(iy) >0 for all /. Then the validity of (A12b) fol-

lows from Eq. (A13). Second, consider the sector |z| >0, 0
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<arg z<ar/2. Function (A14) is analytic in the first quad-
rant; therefore, Im Fj(z) is a harmonic function there, and
hence Im F)(z) attains its minimum value in the first quadrant
on the boundary of the quadrant (the maximum principle for
harmonic functions). Using the above result and the fact that
F/(z)=z for |z| —, it can be seen that this happens on the
real axis, where Im F;(z)=0. Consequently, Im F,(z) >0, in
the sector under consideration and the validity of (A12b)
again follows from Eq. (A13). Finally, the function w/(z)
cannot have zeros on the ray |z| >0, arg z=0, because this
would contradict its positiveness inside the first quadrant.
From w;(+%)=1 we obtain that inequality (A12b) holds on
this ray too. This completes the proof.

Let Q(z), [=1, denote a domain in the complex z plane
where

w(z2) =0, ze Q).

This domain defines the dead zone where SS eigenvalues
cannot appear (see Sec. II C). The following properties of
Q,(z), which we give without proof, can be deduced from the
above considerations: ),(z) is bounded, singly connected,
symmetric with respect to the real axis, lies in the left half
plane, Re z<<0, and touches the imaginary axis at the single
point z=0. On the boundary of €),(z) we have w;(z)=0. For
[=1, it is a circle of radius 1 with the center at z=z,;=-1; for
[>1, it is a closed artichoke like curve with / petals. It also

(A16)
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can be shown that all complex zeros z;, for the given [/ lie on
the boundary of €),(z), the straight line connecting a complex
zero z;, and z=0 is tangential to the boundary of {),(z) at z
=z, and each complex zero z;, belongs simultaneously to
the boundaries of €);(z) and €);,,(z). All these properties are
illustrated in Fig. 8.

Finally, we mention two more relations satisfied by re-
verse Bessel polynomials. The first one reads

! 121
1_2 Zlp _ (_I)Z

p=1 Z2 - lep B GI(Z) 01(— Z) ’

(A17)

This equation is needed for the derivation of Eq. (58). It can
be obtained using Egs. (A5), (A6), and
0-1(2)0(=2) = 61(=2)6/(z) =2(= )'*',  (A18)

which in turn follows from Egs. (A4). The second relation
expresses a property that holds for z—0,

E_ZZGZ(Z)_ ~ (_ 1)1Z21+1
(-2  (1+1/2)6;(0)

+0(*).  (A19)

It is used in the derivation of Eq. (88). The fact that there are
no terms in this expansion with powers between 0 and 2/
+1 underlies the principle of so-called Bessel filters well
known in electronics and signal processing (see, e.g., [54]).
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