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Measured fine-structure patterns of high-L Rydberg states have often been used to extract measurements of
both the dipole and the quadrupole polarizability of their positive ion cores. Dipole polarizabilities deduced in
this way are apparently quite accurate, judging by comparison with calculated values, but the accuracy of
quadrupole polarizabilities is questionable. The polarizabilities of Na-like silicon are a good example. Recent
fine-structure measurements seem to imply a quadrupole polarizability, in clear disagreement with calculations.
This apparent discrepancy is due to misinterpretation of the experimental data, neglecting the effects of
higher-order terms in the polarization potential that significantly alter the slope of the traditional polarization
plots. When these terms are calculated, and their magnitude estimated, the discrepancy is eliminated. The
implications of the higher-order terms for analysis of high-L fine-structure patterns are discussed.
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INTRODUCTION

The deviation from pure hydrogenic values of the binding
energies of nonpenetrating high-L Rydberg states with
S-state cores can be expressed as the expectation value of an
effective potential.

Vef f�r� = −
C4

r4 −
C6

r6 −
C7

r7 − C8L
L�L + 1�

r8 −
C8

r8 + ¯ , �1�

where each coefficient Ci is a property of the free ion core.
Since the expectation value of r−s decreases rapidly with in-
creasing s for high-L states, the expectation value of Vef f can
be rapidly convergent, giving a precise account of the Ryd-
berg fine structure for a very wide range of Rydberg states.
The most complete theoretical treatment of this approach
occurs in the helium atom, where Drachman has proved the
connection between the effective potential and the Rydberg
energies and calculated each Ci coefficient analytically for
the case of a He+ core ion �1�. In the more general case, a
nonpenetrating high-L Rydberg electron bound to a multi-
electron S-state ion, the connection remains valid since its
derivation requires only a zeroth-order hydrogenic Rydberg
wave function. However, the coefficients become functions
of the wave functions and energies of the core ion. In par-
ticular, it has long been known that

C4 =
�d

2
, C6 =

1

2
��Q − 6�d� , �2�

where
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2
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2
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��gS�QJ�ncD	�2
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1
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��gS�D� �ncP	�2
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and D� and QJ represent the dipole and quadrupole moment
operators acting on the �N−1�-electron core ion,

D� = �
i=1

N−1

riC
�1���i�, QJ = �

i=1

N−1

ri
2C�2���i� . �4�

where C��� is a convenient notation for the spherical har-
monics, and E�nCP� and E�nCD� represent the excitation en-
ergies of the excited P and D states of the core ion. The
parameters �d and �Q are the dipole and quadrupole polar-
izabilities of the core ion, and �d is the first “nonadiabatic”
correction to the dipole polarizability �2�.

Since there are only a few parameters in Eq. �1�, the non-
penetrating Rydberg states are arranged in very systematic
patterns. One way these patterns can be illustrated is to scale
the fine-structure intervals between different Rydberg levels
of the same principal quantum number with the well-known
hydrogenic expectation values of �r−s	nL �3� to form a “po-
larization plot”

�E

��r−4	
vs 
��r−6	

��r−4	
� . �5�

This is similar to the procedure suggested by Edlen �4�,
which is often used to determine the ionization limit of a
Rydberg series of fixed L, but now applied to a set of energy
intervals within the same n. In many cases, this results in an
approximately linear plot. Some slight curvature can be ac-
counted for by fitting the data to the expression

�E

��r−4	
= B4 + B6
��r−6	

��r−4	
� + B8
��r−8	

��r−4	
� . �6�

The fitted intercept B4 is identified as C4, giving an experi-
mental estimate of �d. The fitted slope B6 is often interpreted
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as C6 and used to estimate �Q−6�d. This interpretation rests
on the assumption that the contributions of higher-order
terms proportional to C7 and C8L will not affect the initial
slope of the scaled plot, but only introduce curvature.

In recent years, as the precision of theoretical calculations
of these properties has improved, and as more precise experi-
mental measurements have also appeared, it has become pos-
sible to test the accuracy of this interpretation of Rydberg
fine-structure measurements. The case of Si2+ presents a
good example. A recent experimental study of n=29 Rydberg
levels with 8�L�14 determined �5�

B4 = 3.702�6� a.u., B6 = − 14.6�1.6� a.u.

If these fitted coefficients were identified with C4 and C6,
they would imply

�d = 7.404�12�, �d � 11.3, �Q � 39,

where the approximate value of �d is obtained from Eq. �3�
under the assumption that the lowest excited P state at
0.3262 a.u. is the dominant contribution to both �d and �d.

In this case, the core ion is Na-like silicon. Atomic theory
is quite accurate for such a system with one electron outside
a closed shell. Theoretical calculations of the matrix ele-
ments involved in determining the core ion properties were
carried out using the relativistic all-order method �6�. The
calculated values of the core ion properties �d, �Q, and �d
are �7�

�d = 7.418�9�, �d = 11.0, �Q = 11.2,

resulting in the predicted coefficients

C4 = 3.709�5� a.u., C6 = − 27.4 a.u.

The agreement between B4 and C4 is excellent, leading to
excellent agreement between experimental and theoretical
estimates of �d. However, the agreement between B6 and C6
is very poor, leading to almost a factor of 4 discrepancy
between the inferred value of �Q and theory. This dramatic
disagreement, far outside the uncertainties of both experi-
ment and theory, motivated this study. Though this case is
more clearly defined, it is reminiscent of other disagreements
noted in Rydberg systems, for either the slope B6 �8� or the
quadrupole polarizability derived from it �9�.

In this case, for the n=29 high-L Rydberg levels of Si2+,
the apparent discrepancy can be traced to the incorrect as-
sumption that the contributions of higher-order terms in Eq.
�1� will not affect the initial slope of the polarization plot, B6.
It should be clear that this is a questionable assumption by
examination of Fig. 1, which shows the contributions of
terms proportional to C6, C7, and C8L to a plot such as Eq.
�5�, for the specific fine-structure intervals reported in the
silicon study �5�, assuming a unit coefficient for each term.
For this choice of intervals, while the C6 term is the most
important contributor to the slope, both C7 and C8L appear to
contribute significantly. To evaluate the contributions of the
C7 and C8L terms to the fitted slope of the experimental data,
these two terms were fitted to the same function in Eq. �6�,
using the same relative weights as in the experimental report.
From these fits, it was determined that

B6 = C6 + 0.056C7 + 0.302C8L. �7�

Depending on the size of the coefficients C7 and C8L, the
fitted experimental slope may differ considerably from the
prediction based solely on C6. In order to assess the signifi-
cance of this correction, it is necessary to calculate those
coefficients.

THEORY

We assume a nonrelativistic atom, with a single distin-
guishable nonpenetrating Rydberg electron outside a core ion
with an S-state ground state. For simplicity all spins are ne-
glected. The eigenvalues can be developed in a perturbation
series, starting from the zeroth-order states which are prod-
ucts of the free ion ground state, denoted by g, and a single
hydrogenic Rydberg electron.

��0� = �core�g��nLm�r�N� . �8�

The perturbation V contains all the Coulomb interactions ex-
cluded from the zeroth-order Hamiltonian �9�:

V = �
i=1
�=1

�
N−1 ri

�

rN
�+1C�����i�C�����N� . �9�

The energy of the Rydberg level is given in perturbation
theory by
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FIG. 1. Potential contributions of the higher-order terms �HOT�
in Eq. �1� proportional to �r−7	 and L�L+1��r−8	 to a normalized
plot like Eq. �5� in the text. The plotted points correspond to the
intervals measured in the Si2+ study of �5�. The x axis,
��r−6	 /��r−4	, is a decreasing function of L, so the plotted points
increase in L from right to left. The solid line is a plot of this same
function, for comparison. The circles represent the function
��r−7	 /��r−4	, and the squares represent the function L�L+1�
	�r−8	 /��r−4	. Each of these terms can contribute to the slope B6 of
a plot of normalized energy differences if their coefficients are suf-
ficiently large. The dashed and dash-dotted curves represent fits of
these functions to Eq. �6� of the text, showing that each is well
represented by this functional form, and determining the contribu-
tion of each to the fitted value of B6.
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E�g,nL� = E�0� + E�2� + E�3� + ¯ , �10�

where the first-order perturbation energy is zero for an
S-state core and a nonpenetrating Rydberg electron. The en-
ergy denominators that occur in E�2� and E�3� are sums of the
energy differences in the two parts of the zeroth-order en-
ergy, and can be formally expanded using the “adiabatic
expansion”

1

�EC + �ER
=

1

�Ec
−

�ER

��EC�2 +
��ER�2

��EC�3 − ¯ , �11�

where �EC and �ER are the changes in energy of the ion
core and Rydberg electron, respectively. The first term in Eq.
�11� leads to the adiabatic terms, and subsequent terms lead
to a sequence of nonadiabatic corrections. Using the specific
properties of hydrogenic wave functions and the multipole
expansion of V, both E�2� and E�3� can be expressed as the
expectation value of Eq. �1� over the Rydberg radial wave
function with other terms involving higher inverse powers
neglected. Transforming Eq. �10� into this form is most eas-
ily accomplished using the identities of Appendix A.

The leading term in E�2� is the adiabatic ��=��=1� term,
which leads to the first term in Eq. �1�, proportional to C4.
The similar term with ��=��=2� leads to the portion of C6

proportional to �Q, while the part proportional to �d comes
from the first nonadiabatic correction to the ��=��=1� term.
The C7 term in Eq. �1� comes partly from the lowest-
multipole, adiabatic contribution to E�3�, and partly from the
second nonadiabatic correction to the ��=��=1� term in E�2�,
which is also responsible for the term proportional to C8L.
The coefficient C8 would contain contributions from several
terms, and it is not calculated here. We find

C7 = − 



2
+

8Q

5
��, C8L =

18

5
� , �12�

where

� �
1

6�
nC

��g�D� �nCP	�2

E�nCP�3 , �13a�


 �
42

15 �
nC,nC�

�g�D� �nCP	�nCP�D� �nC�D	�nC�D�QJ�g	
E�nCP�E�nC�D�

+
230

45 �
nC,nC�

�g�D� �nCP	�nCP�QJ�nC� P	�nC� P�D� �g	
E�nCP�E�nC� P�

.

�13b�

Our notation is parallel to that established by Drachman in

the case of helium �1�, and aside from expressing the coeffi-
cients �d, �Q, �d, 
, and � in terms of core matrix elements
and energy differences, our result differs only by generaliz-
ing to the case of a nonhydrogenic core ion with charge Q
not necessarily equal to 1.

For positive ions in which the spin-orbit coupling in in-
termediate P and D states is not negligible, the results of
Eqs. �3� and �13� can be generalized to include the spin-orbit
energies. The results of this calculation are reported in
Appendix B.

APPLICATION

For a quantitative estimate of the effects of the higher-
order terms on the fits of the n=29, Si2+ data, the coefficients

 and � must be evaluated. For the case of the Na-like Si ion,
the contributions of the lowest excited states of P and D
symmetry should dominate. Therefore, truncating Eqs. �13�
and including only nC=nC� =3 should produce a good ap-
proximate value for 
 and �. Table I lists calculated matrix
elements �6,7� and the excitation energies �10� necessary to
find 
 and � in this approximation. The results are


 � 83.1 a.u., � � 16.8 a.u.

Using these approximate values of 
 and �, the coefficients
C7 and C8L can be estimated and their effect on the fitted
slope B6 evaluated:

C7 � − 
83.1

2
+

24

5
	 16.8� = − 122.2 a.u.,

C8L �
36 	 �16.8�

10
= 60.5 a.u.

This leads to a theoretical estimate of the fitted slope B6
using Eq. �7�:

B6 � − 27.4 − 6.8 + 18.3 = − 15.9 a.u.

This prediction is completely consistent with the experimen-
tal result,

B6
expt = − 14.5 ± �1.6� a.u.

Thus, the effects of the higher-order terms in the polarization
potential are seen to completely resolve the apparent contra-
diction between theoretical predictions and experimental re-
sults. Of course, a more complete evaluation of 
 and �,
avoiding the truncation of Eqs. �13� used here, would make
better use of the experimental result.

It should be noted that the influence of the higher-order
terms proportional to C7 and C8L on the fitted intercept B4,

TABLE I. Matrix elements �6,7� and excitation energies �10� used to estimate the values of coefficients 

and �, using Eqs. �13� of the text.

Transition Dipole Energy �a.u.� Transition Quadrupole Energy �a.u�

3S-3P 1.87 0.326 3S-3D 4.58 0.731

3P-3D 2.99 3P-3P −5.317
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while very slight, is not entirely negligible. In the case of n
=29 Si2+, it is found that

B4 = C4 − 0.000 053C7 − 0.000 290C8L. �14�

Using the estimates of C7 and C8L listed above, and the fitted
value of B4 �5�, this modifies the inferred value of �d by
about 0.3%,

C4 = 3.702�6� − 0.006 + 0.017 = 3.713�6� ,

�d = 7.426�12� a.u.

This result is in slightly better agreement with theoretical
calculations than the result based on analysis without consid-
eration of the higher-order terms �5�.

The coefficients 
 and � can also be evaluated with the
more complete expressions given in Appendix B and the
additional matrix elements tabulated there, without signifi-
cantly changing the results.

DISCUSSION

The central conclusion to be drawn from this study is that,
even when a fine-structure data pattern is accurately param-
etrized by a fit to Eq. �6�, it may not be justified to identify
the fitted parameters B4 and B6 with the coefficients of the
effective potential C4 and C6. If the contributions of higher-
order terms in the effective potential proportional to �r−7	
and L�L+1��r−8	 are significant, they can substantially alter
the interpretation of the traditional polarization plots. This is
especially true for the coefficient B6, which in the case of
Si2+, n=29 differed by a factor of 2 from C6, but it is also
true to a lesser extent of the parameter B4. As a consequence,
it will be important for future works to at least estimate the
size of these higher-order terms before drawing any conclu-
sions from the fitted parameters. One particular case where
published conclusions will need to be revised is the study of
barium Rydberg levels �9� where a value of �Q was inferred
from the measured fine-structure pattern without consider-
ation of the higher-order terms.

This is not to say that these terms are always important; in
many cases they may make negligible contributions and not
alter the simplest interpretation of the experimental data pat-
tern. One way to quickly estimate the probable size of these
terms is to note that the coefficient � is likely to be the
largest contributor, as it is here. If the dipole polarizability is
dominated by the lowest excited P state, as it is in Si3+, then
� is related to �d by the approximation

� �
�d

4E�P�2 . �15�

Given an estimate of �d, from either theory or experiment,
this provides an estimate of C8L and, through Eqs. �7� and
�14�, an estimate of the probable contribution to the fitted
coefficients B4 and B6. These estimates, of course, depend on
the specific intervals measured and included in the fit. Com-
parison with the observed values of B4 and B6 then indicates
whether the contribution of the higher-order terms is likely to
be significant. Table II compares two cases where recent

measurements exist: Si2+ �5� and Si+ �11�. It shows the value
of � that would be estimated in this approximation, the co-
efficient of C8L in the determination of B4 and B6 determined
from a fit similar to Eq. �6�, and the probable contribution of
C8L to B4 and B6 for both cases. In this approximation, the
significance of the higher-order terms appears to be negli-
gible at the level of precision of the Si+ study, but quite
significant in the Si2+ study, as the discussion above con-
firms. Certainly, it would be preferable to have more precise
theoretical estimates of the coefficients 
 and � in any par-
ticular case.

Another conclusion that can be drawn from this study is
that, even if the higher-order terms in Vef f proportional to C7
and C8L are significant in the fine-structure pattern, the data
pattern will still be accurately parametrized by Eq. �6�. This
can be shown directly by fitting the higher-order contribu-
tions separately to Eq. �6� as was done above to obtain Eq.
�7� and is illustrated in Fig. 1. Although these fits are not
exact, they are precise enough that it seems impractical to
attempt to extract additional information from the data pat-
tern beyond the fitted coefficients B4, B6, and B8. The single
coefficient B6 is likely to be the only information available
from the fine-structure data pattern relating to the effective
potential coefficients C6, C7, and C8L. On the one hand, this
complicates the job of extracting unambiguous information
about the ion core, since prediction of B6 requires calculation
of four independent core properties �Q, �d, 
, and �. On the
other hand, it also widens the range of core matrix elements
that can be checked by a measurement of B6, including some
dipole and quadrupole matrix elements that are not easily
checked by other measurements.

The good agreement found here between theoretical and
experimental values of B6 contrasts with the situation in

TABLE II. Rough estimate of the contribution of C8L to the
fitted parameters B4 and B6 for two cases where recent measure-
ments exist: Si2+, n=29 �5� and Si+, n=19 �11�. This estimate is
obtained from the value of �d inferred from experimental data and
the excitation energy of the lowest P state of the positive ion core,
using Eq. �15� of the text. The coefficients �8L

4 and �8L
6 are derived

from fits of the function ��L�L+1��r−8	� /��r−4	 for the specific
intervals and relative weights reported in the experimental studies,
as in Eqs. �7� and �14� of the text. The estimated contributions to the
fitted coefficients B4 and B6 are shown along with, for comparison,
the values reported in the experiments. The effects of the higher-
order term proportional to C8L appear to be much less significant in
the Si+ study than in the Si2+ study.

Property Si2+ , n=29 Si+ , n=19

�d �a.u.� 7.43 11.66

E�P� �a.u.� 0.3262 0.8288

C8L �estimate� 63 15

�8
4

L −2.9	10−4 −1.3	10−5

�8
6

L 0.302 0.08

�B4 0.018 0.0002

B4
obs 3.702�6� 5.833�2�

�B6 19 1.2

B6
obs −14.5�1.6� −27�3�
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lower-L Rydberg states of Si2+, where polarization plots
based on 3sng, 3snh, and 3sni Rydberg energies show dra-
matic variation in slopes �12�. It is well established that core
penetration effects are significant in nf Rydberg levels and
that these influence the slope of polarization plots since their
contributions to the Rydberg binding energy scale with n
approximately like �r−6	 �13,14�. The extent of core penetra-
tion contributions to Rydberg levels with L3 is less well
understood, though it has been suggested that these could
also be responsible for the slope variations seen in 3sng,
3snh, and 3sni levels of Si III �12�. Calculations of penetra-
tion effects in L4 levels predict effects that drop by almost
two orders of magnitude with each unit increase in L �15�,
but these have not been confirmed by experiment. The im-
proved understanding of the long-range interactions found

here may help to clarify the extent of core penetration effects
present in these lower-L Rydberg levels.
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APPENDIX A

Equations for reducing the first and second nonadiabatic
corrections are as follows:

�
n�

��n�,l��rs�n,l	�2 = �r2s	nl, �A1�

�
n�

��n�,l��r−s�n,l	�2�E�n�� − E�n�� =
1

2
�s2 − l�l + 1� + l��l� + 1���r−2s−2	nl, �A2�

�
n�

��n�,l��r−s�n,l	�2�E�n�� − E�n��2 =
1

4
�− s�s + 1� − l�l + 1� + l��l� + 1��2
 1

Q
�2

�r−2s−4	nl +
1

4
�2s + 3�s�− s�s + 1� − l�l + 1�

+ l��l� + 1��
 1

Q
�2

�r−2s−4	nl + �s + 1��2s + 3�s2
 1

Q
�2

�r−2s−4	nl − s2
 1

Q
�2
− 2Q�r−2s−3	

+ l�l + 1��r−2s−4	 +
Q2

n2 �r−2s−2	� , �A3�

−
Q2

n2 �r−6	 = −
11Q

5
�r−7	 +

3

10
��2l + 1�2 − 36��r−8	 . �A4�

APPENDIX B

Expressions for �d, �Q, �d, 
, and �, including core fine-structure energies are given below. �Also Table III gives the matrix
elements between nLJ states�:

�d =
1

3�
nc


 ��g�D� �ncP1/2	�2

E�ncP1/2�
+

��g�D� �ncP3/2	�2

E�ncP3/2�
� , �B1�

TABLE III. Matrix elements between nLJ states �6,7� and excitation energies �10�.

Transition Dipole Energy �a.u.� Transition Quadrupole Energy �a.u�

3S1/2-3P1/2 1.530 0.324810 3S1/2-3D3/2 −4.105 0.730725

3S1/2-3P3/2 2.165 0.326911 3S1/2-3D5/2 5.028 0.730720

3P1/2-3D3/2 2.436 3P1/2-3P3/2 4.341

3P3/2-3D3/2 1.091 3P3/2-3P3/2 −4.341
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�Q =
1

5�
nc


 ��g�QJ�ncD3/2	�2

E�ncD3/2�
+

��g�QJ�ncD5/2	�2

E�ncD5/2�
� , �B2�

�d =
1

6�
nc


 ��g�D� �ncP1/2	�2

E�ncP1/2�2 +
��g�D� �ncP3/2	�2

E�ncP3/2�2 � , �B3�

� =
1

12�
nc


 ��g�D� �ncP1/2	�2

E�ncP1/2�3 +
��g�D� �ncP3/2	�2

E�ncP3/2�3 � , �B4�


 =
1

30 �
nC,nC�


− 210
�g�D� �ncP1/2	�ncP1/2�D� �nc�D3/2	�nc�D3/2�Q� �g	

E�ncP1/2�E�nc�D3/2�
− 2

�g�D� �ncP3/2	�ncP3/2�D� �nc�D3/2	�nc�D3/2�Q� �g	
E�ncP3/2�E�nc�D3/2�

+ 26
�g�D� �ncP3/2	�ncP3/2�D� �nc�D5/2	�nc�D5/2�Q� �g	

E�ncP3/2�E�nc�D5/2�
+ 5

�g�D� �ncP3/2	�ncP3/2�Q��nc�P3/2	�nc�P3/2�D��g	
E�ncP3/2�E�nc�P3/2�

+ 210
�g�D� �ncP1/2	�ncP1/2�Q��nc�P3/2	�nc�P3/2�D��g	

E�ncP1/2�E�nc�P3/2�
� . �B5�
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