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We have investigated the effect of weakly coupled hot plasmas on the bound states and resonance states of
the pp� molecular ion. The plasma effect is taken care of by employing a screened Coulomb �Yukawa-type�
potential, and highly correlated wave functions are used. The 1Se and 3Po resonances of the pp� molecular ion
in plasmas for different screening parameters below the p��2S� threshold are calculated using the stabilization
method. The bound 1Se and 3Po state energies of the pp� molecular ion are determined using a variational
method. The p��1S� and p��2S� threshold energies for various screening parameters are also reported here.
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I. INTRODUCTION

The recent spectroscopy experiments on exotic atoms
such as the p� atom have established evidence on the exis-
tence of the p��1S� and p��2S� states �1–3�. The muonic
hydrogen atoms are formed in highly excited states by send-
ing the muons in a dense hydrogen target and the atoms
rapidly decay to the ground 1S state or the metastable 2S
states by several competing processes. With such processes,
the pp� molecule formation may take place in resonant col-
lisions between the p��2S� state and the ordinary hydrogen
molecules. In the PSI experiment �1,2�, the kinetic energy
distribution of the p��1S� atoms in a hydrogen gas was mea-
sured and a high-energy component in the vicinity of 900 eV
was detected. It was interpreted in the observation of the
high-energy component that the long-lived p��2S� state has
probably been detected in a nonradiative quenching mecha-
nism that involves the pp� resonances below the 2S disso-
ciation limit �1,2,4�. The Coulomb decay of those resonances
lying in the vicinity of the 1800 eV above the 1S dissociation
threshold may produce the p��1S� atoms. Recently, Coulom-
bic and radiative decay rates of the exotic molecular ion pp�
have been calculated by Hilico et al. �5�, by Lindroth et al.
�6�, and by Kilic et al. �7�. The bound states of the pp�
molecular ion have also been calculated using highly accu-
rate correlated wave functions �8,9�. With the recent experi-
mental developments on the p� atoms �1–3�, and with the
recent theoretical progresses on various properties of the
pp� molecular ion �4–9�, it is of great interest to investigate
the effect of external environments like that of plasmas on
the bound states and resonance states of the pp� molecular
ion.

Several theoretical investigations have been performed in
recent years on two-electron atoms/ions immersed in Debye
plasmas ��10–15� and references therein�. Very recently, the
stability of hydrogen molecular ion has also been investi-
gated in plasma environments �16–19�. The importance of
the Debye screening in atomic and molecular processes has
been highlighted in the literature ��10–24�, references
therein�. In the present work, we have carried out a theoret-
ical investigation on the hot-plasma effects for the bound
states and resonance states of the pp� molecular ion in low
rotational and vibrational levels using highly correlated wave
functions. The Debye model has been used to simulate the

plasma effect, and the stabilization method �25–27� is used to
extract resonance parameters. In the Debye concept of
plasma modeling the interaction between two localized
charge particles a and b can be represented by Z exp�−�ra

−rb� /D� / �ra−rb�, where Z=qaqb, qa and qb being the charges
of the respective particles; the screening parameter D is
called the Debye length. The stabilization method is a simple
and powerful technique that needs only bound-state type ba-
sis functions to extract resonance energies and widths. In
recent investigations it has been shown that the resonances
obtained by using the stabilization method compared well
with those obtained by using the complex-rotation method
�15�. In this work, we concentrate ourselves on the 1Se and
3Po bound and resonance states of the pp� molecular ion
embedded in Debye plasmas.

II. CALCULATIONS

The nonrelativistic Hamiltonian describing the pp� mo-
lecular ion immersed in Debye plasmas is given by

H = −
1

2mp
��1

2 + �2
2� −

1

2m�

�3
2 − � exp�− r31/D�

r31

+
exp�− r32/D�

r32
� +

exp�− r21/D�
r21

, �1�

where 1, 2, and 3 denote the two protons and the muon,
respectively, rij = �r�i−r� j�=rji, and mp and m� denote the
masses of proton and muon, respectively. In this work, it is
convenient to use the so-called quasiatomic unit ��=1, e=1,
mmin=1, and mmin=min �mp ,m��� �8�. To use the muon
atomic unit ��=1, e=1, m�=1�, it is simplest to use mp=m
=mp /m�. The particle masses used in our present calcula-
tions are mp=1836.152 701me, m�=206.768 262 me, with me
denoting the electron mass. Throughout the work we have
considered the muon atomic unit �m.a.u.� with m=mp /m�

=8.88024440133854. In the case of the muonic atoms, Bohr
radius is roughly 186 times smaller than the ordinary atoms.
The Debye length can be represented as D=1/�
= �kBT /4�nZ2�1/2, n denotes the plasma density, T its tem-
perature, and � is the Debye screening parameters �23,24�. A
set of plasma conditions can be simulated for different
choices of D �m.a.u. �muon atomic unit�� as it depends on the
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plasma density and plasma temperature. Here we briefly dis-
cuss the relationship between the muon a.u. and the conven-
tional a.u. �emphasized in here as electron a.u.�. The muon
density n� takes the form as n�=1.97�1022 ED /D2 cm−3 for
ED=kBT=100 eV and Z=1. The muon density is approxi-
mately equal to 2.2�1021 cm−3 when D=30 �electron a.u.�,
whereas the muon density is n�=2.24�1015 ED /D2 cm−3

=2.5�1014 cm−3 when D=30 m.a.u. It indicates that the
muon density in D=30 m.a.u. is much lower than that in D
=30 �electron a.u.�. Our proposed model is hence more ap-
plicable in low-density and high-temperature plasmas. De-
tails of such demonstration for two component plasmas near
thermodynamic equilibrium can be well understood from the
earlier reports �18,19,22,23�.

For S and P states of the pp� molecular ion, we use the
following wave functions:

� = �1 + SpnÔ21��
i=1

N

Cir31
L PL�cos �1�exp��− 	ir31 − 
ir32

− �ir21��� , �2�

where 	i ,
i ,�i are the nonlinear variation parameters, Ci�i
=1,… ,N� are the linear expansion coefficients, L=0 for S
states and L=1 for P states, Spn=1 denotes the singlet spin
states and Spn=−1 indicates triplet spin states, N is the num-
ber basis terms, �1 is the angle between the r�31 and the unit
vector along z axis �28�, and PL denotes the Legendre poly-

nomial of order L. The operator Ô21 is the permutation of the
two-identical particles. The nonlinear variational parameters
	i, 
i, and �i are chosen from a quasirandom process
��8,9,13,14,21,28� and reference therein�. In Eq. �2�, � is set
equal to 1 for bound states calculations and it is varied for
resonance calculations. The nonlinear parameters 	i, 
i, and
�i are chosen from the three positive intervals �A1 ,A2�,
�B1 ,B2�, and �C1 ,C2�:

	i = 		i�i + 1�
2/2���A2 − A1� + A1,


i = 		i�i + 1�
3/2���B2 − B1� + B1,

�i = 		i�i + 1�
5/2���C2 − C1� + C1, �3�

where the symbol 		¯�� designates the fractional part of a
real number. The wave function �2� supported by the quasi-
random �3� was widely used in several earlier works
�8,9,13,14,21,28� and further references therein. As the wave
function in Eq. �2� contains only exponential terms involving
interparticle coordinates, the purely random process will
yield numerically nearly linearly dependent matrix elements
after few terms. So this Hylleraas-type exponential basis
function �2� based on the nonlinear parameters chosen from
the quasirandom process of the type �3� produce results with
the same accuracy as obtained by any other type of Hylleraas
basis �8�.

III. BOUND STATES OF pp� EMBEDDED IN DEBYE
PLASMAS

To designate molecular states it is convenient to use the
rotational �J� and vibrational �
� quantum numbers. The

three-body states can also be classified as gerade or ungerade
depending on the combined effect of the spin �S� and parity
���, ��−1�S, with the resulting plus sign denoting gerade and
minus sign denoting ungerade. The atomic labels for the J
=0 and J=1 gerade states are 1Se and 3Po, respectively. In
this work, we determine the bound state 1Se �J=0,
=0� and
3Po �J=1,
=0� state energies of the muonic molecular ion
in Debye plasma environments. For bound state calculations,
one needs to obtain the solutions of the Schrödinger equation
H�=E�, where E�0 following the Rayleigh-Ritz varia-
tional principle. The lowest values of the bound S and P
states energies are obtained with the optimized choice of the
nonlinear variational parameters following the scheme �3� as
shown above. The bound 1S and 3P state energies obtained
from our calculations are presented in Fig. 1, and in Table I
along with the p��1S� threshold energies. The p��1S� ener-
gies are calculated by diagonalizing the Hamiltonian with the
standard Slater type orbitals. From Fig. 1 and Table I, it is
clear that the bound states energies increase with increasing
plasma strengths and ultimately very close to the p��1S�
threshold when the screening effect is increased further. The
two systems approach the continuum near �=1.02. �D
=0.98� Also from Table I, it seems that our results differ by
3�10−13 for the S and P states as compared with the best
results in the literature �7–9� for the unscreened case. For the
1S state calculations we use N=700 terms and for the 3P
states calculations, N=800 terms. We have also examined
convergence with the increasing number of terms in the basis
expansion, and with different nonlinear parameters in the
vicinity of the optimized values of the nonlinear variational
parameters in the wave functions �2�.

IV. RESONANCE STATES OF pp� EMBEDDED IN DEBYE
PLASMAS

Once the optimum value of the nonlinear parameters in
the wave function �2� for the bound 1Se and 3Po states are
obtained, we can then carry out resonance calculations for
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FIG. 1. �Color online� Bound states of the pp� molecular ion
under Debye screening.
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such angular momentum states of the pp� molecular ion
using the stabilization method �25–27�. One can diagonalize
the atomic Hamiltonian to calculate the energy levels E���
by varying the scaling factor � in Eq. �2�. The scaling factor
� is considered as the reciprocal range of a “soft” wall
�14,21,26,27�. In the stabilization method, the energy levels
are then plotted to obtain a stabilization diagram �see Fig.
2�a�� that provides the behavior of the energy spectrum. A
flat plateau in the energy diagram can be interpreted as a
resonance, and from which the resonance position and width
can be deduced. In this work, it is sufficient to vary � in the
range 0.3–1.0 with mesh size 0.001.

To extract the resonance energy Er and the resonance
width �, we calculate the density of resonance states for a
single energy level using the formula

�n�E� = �En��i+1� − En��i−1�
�i+1 − �i−1

�
En��i�=E

−1

, �4�

where the index i is the ith value for � and the index n is for
the nth resonance. After calculating the density of resonance
states �n�E� using formula �4�, we fit it to the following
Lorentzian form that yields resonance energy Er and a total
width �, with

�n�E� = y0 +
A

�

��/2�
�E − Er�2 + ��/2�2 , �5�

where y0 is the baseline offset, A is the total area under the
curve, Er is the center of the peak, and � denotes the full
width of the peak of the curve at half height.

TABLE I. The bound 1Se and 3Po states energies �in m.a.u.� of the pp� molecular ion in plasmas for
different Debye lengths along with the p��1S� threshold energies.

D 1S: 700 terms 3P: 800 terms p��1S�

� −0.494 386 820 248 6
−0.494 386 820 248 9a

−0.468 458 436 303 04
−0.468 458 436 303 38a

−0.449 393 964 391 0

100 −0.484 459 898 269 7 −0.458 533 814 176 6 −0.439 476 800 427 3

50 −0.474 677 153 911 1 −0.448 757 903 042 6 −0.429 722 941 023 7

20 −0.446 166 894 443 7 −0.420 294 763 062 7 −0.401 408 098 424 9

10 −0.401 304 651 270 3 −0.375 598 934 548 5 −0.357 198 173 531 3

8 −0.380 053 630 148 2 −0.354 472 467 681 9 −0.336 407 781 840 0

6 −0.346 294 636 941 8 −0.320 982 657 529 7 −0.303 588 302 718 7

4 −0.284 644 528 236 4 −0.260 101 051 184 7 −0.244 352 635 123 7

3 −0.230 267 151 647 6 −0.206 793 071 528 −0.192 946 216 788 7

2.5 −0.191 628 586 262 8 −0.169 220 188 998 −0.156 991 245 827 3

2.0 −0.141 220 404 435 6 −0.120 750 832 04 −0.111 002 308 076 7

1.5 −0.075 713 948 758 −0.059 372 294 9 −0.053 625 369 945 2

1.2 −0.031 226 122 7 −0.020 192 25 −0.017 874 385 443 5

1.1 −0.017 442 512 9 −0.009 269 −0.008 150 899 921

1.0 −0.005 998 2 −0.001 71 −0.001 520 383 8

0.98 −0.004 190 8 −0.000 761 4

aReferences �7–9�.
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FIG. 2. �Color online� �a� Stabilization plots and �b� the best fitting �solid line� of the calculated density of states �circles� for the lowest
1Se resonance of the pp� molecular ion immersed in plasmas for D=30.
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Once the position of the resonances are identified from
the flat regions of the stabilization plots, then in the next step
of the stabilization method one needs to calculate the density
of resonance states using formula �4� in the stabilized region
of each energy level. The density is then fitted to the Lorent-
zian form �5� to obtain the resonance parameters �Er ,��. The
fit that leads to the least chi-square and with the square of the
correlation coefficient closer to 1 is considered as the best fit,
the resonance parameters �Er ,�� are considered as the best
value for that particular state. In Fig. 2�b� we present the best
fit for the lowest 1Se resonance of the pp� molecular ion
immersed in plasmas for D=30 corresponding to the 21st
energy level in the stabilization plot Fig. 2�a�. In a similar
way, we have extracted the resonance energies and widths
for various Debye lengths. We present the calculated 1Se and
3Po resonance energies in Tables II and III, respectively, and
the corresponding resonance widths in Table IV. We also
show our calculated resonance parameters in Figs. 3 and 4.
In Tables II and III and Figs. 3�a� and 4�a�, our calculated
p��2S� threshold energies are also presented.

The results indicate that the resonance energies of the
pp� molecular ion increase with increasing plasma strength,
but the resonance widths, for the most part, decrease with
increasing plasma strengths. For the 1Se�1� resonance state,
we have observed that the resonance width increases some-
what when � is first increased, but the width starts to de-
crease when � is increased further. We have found four reso-
nances below the p��2S� threshold supported by the Born-
Oppenheimer 3d�g curve for each of the J=0 and J=1 states
with v=0, 1, 2, and 3, respectively. We have obtained the
widths for the lowest three resonances for the J=0 and J
=1 states. The resonance widths corresponding to the fourth
resonances are too narrow and we prefer not to report them
here. It is evident from Tables II and IV that our calculated
resonance parameters in the unscreened case are comparable
with the reported results �4–6�. In Table V, we have made
the comparison by converting the resonance energies in elec-
tron volts measured from the p� ground state energy thresh-
old. The resonance width is related to lifetime in picoseconds
�10−12 s� using the standard relation ��in eV����in s�=�,

TABLE II. The 1Se resonance energies, Er �m.a.u.�, of the pp� molecular ion in plasmas for different Debye lengths along with the
p��2S� threshold energies.

D 1Se�1� 1Se�2� 1Se�3� 1Se�4� p��2S�

� −0.146 404 68
−0.146 404 68a

−0.128 885 488
−0.128 885 489a

−0.118 028 793
−0.118 028 794a

−0.113 949 7
−0.113 949 7a

−0.112 348 491 1
−0.112 348 490 69a

100 −0.136 539 60 −0.119 028 59 −0.108 184 07 −0.104 121 9 −0.102 673 998 9

50 −0.126 955 93 −0.109 483 61 −0.098 694 93 −0.094 716 5 −0.093 620 180 8

30 −0.114 641 00 −0.097 294 56 −0.086 680 20 −0.082 967 8 −0.082 445 090 6

20 −0.100 029 63 −0.082 991 03 −0.072 787 34 −0.069 78 −0.069 806 438 0

15 −0.086 322 75 −0.069 781 14 −0.060 236 6 −0.058 525 442 3

10 −0.061 720 33 −0.046 784 44 −0.039 679 −0.039 618 578 8

8 −0.045 795 89 −0.032 639 16 −0.028 301 237 7

6 −0.024 251 33 −0.015 302 5 −0.014 202 375 1

5 −0.011 789 88 −0.006 886 −0.006 699 580

4 −0.001 69 −0.000 835

aReference �7�.

TABLE III. The 3Po resonance energies, Er �m.a.u.�, of the pp� molecular ion in plasmas for different Debye lengths along with the
p��2S� threshold energies.

D 3Po�1� 3Po�2� 3Po�3� 3Po�4� p��2S�

� −0.144 601 123 −0.127 604 837 −0.117 294 86 −0.113 691 −0.112 348 491 1

100 −0.134 736 445 −0.117 748 627 −0.107 451 41 −0.103 865 −0.102 673 998 9

50 −0.125 154 555 −0.108 206 563 −0.097 967 74 −0.094 468 −0.093 620 180 8

30 −0.112 845 342 −0.096 026 442 −0.085 969 37 −0.082 74 −0.082 445 090 6

20 −0.098 248 047 −0.081 743 916 −0.072 114 79 −0.069 6 −0.069 806 438 0

15 −0.084 564 279 −0.068 567 195 −0.059 631 92 −0.058 525 442 3

10 −0.060 038 408 −0.045 678 145 −0.039 4 −0.039 618 578 8

8 −0.044 200 143 −0.031 660 611 −0.028 301 237 7

6 −0.022 862 963 −0.014 692 48 −0.014 202 375 1

5 −0.010 650 247 −0.006 699 580

4 −0.000 835

SABYASACHI KAR AND Y. K. HO PHYSICAL REVIEW A 75, 062509 �2007�

062509-4



where � denotes the lifetime of the autoionization process
and �=6.582 11�10−16 eV s. The autoionization rate is re-
lated to the inverse of the autoionization lifetime. The muon
atomic unit �m.a.u.� is used in Figs. 1–4 and Tables I–IV. We
employ 600 and 800 term basis functions �2� for S and P
resonance states, respectively. We have observed quite rea-
sonable convergence in our calculations with an increasing
number of terms used in the basis sets.

Next we discuss the relevance of our present investigation
in light of the recent experimental activities on muonic at-
oms. Since the magnitude of the cross sections in the direct
Coulombic deexcitation process is too small at the n=2 level
to explain the existence of high energy p��1S� atoms, a fea-
sible source to investigate the high energy p��1S� atoms is
the Coulomb decay of plasma-embedded pp� molecular
ions. An atom or molecule immersed in plasma experiences
various perturbations from the plasmas leading to a definitive
distribution of atom or molecule. Due to such perturbation
the atomic or molecular states turn out to be mixed substan-
tially different from the pure unperturbed atomic or molecu-
lar states. The muon is strongly localized to the proton and
weakly perturbed by this heavy particle. The PSI experiment
indicates that a Coulombic deexcitation rate for p��2S� at-
oms in liquid hydrogen density �LHD� of the order of 4
�1011 s−1 would be required to explain the results of the

TABLE IV. The 1Se and 3Po resonance widths, � �m.a.u.�, cor-
responding to the resonance energies in Tables II and III, respec-
tively, of the pp� molecular ion in plasmas for different Debye
lengths.

D

1Se�1�
�10−7�

1Se�2�
�10−7�

1Se�3�
�10−7�

3Po�1�
�10−7�

3Po�2�
�10−7�

3Po�3�
�10−7�

� 3.073
3.026a

5.36
5.25a

3.94
4.124a

2.14
2.16b

3.33
3.47b

2.28
2.48b

100 3.075 5.36 3.93 2.13 3.32 2.27

50 3.078 5.35 3.89 2.12 3.29 2.22

30 3.073 5.28 3.76 2.08 3.21 2.07

20 3.026 5.08 3.49 2.00 3.01 1.74

15 2.917 4.73 1.86 2.71

10 2.500 3.62 1.48 1.91

8 2.033 2.55 1.09 1.20

6 1.130 0.759 0.50

5 0.485

aReference �7�.
bReference �5�.
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FIG. 3. �Color online� �a� 1Se resonance energies and �b� the
corresponding resonance widths of the pp� molecular ion for dif-
ferent screening parameters.
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FIG. 4. �Color online� �a� 3Po resonance energies and �b� the
corresponding resonance widths of the pp� molecular ion for dif-
ferent screening parameters.
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experiments �1,2�. The value of the direct Coulombic deex-
citation rate obtained by extrapolation from higher n is how-
ever of the order of 107–108 s−1 �6,29�. A theoretical esti-
mate of the molecular formation rate is reported as 5
�1010 s−1 at the n=3 level which is 10 times lower than the
quenching rate of p��2S� at LHD �4�. In order to obtain a
more precise estimate on the quenching rate, and to detect
the improved path in the muon catalyzed fusion cycle, an
investigation on the shift of the molecular energy levels and
the Coulomb decay seem important. From the perturbation
theory, it is well known that all the isolated energy levels
displaced upwards and eventually at the continuum due to
screening. In general, by writing the screened Coulomb po-
tential as

−
Z

r
exp�− r/D� 
 −

Z

r
+

Z

D
−

Zr

2D2 + ¯ , �6�

with Z denoting the nuclear charge, one can observe that the
first order correction upshifts all bound levels equally but
does not change the wave function �24�. The effective per-
turbation potential in the lowest order for the localized two
particle interaction is given by −Zr /2D2. Furthermore, the
screened Coulomb �Yukawa-type� potentials obtained from
the Debye concept of plasma modeling is a good approxima-
tion for hot-dense and low-density warm plasmas. This po-
tential is widely used in plasma modeling to describe the
shielding effects between two charged particles due to the
thermal ionization in plasmas. The importance of the Debye
screening on atomic and molecular ions has been highlighted
in the earlier investigations ��10–22� and references therein�.
The validity of the Debye screening for the proposed system

is dependent on the experimental support of generating the
plasma density and its temperature. With recent develop-
ments on the laser plasmas produced in the laser fusion in the
laboratories, accurate atomic data for various plasma condi-
tions are useful for plasma diagnostic purposes.

V. SUMMARY AND CONCLUSIONS

In this work, we have made a first investigation on the
bound states and resonance states of pp� molecular ion im-
mersed in weakly coupled hot plasmas. The plasmas effect
has been taken care of in the framework of the Debye shield-
ing approach of plasma modeling that is suitable for low-
density high-temperature plasmas. The bound state energies
of the 1Se and 3Po states for the molecular pp� ion in the
lowest rovibronic states and the 1S and 2S state threshold
energies of the p� atom in plasmas for various Debye
lengths are calculated. We have obtained four resonances for
each of the 1Se and 3Po states below the p��2S� threshold.
The stabilization method is used to extract resonance param-
eters for the pp� molecular ion. This method needs only
bound-state type basis functions to calculate resonances for
few-body atomic and molecular systems. With recent experi-
mental advancement in studies of muonic atoms, we hope
our findings will provide new insight and play an important
role in the future for research communities such as muon
physics, plasma physics, and atomic and molecular physics.
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TABLE V. Comparison of the resonance parameters of the pp� molecular ion in the unscreened case with
the available results. Resonance energies �in eV� are measured from the �p�� ground state threshold. � is the
autoionization rate in �ps�−1.

States
Resonance
parameters

Present
work Hilico et al. �5� Lindroth et al. �6� Kilic et al. �7�

1Se�1� Er�eV�
��ps�−1

191.615 46
2.63

191.615
2.59

191.616
2.59

191.615 470
2.587

1Se�2� Er�eV�
��ps�−1

93.044 59
4.58

93.045
4.49

93.046
4.49

93.044 604
4.487

1Se�3� Er�eV�
��ps�−1

31.959 94
3.37

31.960
3.52

31.960
3.40

31.959 948
3.526

1Se�4� Er�eV� 9.009 12 9.009 9.009 9.009 143
3Po�1� Er�eV�

��ps�−1
181.467 84
1.83

181.468
1.85

181.468
2.14

3Po�2� Er�eV�
��ps�−1

85.839 1
2.85

85.839
2.97

85.839
3.53

3Po�3� Er�eV�
��ps�−1

27.830 5
1.95

27.831
2.12

27.831
2.46

3Po�4� Er�eV� 7.554 7.558 7.558
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