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Adiabatic connection in density-functional theory: Two electrons on the surface of a sphere
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Two interacting electrons that are confined to the surface of a sphere have a uniform ground-state (surface)
density. The Schrodinger equation of this helium-type two-electron system is solved here accurately for dif-

ferent values @ e R of a constant that is multiplied to the electron-electron repulsion \766. The correlation
structure in the resulting wave functions is analyzed for different values of a. The asymptotic limits «— 0 and
a— o are treated analytically. Using these results, the ISI (interaction-strength interpolation) model for the
density-functional E, [p] of the exchange-correlation energy in the real system with a=1 is tested against the

exact adiabatic connection in density-functional theory.
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I. INTRODUCTION

In recent years, density-functional theory (DFT) [1] has
become one of the most frequently applied methods in many-
body theory. The basic variable in DFT is not the compli-
cated (correlated) N-particle wave function W, but the
simple, non-negative particle density p, normalized accord-
ing to [d®r p(r)=N. Each interacting N-electron system can
be related unambiguously to a fictitious system with the
same ground-state density p, but with noninteracting elec-
trons. The exact ground-state energy of the original (interact-
ing) N-electron system is obtained by solving the Kohn-
Sham (KS) single-particle equations of the noninteracting
one. In contrast to the Hartree-Fock (HF) equations, the KS
equations yield the exact ground-state energy, including the
correlation energy which is missed in HF theory (and defined
there in a somewhat different way). The only tool that must
be approximated in practice is the density functional E, [p]
of the exchange-correlation energy.

An exact representation for E,[p] is the coupling-
constant integral [2],

1
E.lp]= f da W,[p]. (1)
0
where the integrand is defined as a difference,

Walpl = (P [p]|V..]¥ [p]) - Ulp]. (2)

Here, \Afee is the operator of the Coulomb repulsion between
the N true discrete electrons,

. N
33 —
i=1 j(#i)=1 |ri_rj

i=

2 1

A

Vee =

: 3)

while, overestimating the correct expectation (V,,), the Har-
tree functional U[p] represents the classical Coulomb energy
of a continuous charge distribution with density p(r),

2 ’
U[p] = % f d3rf d3r' p(l‘)p(l,' ) (4)

Out of all antisymmetric N-electron wave functions ¥ that
are associated with the same given density p=p(r), ¥ [p] in
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Eq. (2) is one that minimizes the expectation (T+aV,,),

(W Lol T+ aV, J¥ [p]) = min(¥|T + aV, | ¥). (5
Vop

While 7=—(%2/2m)=Y., V? is the usual kinetic-energy opera-
tor, the electron-electron repulsion ‘A/ee is multiplied here with
a constant @=0. Apart from some exceptional cases, ¥ [p]
is usually fixed unambiguously by p and an a-dependent
external potential vg, ([p];Ff) exists such that W [p] is the
ground state of the generalized Hamiltonian
N
Ho[pl=T+aV, + 2 v ([pl:E). (6)

i=1

Constructing this a-dependent potential vg ([p];r) plus
the corresponding ground state W [p] for a given N-electron
density p(r) is a mnontrivial problem [3]. Generally,
vg'xztl([p] ;r) is the given external potential of the real system.
For example, vgftl([p] :r)=—Ze?/r, for an atom with nuclear
charge Ze. On the other hand, vgfto([p];r) is the KS external
potential that forces N noninteracting electrons to have a
given ground-state density p=p(r).

Instead of evaluating the integrand W,[p] for all values
O<a=1, one could consider its Taylor expansion about «
=0 which is equivalent to the Gorling-Levy (GL) pertubation
expansion [4]. Although computationally demanding, how-
ever, this Taylor expansion usually has only a finite radius of
convergence «,., with a.<1 for many systems of interest
[5,6].

A rather simple, but nevertheless reasonably accurate al-
ternative is the interaction-strength interpolation (ISI) model
of Ref. [5]. Avoiding convergence problems, ISI keeps only
the two leading coefficients Wo[p] and W(|[p] of the GL (or
weak-interaction) expansion

W[p1=Wilp]+ Wilpla+ 3 Wilpla? + O(a) (@~ 0)

(7)

and, instead of considering higher-order terms in Eq. (7),
makes an extrapolation to the opposite (strong-interaction)
limit a— o [7,8],
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W.lp]+ +0(a™?)

(a0 — ).

Wilo]  Wilp)
W.lpl= = =B

(8)

[The coefficient of the term O(a') in expansion (8) is ex-
actly zero, W.[p]=0; see the erratum to Ref. [10] and Sec.
IV B below; the primes do not denote derivatives here.] The
four leading coefficients Wy[p]=E,[p], W(')[p]EZEE'LZ[p],
W.Lp], and W.[p] of expansions (7) and (8) can be evaluated
exactly or accurately for a given density p=p(r). E,[p] is the
DFT exchange energy, and ECGL2[p] is the second-order cor-
relation energy in the GL pertubation expansion; accurate
approximations to the strong-interaction functionals W.[p]
and W.[p] are presented in Ref. [10]; see also Ref. [7]. For
spherical N-electron densities, the probably exact functional
W.[p] is presented in Ref. [9].

In terms of x==2W;[p], y=W_[p], and z=W[p]- W.[p],
we define the functionals [5]

2

Xm;% Ylp] =

2.2 2
X7y xy
0 dpl=—73-1. 09

Z <

Then the IST model for W,[p] is given by the simple analyti-
cal function [5]

X[p]
V1 + Y[pla+Zp]

WSpl=W.lp]+ (10)

By construction, WLSI[p] reproduces the two leading terms in
each of the two expansions (7) and (8). Although WLSI[p] is a
smooth and monotonic function of a, its Taylor expansion
(7) has a finite radius of convergence. This property is also
expected for the unknown true integrand W,[p]. Moreover,
WLSI[p] shares with W[ p] the correct scaling behavior [5,7],

Wolp]=AW,[p], (11)

where p, (r)=\3p(Ar) is a scaled density.

Analytical integration of the function (10) yields [5] the
IST model Efcil[p] for the exchange-correlation functional (1).
It has been applied successfully to atoms, molecules, and the
two-dimensional (2D) uniform electron gas [5,10,11]. (Even
in the case of the 3D gas where x=, ISI does not break
down, but becomes only less accurate [10].) In particular, it
has turned out that, in contrast to many standard functionals,
the ISI correlation energy EX'[p]=ES[p]-E,[p] is compat-
ible with the exact functional E,[p] for the exchange energy.
This property is substantial for a functional to predict the
properties of molecules realistically. For any given electron
system, only four simple input data are needed: The two
leading coefficients in both the weak- and the strong-
interaction expansions, Egs. (7) and (8), of its unknown ex-
act integrand W,[p].

In order to test and improve the accuracy of the model
integrand (10), nontrivial electron systems are required
where the true integrand W,[p] can be evaluated excatly or
accurately. Part of the problem is that, for a given density p,
the a-dependent external potential vg, ([p];r) in the Hamil-
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tonian (6) is usually hard to construct. In the present work,
however, a two-electron system is investigated where
ve.([pl;r) is known from the beginning.

Section II introduces the Hamiltonian for N electrons that
are confined to the surface of a sphere. In Sec. III, the
Schrodinger Equation of this system for N=2 is simplified to
a one-dimensional eigenvalue equation which is easily
solved numerically with high accuracy. The resulting nu-
merical wave functions are discussed. The leading coeffi-
cients of the expansions (7) and (8) are obtained analytically.
These results are used in Sec. IV to evaluate the coupling-
constant integrand W,[p] of this system and to compare it to
the corresponding ISI model (10) whose coefficients are
known analytically here. Results and conclusions are sum-
marized in Sec. V.

II. ELECTRONS CONFINED TO THE SURFACE
OF A SPHERE

To find a density p(r) for which the external potential
vé([pl;r) in the Hamiltonian (6) is known for all =0, we
consider N electrons confined to the 2D surface of a sphere
with radius R. (For example, real electrons can be bound on
the surface of a droplet of liquid helium.) This situation is
described by the limit AR—0 of the 3D “spherical-shell”
potential

1
|[r—R| < -AR
Vexi(R3T) = 2 (AR—0). (12)

o: elsewhere
As AR— 0, the ground-state density becomes

Sr—R)
e —7 Pa(Q)), (13)

pl(r) =
where (r,Q)=(r, 6, ¢) are spherical coordinates. Since the
potential (12) is isotropic, the 2D (angular) density p,({))
should be uniform, p,({2)= -, at least for suitable values of
the electron number N. [See, however, Eq. (23) below.]
Then, the potential v, ([p];r) of the Hamiltonian (6) is
trivial and given by Eq. (12) for all a. Ignoring the radial
degree of freedom, we switch to a strictly 2D description.
Then, the wave function only depends on the angular coor-
dinates );=(#6;, ;) and spin variables o; of the electrons
(i=1...N). The Hamiltonian (6) assumes a 2D form with a
constant external potential (which we set to zero),

HY[R]=- A+
R)= -5 Rzz o2 V).
1 9 o1 &
ANj=——5sin— >3- (14)
sin 6; 96; (96 sin® ¢; d¢;

(Since, in the limit AR— 0, the present system is sufficiently
specified by the spherical radius R and the particle number
N, we replace from now the symbol “[p]” by “[R]” plus a
superscript “N.”) The interaction energy V,.(y;;) between
two electrons depends only on the angle ;; between their 3D
position vectors r; and r;,
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COS ) = gz~ =08 6; cos 0; + sin 6, sin 6, cos(; — ;).

(15)

For the true 3D Coulomb interaction, we have V,.(y;;)
=e?lr;—r;|™! or, explicitly,

e’ e’

" R\2(1 -cos v) R

Ve ) v(y). (16)

Using a properly modified interaction (replacing the “chord
distance” ri—rj| by the curved distance Rv;; along the sur-
face), this system represents for large N> 1 a finite version
of the uniform 2D electron gas [ 12] with no boundary (but in
a curved 2D space).

For now, we restrict ourselves to the simplest nontrivial
case with N=2 electrons (which may be viewed as a poor
model for the helium atom). Dropping the superscript
N(=2), we write in Eq. (14) H [R]=(#%/m,R*H, with the
dimensionless Hamiltonian

. 1 Ra
’HaE—E(A1+A2)+5IU(7’12), a=—. (17)
ap

Here, ag=h?/m,e? denotes the Bohr radius. The Hamiltonian
ﬂa has only one independent parameter a. Obviously, the
limit @— o (a@—0) of strong (weak) repulsion is equivalent
to the limit R—o (R—0) of low (high) density. The lowest

eigenvalue &, of ﬂa represents the ground-state energy
E[ag] of H,Jap] in units of e*/agz=1 hartree. Generally,

h? e*ay

E[R]= WE(QR/(JB) =7 E(aRlay)- (18)

R2
Since 7:{a does not act on spin variables, we may distinguish
a spin-singlet system (S) from an independent spin-triplet
system (7) with ground-state energies E‘Z and SZ, respec-
tively. (In spite of our 2D formalism, spin quantization shall
be with respect to the real z axis in 3D.)

III. WAVE FUNCTIONS AND DENSITIES

A. Noninteracting case

In the noninteracting case a=0, the spatial factor of a
singlet eigenfunction of 7:[a is a symmetrized product (while
for a triplet function it is an antisymmetrized product) of two
spherical harmonics Y1,/ (Q1), Y n,n(€5). (The latter are the
eigenfunctions of A; and A, and play here the role of the
single-particle or Kohn-Sham orbitals.) The corresponding
eigenvalues of ﬂo are %[(f’(€’+1)+€"(€”+1)] where €', €"
=0,1,2,3,.... Consequently, due to the Pauli principle, the
lowest singlet (S) and triplet (7) energies for a=0 are, re-
spectively,

E=00t"=€"=0), &=1"=0"=1). (19

The corresponding ground-state spatial wave functions,

1
DI}, Qy) = Yo(Q)) Y o(Qy) = o (20)
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YI(QI)Y()O(QZ) - YI(QZ)Y()O(QI)

CI)(Y;(Q 1s QZ) = E
\!

E/L_[YI(QI)_Y](QQ]’ 20
V8

represent the state W _o[ p] in Eq. (2) for the present systems,
provided that the resulting ground-state densities will not
change when «a is set#0. In Eq. (21), Y;(Q)) may be any
normalized linear combination of the Y,,(}) (m=0,+1),

Y1 Q)= X 7,7 1,(Q), (22)

m=0,x1

where =,,|7,,/>=1. In other words, ignoring the spin degen-
eracy, the triplet ground state is threefold degenerate.
While the singlet state (20) has a uniform density, p3(€2)

= %T, the triplet state has not,

o) = j AL DTQ. Q)P = Yoo+ [V Q. (23)

Obviously, there is no choice for the 7, in Eq. (22) that
would make the density (23) uniform. This situation is simi-
lar to a (3D) Li atom (with the electron-electron repulsion
turned off), held at full spin polarization (177): In its lowest-
energy state, the three electrons must have a nonspherical
configuration 1s'2s'2p! or 1s'2p?. In the present 2D system,
apart from the trivial case N=1, at least N=4 noninteracting
electrons are required for a uniform (spherically symmetric)
density in the lowest-energy state with full spin polarization.

B. General case with interacting electrons

Turning to the interacting case a# 0 of the Hamiltonian
(17), we multiply the noninteracting wave functions of the
preceding subsection with a Jastrow-type correlation factor

(),
\I’LZ’T(Ql’Qz) = WS'T(V)q)g’T(Ql,Qz)- (24)

o

Here, y=y,, is the angle between (), and (),, given by Eq.
(15). For @=0, we have #3"(y)=1 and ¥, =&} are the
Slater determinants of Sec. III A. For a# 0, in contrast, \Ifi’T
is a much more complicated (correlated) wave function. The
ansatz (24) preserves the correct symmetry of the wave func-
tion CIDg’T, since vy is invariant upon interchanging (), and (},.

In the Schrodinger equation ﬂa‘lfi’T:Sf;T\I’i‘T with the
Hamiltonian (17), the ansatz (24) yields eigenvalue equa-
tions for (y) (we omit the indices “«” and “S,T” for brev-

ity),

s =YD - Sluty,  @25)
tan y
7 wip=—2? DD -y,

tany siny
(26)
For any solution () of these equations, the ansatz (24) is
an exact eigenfunction of 7:(a. Note that the arbitrary coeffi-
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FIG. 1. The normalized correlation factors wi’T(y) for various
values of the parameter «, obtained by numerical solution of Egs.
(25) and (26). The functions (32) (for a=-3, S) and (33) (for a=
—10, T) are shown as dashed curves.

cients 7, in the linear combination (22) do not enter Eq.
(26). Consequently, although different choices (22) generate
different triplet densities, the triplet correlation factor ¢/(7)
and energy 52 are not affected.

The numerical solution of Egs. (25) and (26) is discussed
in Appendix A. It is instructive to study in addition to the
realistic situation >0 with repulsive electrons also the situ-
ation & <0 when the electrons become attracting each other.
For selected values of «, the resulting normalized functions
(y) are plotted in Fig. 1. In the case >0 (repulsive elec-
trons), these functions are increasing monotonically with the
angle 7y (which is a measure for the distance between the
electrons). Consistently, the opposite is true for «<<0 when
the electrons are attracting each other. The numerical eigen-
values £ and £ are plotted versus « in Fig. 2 (dots).

While the singlet density p(Q) = ﬁ is uniform and inde-
pendent of a, the triplet density p.(Q) is given by Eq. (A11).
There, the coefficient ¢, can be evaluated via Eq. (A8) using
the numerical functions #’(y) shown in Fig. 1(b). ¢, is a
decreasing function of «, with ¢_,=3, ¢y=1 and ¢,.,=0 (Fig.
3). Consequently, the triplet density (A11) is nonuniform and
changes continuously between the asymptotic functions %T
—|7,(Q)|? and 2|Y,(Q)|* as @ grows from — to +o; see also
Egs. (31) and (34) below. Therefore, the triplet wave func-
tion W7(Q,,0,) does not represent the state W [p] in Eq. (2)
for the triplet system. Curiously for one particular interaction
strength, @~-5.3, we find &,=2, such that p/(Q)) coinciden-
tally becomes uniform.
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FIG. 2. The singlet (S) and triplet (7) total ground-state energies
Sfy’r for selected values of « (dots). The perturbation expansions
(27), truncated at second order, are plotted for |a@|<1.5 as solid
curves. The dashed curves represent the asymptotic strong-
repulsion energy (30) (a>0) and, respectively, the strong-attraction
energies (32) and (33) (@<0).

C. Exact limits

Before we address the coupling-constant integrand W,[p]
and its ISI model in Sec. IV, we first consider the situation
with || <1 (weak interaction), as well as the extreme limits
a— oo (strong repulsion) and a— —o (strong attraction).

1. Weak interaction

For small |a|, £ and £ are reproduced by the Mgller-
Plesset (MP) perturbation expansion [13] for the Hamil-
tonian M, (with respect to « as the small parameter),

Sr=> &l (laj<1). (27)

n=0
At least for the singlet system, the MP expansion is identical
with the Gorling-Levy (GL) expansion [4], since the density
pi(Q) does not change as the perturbation « is turned on.
Consequently, S(Sz) is the value of the second-order correla-

750 0 50 100 150 200
(8}

FIG. 3. The coefficient ¢, of Eq. (Al1) for the triplet density
pZ(Q). Only for a=-5.3 (vertical dashed line), when ¢,=2, this
density is uniform on the sphere.
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tion energy ES"*[ay]= %W(’)[aB] in expansion (7) in units of
eZ/aB:I hartree. Up to second order, the coefficients are
known analytically [14],

— oS _ M
Co=&=0. &)=

&h=-(3-41n2)=-0227411, (28)
2
— oT T
6(0) 5 —1 6(1)=§a

Ehy=-(£-3m2)=-0.013499. (29)

The corresponding second-order truncated expansions are
shown in Fig. 2 as solid parabolas.

The radius of convergence, «,, of the expansion (27)
about a=0 is probably finite [5]. In the extreme limits ||
— o0, on the other hand, Egs. (25) and (26) are easily solved
analytically as we shall see below. Independently, these lim-
its are interpreted physically in Appendixes B and C by
simple models.

2. Strong repulsion

For a>1, the electrons repel each other strongly. As «
— 400, they become strictly correlated [8]. This phrase re-
fers to a quantum state where the two electrons, upon simul-
taneous measurement of their positions, are always found
exactly opposite to each other on the sphere (Appendix B).
This is consistent with Fig. 1 where the correlation factor
wZ’T( v) has an increasingly dominant maximum at y= as
a>0 grows. Consequently, in this limit, we can put in Egs.
(25) and (26) sin y=m—y=¢, tan y=~-¢ and expand v(7y)
~ 5 +1e L& The resulting two equations are identical and have
the normalized solutions (with normalization factors N 5, T)

b= )2 l —
V') = g (D= NG b= o,

1 —
gi’T—> E[a'+ Va] (a— +©). (30)

Consequently, for @> 1, the lower limit O of the integrals
(A8) may be replaced by —oc. Evaluating the moments (A8)
for € =<2 to leading order in &> 1 yields the asymptotic nor-
malization factors NS =a"* and N'7=1(4@)"*. In particular,
we find ¢,,=0, such that the triplet density (A11) becomes
p2(Q) = lim pi(Q) =2[Y, (). 31)

a—x

Confirming the idea of strictly correlated electrons (SCE [8],

see Appendix B), the asymptotic behavior (30) of &7 is
identical with the result (B7) for R=1. It is approached very
slowly in Fig. 2 (dashed curve for a>0).

3. Strong attraction

In the opposite limit a— —ce, in contrast, two strongly
attractive electrons are forming a tightly bound pair (like
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electron and positron in a 2D positronium atom) that is mov-
ing on the sphere as a compact object with approximate ra-

dius %B'<R. Consequently, the correlation factor ¢(7y) is
strongly peaked at y=0 in this limit (see Fig. 1). Now, we
may put tan 7y, sin y=vy and v(y)=1/v in Egs. (25) and
(26), and the solutions (with normalization factors Mi’T) be-
come

W) — hS(y) = MEelalr,

? (a——), (32)

E—-a
W (y) — hi(y) = MIgTlab,

2

1
5£—>—§a (¢ — —). (33)

The normahzat10n conditions ¢ «0=1 and Ca 0= 300 =1, with
Eq. (A8) for ¢5, imply M3= 23/2|a| and M!= ( )22 as
a— —o [when the upper limit 77 of the mtegrals (A8) may be
replaced by oo]. The asymptotic functions hi’T( v) are shown
in Fig. 1 as dashed curves for a=-3 (S) and for a=-10 (7).
The asymptotic energies —a? and —%aZ are shown as dashed
curves for «<<0 in Fig. 2. Confirming the idea of a compact
attractive-electron pair, the energies 52‘7 for a—— ap-
proach the two lowest eigenvalues E, and E; of 2D positro-
nium as a@— -, Eq. (C7) in Appendix C.

Even the wave functions (C8) of Appendix C can be ex-
tracted from the behavior of the present system in the limit
a— - [14]. Integrating the resulting expression yields

w(m—i—

(34)

confirming the earlier result ¢_,=3 in Eq. (All).

IV. CORRELATION ENERGY IN THE SINGLET SYSTEM

The main goal of the present work is to test the ISI model
(10) of Ref. [5] for the coupling-constant integrand W,[p] in
Eq. (1). Such a test requires an electron system whose
ground-state density p does not change as the strength « of
the electronic repulsion is varied. As we have seen in Sec.
III, the present system with two electrons on a sphere just has
this property, at least when the electrons are in the singlet
state. As in Sec. II, we use for this system the notation
W [R], W [R] for W [p], W ,[p], etc.

A. Coupling-constant integrand

The singlet wave function Wé(Ql,Qz)Eﬁtﬂ‘;(y), with
a=aR/ag, represents the state W, [R] in Eq. (2) for the
coupling-constant integrand of the singlet system,

2
wirl= [ a0, [ a0,0wsa, 0P - ue

€2 €2
z—f dysin y(P|P(y)[* - rE (35)

Here, Eq. (16) was used for V,, in Eq. (2), and the Hartree

062506-5



MICHAEL SEIDL

-1

Singlet system (R = ap)

FIG. 4. The accurate numerical coupling-constant integrand
W,[R] (large dots) for the singlet system (with R=ag). The inclined
solid straight line represents the first-order Taylor expansion w?
=Wo+aW,, of W,[ap] using the exchange energy E,[az]=W, and
the second-order correlation energy ECGLz[aB]zéw(’). Enormous im-
provement is found in the IST model (10), shown as a solid curve,
using Wm[ag]z—%z—z and the parameters (40). The long-dashed
curve represents the ISI3 model (41) with the parameters listed in
row (iii) of Table I. The upper and lower short-dashed curves (the
latter one almost on top of the dots representing the exact W..[ag]),
respectively, correspond to rows (i) and (ii) of Table I.

energy U[R]=Q?/2R is the electrostatic energy of a uniform
continuous surface charge Q=-2¢ on the sphere. Due to the
scaling behavior (11) of the general integrand W,[p] in Eq.
(1), the function (35) satisfies the relation

a
Wa[R] = EBW(aR/aB)[aB]‘ (36)

This result has a simple graphical interpretation. The plot of
W,R] vs « is obtained from the one of W, [az] simply by
zooming with the factor %B. In particular, without loss of
generality, we may confine ourselves to the case R=ap. With
the numerical correlation factors wi('y) described in Sec. II1,
Eq. (35) yields values for W [az] which are represented by
dots in Fig. 4.

To test the numerical accuracy, first note that V,,

=0H,[R]/da, since the Hamiltonian (14) has no
a-dependent external potential. Therefore, the Hellmann-
Feynman theorem ensures that (WS[R]|V,,|¥S[R])

=8Ei[R]/ da, and we have

W.[R]=

S
D B

Numerical differentiation of Ei: %Ei[ag] yields via Eq. (37)

values for :—fWa[aB] that deviate by less than 0.0001 from the
corresponding results obtained directly from Eq. (35). Such a
small deviation is invisible in Fig. 4. It is completely negli-
gible against the difference from the ISI model W-'a,],
solid curve in Fig. 4, which shall be analyzed below. This

PHYSICAL REVIEW A 75, 062506 (2007)

TABLE 1. Coefficients of the ISI and the ISI3 models for
W3[R].

(Singlet) X Y z Q Wy

ISIT 0.227 0.827 —-0.545 () 1.016
IS13 (i) 0.227 0.827 +1.352 0.921 0.964
IS13 (ii) 0.227 0.827 -0.807 0.328 -0.762
IS13 (iii) 0.156 0.390 -0.860 0.561 0.710

observation suggests that the present numerical results for
W, lag] are very accurate.

B. Test of the ISI model

The coefficients of the two leading terms in both Egs. (7)
and (8) are known analytically for the present system. Via
Eq. (37), using Egs. (27), (28), and (30), they can be read off
Eq. (18),

2 2

WRl=-%, W,=-2G3-4ln2)>, (38
R aB
3 2 1 3/2 2
W.IR]=->%, W.JR]= —(“—B) <39
2 R 4 R aB

The ISI model W'[R] for W,[R] is given by Eq. (10), with
2
WAR]:—%% and

2

R
X[R]= Ce—, Y[R]=16C*—,

R ClB
Z=2C-1 (C=3-41n2). (40)

For R=ap, these parameters are listed in the row “ISI” of
Table 1. The R dependences in Eqs. (38) and (39) guarantee
that WLSI[R] has the correct scaling behavior (36).

From now, we put R=ay and drop the argument [ag] for
the rest of this subsection. Wfl is plotted in Fig. 4 (solid
curve), modeling the “exact” W, (dots) reasonably well. To
appreciate the success of this model, note that ISI uses the
perturbation (or weak-interaction) expansion only up to the
second order. This information alone would predict for W,
the linear function W(a2)=WO+ aW;, shown as an inclined
solid line in Fig. 4. To transform this extremely poor predic-
tion into the realistic function WLSI, only two additional co-
efficients W,, and W, from the simple opposite (strong-
interaction) limit @— 0 are employed.

For large a> 1, the small ISI error in Fig. 4 is due to the
spurious nonzero value —X—YZ, predicted by the ISI function
WID(SI for the coefficient W,,=0 in expansion (8). To estimate
the effect of this shortcoming, we re-define the values of X,
Y, and Z, and consider the modified function

X X7
’ + .
Vi+Ya+Z Y(Q+a)

WP =W, + (41)

It has an extra parameter Q >0, but no spurious term O(a™")
as a— . The new parameter shall be used below to enforce
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the correct second derivative Wi= (d*W,/da?)|,—o=6ES".
Then, the first three terms (rather than the first two) in both
expansions (7) and (8) of the true integrand W,[R] are repro-
duced exactly. Therefore, the present model is labeled
“ISI3,” whereupon the original IST of Ref. [5] should logi-
cally be called “ISI12.”

To keep the correct coefficient of the O(a'"?) term, we
must set X=W_\Y, as in Eq. (40). Comparing the two lead-
ing terms in the expansion of the function (41) about @=0
with Eq. (7) yields two equations for the remaining three
parameters Q, Y, and Z,

Wo-W. Y Z

— = +—=, (42)
VVoc Z+1 Q\JY
Wi _ 7 4 (43)
—_— e+ —.
W, 2Z+1) T Xy
Eliminating Q,
Z W - W:x:
= . a=——=>0, (44)
o Y W,
a\NY - ——
1+Z7

Wr1t1ng
a cubic equatlon for Z,

=), and taking v 'Y=c for known, we are left with

2
S+ [2+ (Z—C}Z2+ [1 + ﬁ(Za—c)z]Z+ g(a—c)2=
(45)

Using, rather arbitrarily, for Y=c? the ISI value YS! (by
putting c:—z—i’), the three solutions of Eq. (45) would be
ZO=—(1 +i—f) and

Zi,= [ Zoy=NZy(Zy - 8)] (46)

Solution Zj, is useless, since it implies Q=0%, recovering in
Eq. (41) the original ISI function (10). For the present sys-
tem where a=2 and b=-8C, solution Z; yields only slight
improvement beyond IST [upper short-dashed curve in Fig. 4,
row (i) in Table I], while solution Z, seems to provide an
accurate model [lower short-dashed curve in Fig. 4, row (ii)
in Table I]. Almost invisible in Fig. 4, however, the second
derivative of W5 at =0 is negative in this case (see the
last column in Table I), implying a spurious inflection point
at a=~0.033.

While the choice Y=Y"!is quite arbitrary, ¥ can be cho-
sen in such a way that WISB has the correct second derivative
at a=0, W)= (d*W,, /da2)|a_ =6ES". Completing the set of
Egs. (42) and (43), this condition yields the third equatlon
for the three parameters Q, Y, and Z (recall that X=W_ Y)

2
WS—XI Z+3g 2LZ3 47)
(z+1)y YQ
Equivalently, Egs. (45) and (47) represent two equations for
two unknowns Z and Y=c?. For the present system, Wo
=6€(S3);—Z can be found numerically, W{;z0.71i. (Note that
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W, unlike WO, is R- dependent and generally given by
WelR]= W"[aB]—%O 71&) This is positive, but smaller

than the ISI prediction 2(deISI/ da?)|,-0=16C*(C+1)
=1.02 (last column in Table I) Only for one particular value
of Y (or c=1Y), Eq. (45) has a solution Z [row (iii) in Table
I, long-dashed curve in Fig. 4] that fulfills condition (47)
with Wg=0.71£ and at the same time yields in Eq. (44) a
positive value for Q. (The other two solutions for the same ¥
do not.)

Usmg two additional exact asymptotic parameters, Wj
=0. 71— and W, =0, ISI3 is more accurate than the original
ISI (or IS12) model. This improvement will be discussed
further in the following subsection. For general systems,
however, evaluation of Wg—6EGL3 is even more expensive
than that of EGL2 Moreover, it is not guaranteed, that there is
always a value ¢ for which Eq. (45) has a solution that fulfills
condition (47) and yields Q >0 in Eq. (44). Apart from these
limitations and difficulties, the ISI3 integrand (41), sharing
all the exact properties, is more accurate than the original IST
model. Just as the IST integrand (10), the ISI3 integrand (41)
can be integrated analytically in Eq. (1). Unlike the IST co-
efficients, Eq. (9), however, the ISI3 coefficients ¥ and Z
have no explicit expressions, but are given implicitly as so-
lutions of cubic equations [while X= WO’O\'Y and Q, Eq. (44),
are explicit functions of Y and Z].

C. Singlet correlation energies

Integration [jda in Eq. (37) yields the exchange-
correlation energy (1) of the realistic system (with @=1) as a
function of R. Since E5[R]=0, see Eq. (28), we obtain

1 2
BRI = | daW.[R]= ER)- U1K -2
0
(48)

where Eq. (18) has been applied in the second step.

In the high-density limit R—0, we may use the weak-
interaction expansion (27) for £, which has no zero-order
term, Efo)=0; see Eq (28). Representing the exchange energy

E_X[R]EWO[R]=—— the first-order term (with 5(1)—1) be-
comes dominant as R— 0. The remaining correlation energy

EC[R]:EXC[R]_Ex[R]s
2
Srp1_ € ap e
ER] = "3 €y~ (49)
is for small R dominated by the constant (R-independent)
second-order term EGLZ—E— 292)’
2 R
ES[R]_ (2)+ 5(53)+0(R2) (50)

(with 5(32)=—c=—0.227 411). For finite densities (with R
> ap), however, ES* as an approximation to E>[R] becomes
extremely poor, see Table II. The “exact” values there are
obtained from Eq. (49) using the numerical values &£°.

Vast improvement beyond ESLZ is found in the ISI model
(third column in Table II),
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TABLE 1II. Correlation energies E[R] of the singlet system in second-order perturbation theory (GL2), in
the ISI model (51), and in the ISI3 model, using the function (41) and the additional coefficients Wp[ap]
2
%0.712—B and W, =0. The “exact” values are obtained numerically via Eq. (49).

R GL2 IST IS13 Exact

0.1 -0.2274 -0.2118 -0.2157 -0.2175
0.2 -0.2274 —-0.1985 —-0.2045 —-0.2064
0.5 -0.2274 -0.1679 —-0.1760 —-0.1796
1.0 -0.2274 —-0.1349 —-0.1426 —-0.1473
2.0 -0.2274 —-0.0984 —-0.1040 —-0.1081
5.0 -0.2274 —-0.0562 —-0.0587 —-0.0605
10.0 -0.2274 —-0.0337 —-0.0348 —-0.0355

1
EN[R] = f da WS'IR]
0

—SCRZ{k(R)—(ZC—l)ln 1+ AR

(51)

where k(R)=\1+16C?R/agz—1. The mean absolute error of
the ISI correlation energies in Table II is 0.0076 hartree or
4.8 kcal/mole. By construction, ISI is particularly accurate
for R<ap and for R>ap. The maximum error occurs at R
~dap.

The IST model for the integrand W,[R] uses only the first
two terms, Wo[R]=E,[R] and W) =2ES"% of the weak-
interaction (or Taylor) expansion (7) for small @<<1. Instead
of considering higher-order terms, the two parameters W,,[R]
and W.[R] from the opposite strong-interaction expansion
(8) for > 1 are introduced. The success of this “interaction-
strength interpolation” is quite remarkable. Note that the
Taylor expansion of W, [R] about a=0 is expected to have
only a finite radius a [R] of convergence. Therefore, even
when all orders are considered, W,[R] can be constructed
only for a<a/[R]. In this sense, ISI is simulating a re-
summation of the divergent perturbation expansion [5].

As a natural extension of ISI, the ISI3 model (41) uses
two additional asymptotic coefficients: The O(a?) coefficient
Wi[R]=0.71Re?*/ aé from the weak-interaction expansion (7)
plus the O(a™') coefficient W.=0 from the strong-
interaction expansion (8). Not surprisingl;/, the resulting ISI3
correlation energies EESB[R]: I éda Ial [R], using the pa-
rameters in row (iii) of Table I, are more accurate (fourth
column in Table II) than the ISI values. Their mean absolute
error amounts only 0.0027 hartree or 1.7 kcal/mol. Requir-
ing the third-order of the GL perturbation expansion, how-
ever, this improvement is bought at a high price.

In concluding, we consider the kinetic-energy contribu-
tion T,[p] to the correlation energy. Using the notation (- --),,
for expectation values in the state W ,[p], the generalized

correlation  energy  El[p]l=[gdB W4lpl-aE,[p], with
E?‘:'[p]=EC[p], can be written as
Efpl= (D= (Do) + (Ve = (Vedo)s  (52)

where (T),=T,[p] is the density functional of the noninter-
acting kinetic energy. The enhancement of kinetic energy due

to the interaction aV,, in the Hamiltonian (6),

TIp] = (D)= (D)),

is an important contribution to EZ[p]. Combining Egs. (52)
and (53), we find

Telpl = Edlp]l - a(W [p] - Wi[p]), (54)
where we have used the definition (2) of W,[p]. The weak-
interaction expansion (7) implies that Eﬁ‘[p]:ECGLz[p]a2
+0(a?) (recall that Wy[p]=E[p] and W(’)[p]EZES’Lz[p]
<0) and thus

Tpl= |ECGL2|:p]|a2 +0(&) (a—0). (55)

On the other hand, since T¢[pl=/[GdB W4lp]l-aW, [p], the
scaling behavior (11) implies that

T\l = TV p].

In the present (singlet) system, the energy at a=0 is
purely kinetic. Moreover, since 53:0, see Eq. (19), we have
T[R]=0 such that T¢[R] is for all R the full kinetic energy in
the state W ,[R]. Equation (56) implies the scaling behavior

(53)

(56)

Tf,’[R]=(%”) T*[ag), with @=aR/ag. Therefore, we may con-
fine ourselves to the case R=ag. Figure 5 shows Tt[ag] for
—l<a<+5. The quadratic behavior (55) around a=0 is
evident. For a— +, the virial theorem for the harmonic
oscillator, given by the Hamiltonian (B6) in Appendix B,
demands that Z—ng[aB]ei\@. For a— -, in contrast, the
virial theorem for the 2D attractive-electron pair in Appendix

C implies that T:[a]—~Ey=+a><: see Eq. (C7).

V. SUMMARY AND CONCLUSIONS

We have considered here a nontrivial (interacting) two-
electron system where the ground-state electron density does
not change when the Coulomb repulsion between the elec-
trons is multiplied by an arbitrary real number a# 1. For
such a system, the external potential v, ([p];F) in the Hamil-
tonian (6) is known and, trivially, is the same for all « € R.
Consequently, the coupling-constant integrand W,[R] of this
system can be obtained directly by solving a regular
Schrodinger equation. Moreover, this Schrodinger equation
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=

FIG. 5. The enhancement T¢[R] of the kinetic energy T%[R] of
the interacting system beyond the noninteracting value T,[R]. In the
present case, T,[R]=0, such that TX[R]=T°[R] is simply the full
kinetic energy.

can be simplified to a one-dimensional eigenvalue equation.
The numerical solution of this simple equation is very accu-
rate, at least when the interaction strength « is not extremely
large.

Knowing the exact integrand W,[R], we are able to test its
IST model WIaSI[R] of Ref. [5]. This test is all the more effi-
cient here, since the four ISI coefficients Wy[R], W), W.[R],
and W.[R], and then also the ISI model WIQSI[R], are known
analytically for this system. As can be seen in Fig. 4, W'[R]
is reasonably accurate. The same is true for the correspond-
ing ISI correlation energies in Table II. This success of the
ISI approach is particularly remarkable, since ISI uses only
the two leading terms of the perturbation expansion (7). This
information alone cannot provide any reasonable prediction
for finite values @~ 1, see the inclined straight line in Fig. 4.
As the only additional information, however, ISI uses the
two leading terms of the strong-interaction limit (8).

The present example for an exact integrand W [R] is not
only useful for a test of the ISI model, but, in particular, for
constructing new functionals for the correlation energy. Us-
ing three instead of only two leading terms in both the ex-
pansions (7) and (8), the extended ISI model of Sec. IV B,
called “ISI3” here, improves the ISI results considerably.
Since ISI3 requires evaluation of the third order in the per-
turbation expansion of Ref. [4] (which is known accurately
only for the present system), however, this improvement is
bought at a high price.

In addition to this analysis of the ISI approach, the corre-
lated two-electron wave functions have been studied and il-
lustrated in Fig. 1 for different values of the interaction
strength «. The corresponding ground-state energies are
shown in Fig. 2. For this study, also negative values of «
(describing attractive electrons) are included. Particular at-
tention is drawn to the extreme limits & — +% and a— —%.
These limits are treated analytically in Appendixes B and C,
respectively. For both positive and negative values of «, the
kinetic energy is enhanced over its noninteracting value at
a=0, as can be seen in Fig. 5. Curiously, in contrast to the
spin-singlet system, the triplet system does not have a con-
stant uniform density, but one that changes as the parameter
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a is varied. The only exception is the accidental case a=
—5.3 when the triplet state has a uniform ground-state den-
sity.

APPENDIX A: SOLVING THE SCHRODINGER
EQUATION

1. Correlation factors !/ff,’T(Y)

The function ¢{(y) in Egs. (25) and (26) has the domain
y€[0,]. For |y|<1 when v(y) z%y and tan y=sin y= 1,

we expand ¢(y)=¢(0)+ ' (0)y+3¢/(0) >+ to find from
Egs. (25) and (26) the cusp conditions

S: 1(0) = a0),
§0)= 31~ E51040). (A1
1
Ty 0)= Jai0),
7(0) = [~ 3(E - N10). (A2)

For y=r, in contrast, when the two electrons are at opposite
positions on the sphere, the wave function cannot have a
cusp. This implies the eigenvalue condition

' (m)=0. (A3)

For the lowest-energy state, ¢ must be node-free, (y)#0
for 0 < y< . In this case, the wave function (24) represents
the state W [p] in Eq. (1), at least for the singlet system.
According to conditions (A1) and (A2) for #'(0), and con-
sistent with intuition, |¢(y)|> has for repulsive electrons (&
>() a minimum, but for attractive ones («<<0) a maximum
at y=0.

Starting at y=0 with the cusp conditions (A1) and (A2),
Egs. (25) and (26) are easily integrated numerically up to the
point y=1 where the eigenvalue condition (A3) is used for
selecting the physical solutions (“eigenfunctions”). The re-
sults of such a numerical integration are presented in Fig. 1.

At least for special values of «, even analytical solutions
exist [see Egs. (30), (32), and (33)]. Substituting ()
=f(cos ) and writing cos y=x, Egs. (25) and (26) assume a
more familiar form,

St (1=x2)f"(x) = 2xf"(x) + [5?; —av(x)]f(x)=0,
(A4)

T: (1-x*)f"(x) = Bx+1)f' (x) + [SZ— 1 — av(x)]f(x) =0,
(AS)
where 7(x)=[2(1-x)]""2. For a=0, Eq. (A4) is Legendre’s

differential equation. Its solutions are the Legendre polyno-
mials, f(x)=P,(x), with E&=€(£+1) and €=0,1,2,.... For

€>0, these solutions correspond to certain excired states
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of the noninteracting system with €'=¢"=¢. This is evident
from the addition theorem for spherical harmonics,

Pycosy) _ 1 2 Y ()Y ().

d3(Q,0 =
o({21, () 4 2041,2,

(A6)

For a# 0, however, the solutions f(x) of Eq. (A4) cannot be
polynomials, since the cusp condition (Al) implies that
|f"(1)]=2. Note, however, that the function #(x) is closely
related to the Legendre polynomials, 0(x) =27_P(x).

2. Densities p7(Q)

Eventually, we consider the electron density p>'(€2) in the
state (24). For a=0 we have tﬂg’T(y)El. For the general
case, we expand in terms of the P,(x),

0T (NP = 2 eiiPlcos v), (A7)
£=0
2041 (7 )
3= 20 [ aysin yputeos yIu (A8)
0
where cgf: 6¢o- Then, we have
po(Q) =2 f Aol () PP57 (Q, Q)
_cha€2€ E Y(m(Q)
€=0 m——
Xf dQZ Yf/m 1» (Ag)

where we have used the addition theorem (A6) for Py(cos ).
In the singlet case (20), the (), integral equals
(E) \477'@ 00,0 such that pa(Q):—ca0 Normalization im-
plies Ci,o—l and, as expected, this surface density is uniform
for all a,
s 2
po(Q)=— (all @ € R). (A10)
4
In the friplet case (21), the ), integral in Eq. (A9)
is easily evaluated after expressing the products
Y1 u(Q))Y,,,(Qy) in terms of the functions YZm(Qz),
With the result  pl(Q)=(cl ~ LT )|Yool+(ch g~3cT |
+5ca 2)|Y (9] Consequently, normalization [d() pa(Q)
=2 yields the condition CaO 3cT1 which can be used to
eliminate c

o, iy
p£<n>:4—+<2— :
T

T
c
To=cl, -2, (A1)
' 5
As it turns out, ¢, #2 for all @ except for one particular
value a=-5.3. Consequently, the triplet density is typically
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nonuniform. In particular, it is not the same for different
values of «. Therefore, unfortunately, the triplet states
W(Q,,0Q,) do not represent the state W [p] in Eq. (1) for
the triplet system.

APPENDIX B: STRICTLY CORRELATED ELECTRONS
(a—+x)

In the strong-repulsion limit &— % which is not acces-
sible by perturbation theory, the two electrons are strictly
correlated [8], staying always exactly at opposite positions
on the sphere,
¢y + )

o, + 6, — )P, —
i [ (), 0y, 2 = 2O 2= DO
00 417 sin 6,

(B1)

At large but finite a>1, this strictly-correlated motion is
superimposed by quantum-mechanical zero-point oscilla-
tions [8]. Driven by the strong repulsion a‘A/ee between the
electrons, these oscillations are fast. Therefore, we can study
small oscillations around a frozen pair
{(0(0) ¢(0) (0(0) (O))} of strictly-correlated positions, for
example OZ> )} Writing

T
0, =E+591, ¢y = 6y,

T
02 = E - 502, ¢2 =1+ 5¢2, (B2)

we introduce approximate Cartesian coordinates on the
sphere with radius R (86;, 6¢;<1),

xiZR(Sd)i, yi=R50l~. (B3)
Then the Hamiltonian (17) becomes
A me
H,[R]~ 7(x1+y1)+—(x2+y2)+aV('y) (B4)
Writing 66, —66,= 60 and 6¢,— dp, = S¢p, the interaction

potential (16) can be expanded,

2 2
Veg(y)xze—R ! xe—{1+1(5¢2+ 502)}

\/1—i(5¢2+502) 2RL 8
(BS)

In terms of center-of-mass and relative coordinates, X
1 1

=§(X1+X2), Y=§(yl+y2), X=x1-x;, and y=y;—y,, the

Hamiltonian (B4) is separated into a free particle and an

oscillator,

~ M .
HJR] =~ (X" +

2 2
e e
2
+ +

O‘LR AT )]

Y?) + %(J&2 +y7)

(B6)

In the ground state, the free particle (mass M =2m,) has only
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potential energy «/2R, while the oscillator (mass ,u:%) has
the 2D zero-point energy 3% w,=h\ae*/8uR>,
2 2
ae” 2 e —
E‘Z’T[R] ~ R + Eﬁwa = E[a +aag/R + 0(a")].
(B7)

For R=ap, this result is equivalent to the asymptotic expres-
sion for Si’T in Eq. (30).

APPENDIX C: STRONG-ATTRACTION LIMIT (a——x)

In the strong-attraction limit a<<—1 the electron pair on
the sphere forms a bound state in a 2D, asymptotically planar
environment. We therefore consider two attractive electrons
on a plane or, equivalently, a 2D positronium atom. For the
wave function W(r,,r,;o,0,)=U(r,,r,)x(0,0,) (Where
r; and r, are 2D position vectors and o, g, are spin vari-
ables) we introduce center-of-mass and relative coordinates,
R:%(r, +r,) and r=r;—r,, respectively,

U(ry,r,) = u(r)e’™®R, (C1)

In polar coordinates (r, ¢), the Schrodinger equation for the
relative wave function ur) reads

#2016 au) 1 Rul) g
Z{;(ﬂ— P ]"“'67“(“)=E“(")
-3

The ansatz u(r)=R(r)e™®, with R(r)=g(r)e™® and ¢
=m,|E|/h?, yields the equation

1 a 2
g'(r)+ (; - 2e)g'<r> v (u -=- ’f—2>g<r)
B
=0 (m=0,+1,%2,...). (C3)

Inserting the expansion g(r)=r'2"_a,r'=3"_ a,"*, ay#0,
we obtain
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oo

P2y = m)]+ 3 rk*”{ay[(m V2 =]

v=1

+av_{—26<k+v—%)+@}}=0. (C4)
ag

This can be fulfilled only with k>=m?. Since u(r) is regular
at r=0, the correct choice is k=|m|. For the coefficients, we
obtain the recursion relation

25(|m| +v- %) - M
B

a a,, (v=1,2,3,...). (C5)

- 2+ 2|m|v

Since a,/a,_,— 2€/ v as v— o, the series must be finite [and
g(r) a polynomial] to avoid the divergence g(r) — e as r
— o, Consequently, € is restricted to the values

lof 1

=3 ; (n=|ml+v-1,v=1,2,3,...). (C6)
dpn+ 3

The corresponding energy eigenvalues are
h’e > e

" om, T n+1)%a

(n=0,1,2,3,...).

(C7)

For n=0,1, these are (in atomic units) identical with the
asymptotic energies (32) and (33). The corresponding eigen-
functions u, (r,¢) are

2|a|

ui(r) = ——
0 \s”27m3

—|ar/
e \a\"ls,

re—|a\r/3aBeimzp
2
\3may

ut,(r,e) = (m=0,=1). (C8)

Using the asymptotic correlation factors (32) and (33), re-
spectively, these wave functions can also be extracted from
the ansatz (24).
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