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Two interacting electrons that are confined to the surface of a sphere have a uniform ground-state �surface�
density. The Schrödinger equation of this helium-type two-electron system is solved here accurately for dif-

ferent values ��R of a constant that is multiplied to the electron-electron repulsion V̂ee. The correlation
structure in the resulting wave functions is analyzed for different values of �. The asymptotic limits �→0 and
�→ ±� are treated analytically. Using these results, the ISI �interaction-strength interpolation� model for the
density-functional Exc��� of the exchange-correlation energy in the real system with �=1 is tested against the
exact adiabatic connection in density-functional theory.

DOI: 10.1103/PhysRevA.75.062506 PACS number�s�: 31.15.Ew

I. INTRODUCTION

In recent years, density-functional theory �DFT� �1� has
become one of the most frequently applied methods in many-
body theory. The basic variable in DFT is not the compli-
cated �correlated� N-particle wave function �, but the
simple, non-negative particle density �, normalized accord-
ing to �d3r ��r�=N. Each interacting N-electron system can
be related unambiguously to a fictitious system with the
same ground-state density �, but with noninteracting elec-
trons. The exact ground-state energy of the original �interact-
ing� N-electron system is obtained by solving the Kohn-
Sham �KS� single-particle equations of the noninteracting
one. In contrast to the Hartree-Fock �HF� equations, the KS
equations yield the exact ground-state energy, including the
correlation energy which is missed in HF theory �and defined
there in a somewhat different way�. The only tool that must
be approximated in practice is the density functional Exc���
of the exchange-correlation energy.

An exact representation for Exc��� is the coupling-
constant integral �2�,

Exc��� = �
0

1

d� W���� , �1�

where the integrand is defined as a difference,

W���� � ������	V̂ee	�����
 − U��� . �2�

Here, V̂ee is the operator of the Coulomb repulsion between
the N true discrete electrons,

V̂ee =
e2

2 �
i=1

N

�
j��i�=1

N
1

	r̂i − r̂ j	
, �3�

while, overestimating the correct expectation �V̂ee
, the Har-
tree functional U��� represents the classical Coulomb energy
of a continuous charge distribution with density ��r�,

U��� �
e2

2
� d3r� d3r�

��r���r��
	r − r�	

. �4�

Out of all antisymmetric N-electron wave functions � that
are associated with the same given density �=��r�, ����� in

Eq. �2� is one that minimizes the expectation �T̂+�V̂ee
,

������	T̂ + �V̂ee	�����
 = min
�→�

��	T̂ + �V̂ee	�
 . �5�

While T̂=−��2 /2m��i=1
N �i

2 is the usual kinetic-energy opera-

tor, the electron-electron repulsion V̂ee is multiplied here with
a constant ��0. Apart from some exceptional cases, �����
is usually fixed unambiguously by � and an �-dependent
external potential vext

� ���� ; r̂� exists such that ����� is the
ground state of the generalized Hamiltonian

Ĥ���� = T̂ + �V̂ee + �
i=1

N

vext
� ����; r̂i� . �6�

Constructing this �-dependent potential vext
� ���� ;r� plus

the corresponding ground state ����� for a given N-electron
density ��r� is a nontrivial problem �3�. Generally,
vext

�=1���� ;r� is the given external potential of the real system.
For example, vext

�=1���� ;r�=−Ze2 /r, for an atom with nuclear
charge Ze. On the other hand, vext

�=0���� ;r� is the KS external
potential that forces N noninteracting electrons to have a
given ground-state density �=��r�.

Instead of evaluating the integrand W���� for all values
0���1, one could consider its Taylor expansion about �
=0 which is equivalent to the Görling-Levy �GL� pertubation
expansion �4�. Although computationally demanding, how-
ever, this Taylor expansion usually has only a finite radius of
convergence �c, with �c�1 for many systems of interest
�5,6�.

A rather simple, but nevertheless reasonably accurate al-
ternative is the interaction-strength interpolation �ISI� model
of Ref. �5�. Avoiding convergence problems, ISI keeps only
the two leading coefficients W0��� and W0���� of the GL �or
weak-interaction� expansion

W���� = W0��� + W0����� +
1

2
W0�����2 + O��3� �� → 0�

�7�

and, instead of considering higher-order terms in Eq. �7�,
makes an extrapolation to the opposite �strong-interaction�
limit �→� �7,8�,
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W���� = W���� +
W�� ���

��
+

W�� ���
�

+ O��−3/2� �� → �� .

�8�

�The coefficient of the term O��−1� in expansion �8� is ex-
actly zero, W�� ����0; see the erratum to Ref. �10� and Sec.
IV B below; the primes do not denote derivatives here.� The
four leading coefficients W0����Ex���, W0�����2Ec

GL2���,
W����, and W�� ��� of expansions �7� and �8� can be evaluated
exactly or accurately for a given density �=��r�. Ex��� is the
DFT exchange energy, and Ec

GL2��� is the second-order cor-
relation energy in the GL pertubation expansion; accurate
approximations to the strong-interaction functionals W����
and W�� ��� are presented in Ref. �10�; see also Ref. �7�. For
spherical N-electron densities, the probably exact functional
W���� is presented in Ref. �9�.

In terms of x=−2W0����, y=W�� ���, and z=W0���−W����,
we define the functionals �5�

X��� =
xy2

z2 , Y��� =
x2y2

z4 , Z��� =
xy2

z3 − 1. �9�

Then the ISI model for W���� is given by the simple analyti-
cal function �5�

W�
ISI��� = W���� +

X���
�1 + Y���� + Z���

. �10�

By construction, W�
ISI��� reproduces the two leading terms in

each of the two expansions �7� and �8�. Although W�
ISI��� is a

smooth and monotonic function of �, its Taylor expansion
�7� has a finite radius of convergence. This property is also
expected for the unknown true integrand W����. Moreover,
W�

ISI��� shares with W���� the correct scaling behavior �5,7�,

W���	� = 	W�/	��� , �11�

where �	�r�=	3��	r� is a scaled density.
Analytical integration of the function �10� yields �5� the

ISI model Exc
ISI��� for the exchange-correlation functional �1�.

It has been applied successfully to atoms, molecules, and the
two-dimensional �2D� uniform electron gas �5,10,11�. �Even
in the case of the 3D gas where x=�, ISI does not break
down, but becomes only less accurate �10�.� In particular, it
has turned out that, in contrast to many standard functionals,
the ISI correlation energy Ec

ISI���=Exc
ISI���−Ex��� is compat-

ible with the exact functional Ex��� for the exchange energy.
This property is substantial for a functional to predict the
properties of molecules realistically. For any given electron
system, only four simple input data are needed: The two
leading coefficients in both the weak- and the strong-
interaction expansions, Eqs. �7� and �8�, of its unknown ex-
act integrand W����.

In order to test and improve the accuracy of the model
integrand �10�, nontrivial electron systems are required
where the true integrand W���� can be evaluated excatly or
accurately. Part of the problem is that, for a given density �,
the �-dependent external potential vext

� ���� ;r� in the Hamil-

tonian �6� is usually hard to construct. In the present work,
however, a two-electron system is investigated where
vext

� ���� ;r� is known from the beginning.
Section II introduces the Hamiltonian for N electrons that

are confined to the surface of a sphere. In Sec. III, the
Schrödinger Equation of this system for N=2 is simplified to
a one-dimensional eigenvalue equation which is easily
solved numerically with high accuracy. The resulting nu-
merical wave functions are discussed. The leading coeffi-
cients of the expansions �7� and �8� are obtained analytically.
These results are used in Sec. IV to evaluate the coupling-
constant integrand W���� of this system and to compare it to
the corresponding ISI model �10� whose coefficients are
known analytically here. Results and conclusions are sum-
marized in Sec. V.

II. ELECTRONS CONFINED TO THE SURFACE
OF A SPHERE

To find a density ��r� for which the external potential
vext

� ���� ;r� in the Hamiltonian �6� is known for all ��0, we
consider N electrons confined to the 2D surface of a sphere
with radius R. �For example, real electrons can be bound on
the surface of a droplet of liquid helium.� This situation is
described by the limit 
R→0 of the 3D “spherical-shell”
potential

vext�R;r� = 
0: 	r − R	 �
1

2

R

�: elsewhere
� �
R → 0� . �12�

As 
R→0, the ground-state density becomes

��
3D�r� =

��r − R�
R2 ����� , �13�

where �r ,��= �r ,
 ,�� are spherical coordinates. Since the
potential �12� is isotropic, the 2D �angular� density �����
should be uniform, �����= N

4� , at least for suitable values of
the electron number N. �See, however, Eq. �23� below.�
Then, the potential vext

� ���� ;r� of the Hamiltonian �6� is
trivial and given by Eq. �12� for all �. Ignoring the radial
degree of freedom, we switch to a strictly 2D description.
Then, the wave function only depends on the angular coor-
dinates �i��
i ,�i� and spin variables �i of the electrons
�i=1. . .N�. The Hamiltonian �6� assumes a 2D form with a
constant external potential �which we set to zero�,

Ĥ�
N�R� = −

�2

2meR
2�

i=1

N

�i + ��
i�j

Vee��ij� ,

�i �
1

sin 
i

�

�
i
sin 
i

�

�
i
+

1

sin2 
i

�2

��i
2 . �14�

�Since, in the limit 
R→0, the present system is sufficiently
specified by the spherical radius R and the particle number
N, we replace from now the symbol “���” by “�R�” plus a
superscript “N.”� The interaction energy Vee��ij� between
two electrons depends only on the angle �ij between their 3D
position vectors ri and r j,
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cos �ij �
ri · r j

R2 = cos 
i cos 
 j + sin 
i sin 
 j cos��i − � j� .

�15�

For the true 3D Coulomb interaction, we have Vee��ij�
=e2	ri−r j	−1 or, explicitly,

Vee��� =
e2

R�2�1 − cos ��
�

e2

R
v��� . �16�

Using a properly modified interaction �replacing the “chord
distance” 	ri−r j	 by the curved distance R�ij along the sur-
face�, this system represents for large N�1 a finite version
of the uniform 2D electron gas �12� with no boundary �but in
a curved 2D space�.

For now, we restrict ourselves to the simplest nontrivial
case with N=2 electrons �which may be viewed as a poor
model for the helium atom�. Dropping the superscript

N�=2�, we write in Eq. �14� Ĥ��R�= ��2 /meR
2�Ĥ�̄, with the

dimensionless Hamiltonian

Ĥ�̄ � −
1

2
��1 + �2� + �̄v��12�, �̄ �

R�

aB
. �17�

Here, aB=�2 /mee
2 denotes the Bohr radius. The Hamiltonian

Ĥ�̄ has only one independent parameter �̄. Obviously, the
limit �→� ��→0� of strong �weak� repulsion is equivalent
to the limit R→� �R→0� of low �high� density. The lowest

eigenvalue E� of Ĥ� represents the ground-state energy

E��aB� of Ĥ��aB� in units of e2 /aB=1 hartree. Generally,

E��R� =
�2

meR
2E��R/aB� �

e2aB

R2 E��R/aB�. �18�

Since Ĥ� does not act on spin variables, we may distinguish
a spin-singlet system �S� from an independent spin-triplet
system �T� with ground-state energies E�

S and E�
T, respec-

tively. �In spite of our 2D formalism, spin quantization shall
be with respect to the real z axis in 3D.�

III. WAVE FUNCTIONS AND DENSITIES

A. Noninteracting case

In the noninteracting case �=0, the spatial factor of a

singlet eigenfunction of Ĥ� is a symmetrized product �while
for a triplet function it is an antisymmetrized product� of two
spherical harmonics Y��m���1�, Y��m���2�. �The latter are the
eigenfunctions of �1 and �2 and play here the role of the
single-particle or Kohn-Sham orbitals.� The corresponding

eigenvalues of Ĥ0 are 1
2 ������+1�+�����+1�� where �� ,��

=0,1 ,2 ,3 , . . .. Consequently, due to the Pauli principle, the
lowest singlet �S� and triplet �T� energies for �=0 are, re-
spectively,

E0
S = 0��� = �� = 0�, E0

T = 1��� = 0,�� = 1� . �19�

The corresponding ground-state spatial wave functions,

�0
S��1,�2� = Y00��1�Y00��2� �

1

4�
, �20�

�0
T��1,�2� =

Y1��1�Y00��2� − Y1��2�Y00��1�
�2

�
1

�8�
�Y1��1� − Y1��2�� , �21�

represent the state ��=0��� in Eq. �2� for the present systems,
provided that the resulting ground-state densities will not
change when � is set�0. In Eq. �21�, Y1��� may be any
normalized linear combination of the Y1m��� �m=0, ±1�,

Y1��� = �
m=0,±1

�mY1m��� , �22�

where �m	�m	2=1. In other words, ignoring the spin degen-
eracy, the triplet ground state is threefold degenerate.

While the singlet state �20� has a uniform density, �0
S���

� 2
4� , the triplet state has not,

�0
T��� =� d�2	�0

T��,�2�	2 = 	Y00	2 + 	Y1���	2. �23�

Obviously, there is no choice for the �m in Eq. �22� that
would make the density �23� uniform. This situation is simi-
lar to a �3D� Li atom �with the electron-electron repulsion
turned off�, held at full spin polarization �↑↑↑�: In its lowest-
energy state, the three electrons must have a nonspherical
configuration 1s12s12p1 or 1s12p2. In the present 2D system,
apart from the trivial case N=1, at least N=4 noninteracting
electrons are required for a uniform �spherically symmetric�
density in the lowest-energy state with full spin polarization.

B. General case with interacting electrons

Turning to the interacting case ��0 of the Hamiltonian
�17�, we multiply the noninteracting wave functions of the
preceding subsection with a Jastrow-type correlation factor
��

S,T���,

��
S,T��1,�2� = ��

S,T����0
S,T��1,�2� . �24�

Here, ���12 is the angle between �1 and �2, given by Eq.
�15�. For �=0, we have �0

S,T����1 and �0
S,T��0

S,T are the
Slater determinants of Sec. III A. For ��0, in contrast, ��

S,T

is a much more complicated �correlated� wave function. The
ansatz �24� preserves the correct symmetry of the wave func-
tion �0

S,T, since � is invariant upon interchanging �1 and �2.

In the Schrödinger equation Ĥ���
S,T=E�

S,T��
S,T with the

Hamiltonian �17�, the ansatz �24� yields eigenvalue equa-
tions for ���� �we omit the indices “�” and “S ,T” for brev-
ity�,

S: ����� = −
�����
tan �

+ ��v��� − E�
S����� , �25�

T: ����� = − 2
�����
tan �

−
�����
sin �

+ ��v��� + 1 − E�
T����� .

�26�

For any solution ���� of these equations, the ansatz �24� is

an exact eigenfunction of Ĥ�. Note that the arbitrary coeffi-

ADIABATIC CONNECTION IN DENSITY-FUNCTIONAL… PHYSICAL REVIEW A 75, 062506 �2007�

062506-3



cients �m in the linear combination �22� do not enter Eq.
�26�. Consequently, although different choices �22� generate
different triplet densities, the triplet correlation factor ��

T���
and energy E�

T are not affected.
The numerical solution of Eqs. �25� and �26� is discussed

in Appendix A. It is instructive to study in addition to the
realistic situation ��0 with repulsive electrons also the situ-
ation ��0 when the electrons become attracting each other.
For selected values of �, the resulting normalized functions
���� are plotted in Fig. 1. In the case ��0 �repulsive elec-
trons�, these functions are increasing monotonically with the
angle � �which is a measure for the distance between the
electrons�. Consistently, the opposite is true for ��0 when
the electrons are attracting each other. The numerical eigen-
values E�

S and E�
T are plotted versus � in Fig. 2 �dots�.

While the singlet density ��
S���� 2

4� is uniform and inde-
pendent of �, the triplet density ��

T��� is given by Eq. �A11�.
There, the coefficient c̃� can be evaluated via Eq. �A8� using
the numerical functions ��

T��� shown in Fig. 1�b�. c̃� is a
decreasing function of �, with c̃−�=3, c̃0=1 and c̃+�=0 �Fig.
3�. Consequently, the triplet density �A11� is nonuniform and
changes continuously between the asymptotic functions 3

4�
− 	Y1���	2 and 2	Y1���	2 as � grows from −� to +�; see also
Eqs. �31� and �34� below. Therefore, the triplet wave func-
tion ��

T��1 ,�2� does not represent the state ����� in Eq. �2�
for the triplet system. Curiously for one particular interaction
strength, ��−5.3, we find c̃�=2, such that ��

T��� coinciden-
tally becomes uniform.

C. Exact limits

Before we address the coupling-constant integrand W����
and its ISI model in Sec. IV, we first consider the situation
with 	�	�1 �weak interaction�, as well as the extreme limits
�→� �strong repulsion� and �→−� �strong attraction�.

1. Weak interaction

For small 	�	, E�
S and E�

T are reproduced by the Møller-
Plesset �MP� perturbation expansion �13� for the Hamil-
tonian H� �with respect to � as the small parameter�,

E�
S,T = �

n=0

�

E�n�
S,T�n �	�	 � 1� . �27�

At least for the singlet system, the MP expansion is identical
with the Görling-Levy �GL� expansion �4�, since the density
��

S��� does not change as the perturbation � is turned on.
Consequently, E�2�

S is the value of the second-order correla-
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0
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1
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2
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0

0.5
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ψTα (γ)

(a)

(b)

−10

α = −3

α = −1

α = 0

+1

+5

+10+20

α = −1

α = 0

α = +1

+5
+10

+20 α = −10

α = −3

γ

γ

FIG. 1. The normalized correlation factors ��
S,T��� for various

values of the parameter �, obtained by numerical solution of Eqs.
�25� and �26�. The functions �32� �for �=−3, S� and �33� �for �=
−10, T� are shown as dashed curves.

-6 -4 -2 0 2 4
-4

-2

0

2

4

ES,T
α

S

T

FIG. 2. The singlet �S� and triplet �T� total ground-state energies
E�

S,T for selected values of � �dots�. The perturbation expansions
�27�, truncated at second order, are plotted for 	�	�1.5 as solid
curves. The dashed curves represent the asymptotic strong-
repulsion energy �30� ���0� and, respectively, the strong-attraction
energies �32� and �33� ���0�.

-50 0 50 100 150 200

0.5
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1.5

2
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c̃α

FIG. 3. The coefficient c̃� of Eq. �A11� for the triplet density
��

T���. Only for ��−5.3 �vertical dashed line�, when c̃�=2, this
density is uniform on the sphere.
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tion energy Ec
GL2�aB�� 1

2W0��aB� in expansion �7� in units of
e2 /aB=1 hartree. Up to second order, the coefficients are
known analytically �14�,

E�0�
S � E0

S = 0, E�1�
S = 1,

E�2�
S = − �3 − 4 ln 2� = − 0.227 411, �28�

E�0�
T � E0

T = 1, E�1�
T =

2

3
,

E�2�
T = − � 17

27 − 8
9 ln 2� = − 0.013 499. �29�

The corresponding second-order truncated expansions are
shown in Fig. 2 as solid parabolas.

The radius of convergence, �c, of the expansion �27�
about �=0 is probably finite �5�. In the extreme limits 	�	
→�, on the other hand, Eqs. �25� and �26� are easily solved
analytically as we shall see below. Independently, these lim-
its are interpreted physically in Appendixes B and C by
simple models.

2. Strong repulsion

For ��1, the electrons repel each other strongly. As �
→ +�, they become strictly correlated �8�. This phrase re-
fers to a quantum state where the two electrons, upon simul-
taneous measurement of their positions, are always found
exactly opposite to each other on the sphere �Appendix B�.
This is consistent with Fig. 1 where the correlation factor
��

S,T��� has an increasingly dominant maximum at �=� as
��0 grows. Consequently, in this limit, we can put in Eqs.
�25� and �26� sin ���−���, tan ��−� and expand v���
� 1

2 + 1
16�2. The resulting two equations are identical and have

the normalized solutions �with normalization factors N �
S,T�

��
S,T��� → g�

S,T��� � N�
S,Te−b�� − ��2

, b =
1

8
�� ,

E�
S,T →

1

2
�� + ��� �� → + �� . �30�

Consequently, for ��1, the lower limit 0 of the integrals
�A8� may be replaced by −�. Evaluating the moments �A8�
for ��2 to leading order in ��1 yields the asymptotic nor-
malization factors N �

S =�1/4 and N �
T = 1

2 �4��1/4. In particular,
we find c̃�=0, such that the triplet density �A11� becomes

��
T��� � lim

�→�
��

T��� = 2	Y1���	2. �31�

Confirming the idea of strictly correlated electrons �SCE �8�,
see Appendix B�, the asymptotic behavior �30� of E�

S,T is
identical with the result �B7� for R=1. It is approached very
slowly in Fig. 2 �dashed curve for ��0�.

3. Strong attraction

In the opposite limit �→−�, in contrast, two strongly
attractive electrons are forming a tightly bound pair �like

electron and positron in a 2D positronium atom� that is mov-
ing on the sphere as a compact object with approximate ra-
dius

aB

	�	 �R. Consequently, the correlation factor ���� is
strongly peaked at �=0 in this limit �see Fig. 1�. Now, we
may put tan �, sin ��� and v����1/� in Eqs. �25� and
�26�, and the solutions �with normalization factors M�

S,T� be-
come

��
S��� → h�

S��� � M�
Se−	�	�,

E�
S → − �2 �� → − �� , �32�

��
T��� → h�

T��� � M�
Te−	�	�/3,

E�
T → −

1

9
�2 �� → − �� . �33�

The normalization conditions c�,0
S =1 and c�,0

T − 1
3c�,1

T =1, with
Eq. �A8� for c�,�

S,T, imply M�
S =23/2	�	 and M�

T = � 2
3

�5/2�2 as
�→−� �when the upper limit � of the integrals �A8� may be
replaced by ��. The asymptotic functions h�

S,T��� are shown
in Fig. 1 as dashed curves for �=−3 �S� and for �=−10 �T�.
The asymptotic energies −�2 and − 1

9�2 are shown as dashed
curves for ��0 in Fig. 2. Confirming the idea of a compact
attractive-electron pair, the energies E�

S,T for �→−� ap-
proach the two lowest eigenvalues E0 and E1 of 2D positro-
nium as �→−�, Eq. �C7� in Appendix C.

Even the wave functions �C8� of Appendix C can be ex-
tracted from the behavior of the present system in the limit
�→−� �14�. Integrating the resulting expression yields

�−�
T ��� =

3

4�
− 	Y1���	2, �34�

confirming the earlier result c̃−�=3 in Eq. �A11�.

IV. CORRELATION ENERGY IN THE SINGLET SYSTEM

The main goal of the present work is to test the ISI model
�10� of Ref. �5� for the coupling-constant integrand W���� in
Eq. �1�. Such a test requires an electron system whose
ground-state density � does not change as the strength � of
the electronic repulsion is varied. As we have seen in Sec.
III, the present system with two electrons on a sphere just has
this property, at least when the electrons are in the singlet
state. As in Sec. II, we use for this system the notation
W��R�, ���R� for W����, �����, etc.

A. Coupling-constant integrand

The singlet wave function ��̄
S��1 ,�2�� 1

4���̄
S���, with

�̄=�R /aB, represents the state ���R� in Eq. �2� for the
coupling-constant integrand of the singlet system,

W��R� =
e2

R
� d�1� d�2 v���	��̄

S��1,�2�	2 − U�R�

�
e2

2R
�

0

�

d� sin �v���	��̄
S���	2 −

2e2

R
. �35�

Here, Eq. �16� was used for V̂ee in Eq. �2�, and the Hartree
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energy U�R�=Q2 /2R is the electrostatic energy of a uniform
continuous surface charge Q=−2e on the sphere. Due to the
scaling behavior �11� of the general integrand W���� in Eq.
�1�, the function �35� satisfies the relation

W��R� =
aB

R
W��R/aB��aB� . �36�

This result has a simple graphical interpretation. The plot of
W��R� vs � is obtained from the one of W��aB� simply by

zooming with the factor
aB

R . In particular, without loss of
generality, we may confine ourselves to the case R=aB. With
the numerical correlation factors ��

S��� described in Sec. III,
Eq. �35� yields values for W��aB� which are represented by
dots in Fig. 4.

To test the numerical accuracy, first note that V̂ee

��Ĥ��R� /��, since the Hamiltonian �14� has no
�-dependent external potential. Therefore, the Hellmann-

Feynman theorem ensures that ���
S�R�	V̂ee	��

S�R�

=�E�

S�R� /��, and we have

W��R� =
�E�

S�R�
��

− U�R� . �37�

Numerical differentiation of E�
S =

aB

e2 E�
S�aB� yields via Eq. �37�

values for
aB

e2 W��aB� that deviate by less than 0.0001 from the
corresponding results obtained directly from Eq. �35�. Such a
small deviation is invisible in Fig. 4. It is completely negli-
gible against the difference from the ISI model W�

ISI�aB�,
solid curve in Fig. 4, which shall be analyzed below. This

observation suggests that the present numerical results for
W��aB� are very accurate.

B. Test of the ISI model

The coefficients of the two leading terms in both Eqs. �7�
and �8� are known analytically for the present system. Via
Eq. �37�, using Eqs. �27�, �28�, and �30�, they can be read off
Eq. �18�,

W0�R� = −
e2

R
, W0� = − 2�3 − 4 ln 2�

e2

aB
, �38�

W��R� = −
3

2

e2

R
, W�� �R� =

1

4
�aB

R
�3/2 e2

aB
. �39�

The ISI model W�
ISI�R� for W��R� is given by Eq. �10�, with

W��R�=− 3
2

e2

R and

X�R� = C
e2

R
, Y�R� = 16C2 R

aB
,

Z = 2C − 1 �C = 3 − 4 ln 2� . �40�

For R=aB, these parameters are listed in the row “ISI” of
Table I. The R dependences in Eqs. �38� and �39� guarantee
that W�

ISI�R� has the correct scaling behavior �36�.
From now, we put R=aB and drop the argument �aB� for

the rest of this subsection. W�
ISI is plotted in Fig. 4 �solid

curve�, modeling the “exact” W� �dots� reasonably well. To
appreciate the success of this model, note that ISI uses the
perturbation �or weak-interaction� expansion only up to the
second order. This information alone would predict for W�

the linear function W�
�2�=W0+�W0�, shown as an inclined

solid line in Fig. 4. To transform this extremely poor predic-
tion into the realistic function W�

ISI, only two additional co-
efficients W� and W�� from the simple opposite �strong-
interaction� limit �→� are employed.

For large ��1, the small ISI error in Fig. 4 is due to the
spurious nonzero value − XZ

Y , predicted by the ISI function
W�

ISI for the coefficient W�� �0 in expansion �8�. To estimate
the effect of this shortcoming, we re-define the values of X,
Y, and Z, and consider the modified function

W�
ISI3 = W� +

X
�1 + Y� + Z

+
XZ

Y�Q + ��
. �41�

It has an extra parameter Q�0, but no spurious term O��−1�
as �→�. The new parameter shall be used below to enforce

2 4 6 8 10

-1.4

-1.3

-1.2

-1.1

-1

Singlet system (R = aB)

aB

e2 Wα[aB]

FIG. 4. The accurate numerical coupling-constant integrand
W��R� �large dots� for the singlet system �with R=aB�. The inclined
solid straight line represents the first-order Taylor expansion W�

�2�

=W0+�W0� of W��aB� using the exchange energy Ex�aB�=W0 and
the second-order correlation energy Ec

GL2�aB�= 1
2W0�. Enormous im-

provement is found in the ISI model �10�, shown as a solid curve,
using W��aB�=− 3

2
e2

aB
and the parameters �40�. The long-dashed

curve represents the ISI3 model �41� with the parameters listed in
row �iii� of Table I. The upper and lower short-dashed curves �the
latter one almost on top of the dots representing the exact W��aB��,
respectively, correspond to rows �i� and �ii� of Table I.

TABLE I. Coefficients of the ISI and the ISI3 models for
W�

S�R�.

�Singlet� X Y Z Q W0�

ISI 0.227 0.827 −0.545 ��� 1.016

ISI3 �i� 0.227 0.827 +1.352 0.921 0.964

ISI3 �ii� 0.227 0.827 −0.807 0.328 −0.762

ISI3 �iii� 0.156 0.390 −0.860 0.561 0.710
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the correct second derivative W0��	�d2W� /d�2�	�=0=6Ec
GL3.

Then, the first three terms �rather than the first two� in both
expansions �7� and �8� of the true integrand W��R� are repro-
duced exactly. Therefore, the present model is labeled
“ISI3,” whereupon the original ISI of Ref. �5� should logi-
cally be called “ISI2.”

To keep the correct coefficient of the O��−1/2� term, we
must set X=W���Y, as in Eq. �40�. Comparing the two lead-
ing terms in the expansion of the function �41� about �=0
with Eq. �7� yields two equations for the remaining three
parameters Q, Y, and Z,

W0 − W�

W��
=

�Y

Z + 1
+

Z

Q�Y
, �42�

W0�

W��
=

�Y3

2�Z + 1�2 +
Z

Q2�Y
. �43�

Eliminating Q,

Q =
Z

a�Y −
Y

1 + Z

, a �
W0 − W�

W��
� 0, �44�

writing
W0�

W��
�b, and taking �Y �c for known, we are left with

a cubic equation for Z,

Z3 + �2 +
a2c

b
�Z2 + �1 +

c

2b
�2a − c�2�Z +

c

b
�a − c�2 = 0.

�45�

Using, rather arbitrarily, for Y =c2 the ISI value YISI �by
putting c=− 2b

a2 �, the three solutions of Eq. �45� would be
Z0=−�1+ 2b

a3 � and

Z1,2 =
1

2
�− Z0 ± �Z0�Z0 − 8�� . �46�

Solution Z0 is useless, since it implies Q=�, recovering in
Eq. �41� the original ISI function �10�. For the present sys-
tem where a=2 and b=−8C, solution Z1 yields only slight
improvement beyond ISI �upper short-dashed curve in Fig. 4,
row �i� in Table I�, while solution Z2 seems to provide an
accurate model �lower short-dashed curve in Fig. 4, row �ii�
in Table I�. Almost invisible in Fig. 4, however, the second
derivative of W�

ISI3 at �=0 is negative in this case �see the
last column in Table I�, implying a spurious inflection point
at ��0.033.

While the choice Y =YISI is quite arbitrary, Y can be cho-
sen in such a way that W�

ISI3 has the correct second derivative
at �=0, W0��	�d2W� /d�2�	�=0=6Ec

GL3. Completing the set of
Eqs. �42� and �43�, this condition yields the third equation
for the three parameters Q, Y, and Z �recall that X=W���Y�,

W0� =
XY2

4

Z + 3

�Z + 1�3 +
2XZ

YQ3 . �47�

Equivalently, Eqs. �45� and �47� represent two equations for
two unknowns Z and Y �c2. For the present system, W0�
=6E�3�

S e2

aB
can be found numerically, W0��0.71 e2

aB
. (Note that

W0�, unlike W0�, is R-dependent and generally given by
W0��R�=W0��aB� R

aB
�0.71Re2

aB
2 .) This is positive, but smaller

than the ISI prediction 	
aB

e2 �d2W�
ISI /d�2�	�=0=16C2�C+1�

=1.02 �last column in Table I�. Only for one particular value
of Y �or c=�Y�, Eq. �45� has a solution Z �row �iii� in Table
I, long-dashed curve in Fig. 4� that fulfills condition �47�
with W0�=0.71 e2

aB
and at the same time yields in Eq. �44� a

positive value for Q. �The other two solutions for the same Y
do not.�

Using two additional exact asymptotic parameters, W0�
=0.71 e2

aB
and W�� =0, ISI3 is more accurate than the original

ISI �or ISI2� model. This improvement will be discussed
further in the following subsection. For general systems,
however, evaluation of W0�=6Ec

GL3 is even more expensive
than that of Ec

GL2. Moreover, it is not guaranteed, that there is
always a value c for which Eq. �45� has a solution that fulfills
condition �47� and yields Q�0 in Eq. �44�. Apart from these
limitations and difficulties, the ISI3 integrand �41�, sharing
all the exact properties, is more accurate than the original ISI
model. Just as the ISI integrand �10�, the ISI3 integrand �41�
can be integrated analytically in Eq. �1�. Unlike the ISI co-
efficients, Eq. �9�, however, the ISI3 coefficients Y and Z
have no explicit expressions, but are given implicitly as so-
lutions of cubic equations �while X=W���Y and Q, Eq. �44�,
are explicit functions of Y and Z�.

C. Singlet correlation energies

Integration �0
1d� in Eq. �37� yields the exchange-

correlation energy �1� of the realistic system �with �=1� as a
function of R. Since E0

S�R�=0, see Eq. �28�, we obtain

Exc
S �R� � �

0

1

d� W��R� = E1
S�R� − U�R� =

e2aB

R2 ER/aB

S − 2
e2

R
,

�48�

where Eq. �18� has been applied in the second step.
In the high-density limit R→0, we may use the weak-

interaction expansion �27� for E� which has no zero-order
term, E�0�

S =0; see Eq. �28�. Representing the exchange energy

Ex�R��W0�R�=− e2

R , the first-order term �with E�1�
S =1� be-

comes dominant as R→0. The remaining correlation energy
Ec�R�=Exc�R�−Ex�R�,

Ec
S�R� =

e2aB

R2 ER/aB

S −
e2

R
, �49�

is for small R dominated by the constant �R-independent�
second-order term Ec

GL2= e2

aB
E�2�

S ,

Ec
S�R� =

e2

aB
E�2�

S +
e2R

aB
2 E�3�

S + O�R2� �50�

�with E�2�
S =−C=−0.227 411�. For finite densities �with R

�aB�, however, Ec
GL2 as an approximation to Ec

S�R� becomes
extremely poor, see Table II. The “exact” values there are
obtained from Eq. �49� using the numerical values E�

S .
Vast improvement beyond Ec

GL2 is found in the ISI model
�third column in Table II�,
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Ec
ISI�R� � �

0

1

d� W�
ISI�R�

=
e2aB

8CR2�k�R� − �2C − 1�ln�1 +
k�R�
2C

�� −
e2

2R
,

�51�

where k�R�=�1+16C2R /aB−1. The mean absolute error of
the ISI correlation energies in Table II is 0.0076 hartree or
4.8 kcal/mole. By construction, ISI is particularly accurate
for R�aB and for R�aB. The maximum error occurs at R
�aB.

The ISI model for the integrand W��R� uses only the first
two terms, W0�R�=Ex�R� and W0�=2Ec

GL2, of the weak-
interaction �or Taylor� expansion �7� for small ��1. Instead
of considering higher-order terms, the two parameters W��R�
and W�� �R� from the opposite strong-interaction expansion
�8� for ��1 are introduced. The success of this “interaction-
strength interpolation” is quite remarkable. Note that the
Taylor expansion of W��R� about �=0 is expected to have
only a finite radius �c�R� of convergence. Therefore, even
when all orders are considered, W��R� can be constructed
only for ���c�R�. In this sense, ISI is simulating a re-
summation of the divergent perturbation expansion �5�.

As a natural extension of ISI, the ISI3 model �41� uses
two additional asymptotic coefficients: The O��2� coefficient
W0��R��0.71Re2 /aB

2 from the weak-interaction expansion �7�
plus the O��−1� coefficient W�� �0 from the strong-
interaction expansion �8�. Not surprisingly, the resulting ISI3
correlation energies Ec

ISI3�R�=�0
1d� W�

ISI3�R�, using the pa-
rameters in row �iii� of Table I, are more accurate �fourth
column in Table II� than the ISI values. Their mean absolute
error amounts only 0.0027 hartree or 1.7 kcal/mol. Requir-
ing the third-order of the GL perturbation expansion, how-
ever, this improvement is bought at a high price.

In concluding, we consider the kinetic-energy contribu-
tion Tc��� to the correlation energy. Using the notation �¯
�

for expectation values in the state �����, the generalized
correlation energy Ec

����=�0
�d� W����−�Ex���, with

Ec
�=1���=Ec���, can be written as

Ec
���� = ��T̂
� − �T̂
0� + ���V̂ee
� − �V̂ee
0� , �52�

where �T̂
0�Ts��� is the density functional of the noninter-
acting kinetic energy. The enhancement of kinetic energy due

to the interaction �V̂ee in the Hamiltonian �6�,

Tc
���� = ��T̂
� − �T̂
0� , �53�

is an important contribution to Ec
����. Combining Eqs. �52�

and �53�, we find

Tc
���� = Ec

���� − ��W���� − W0���� , �54�

where we have used the definition �2� of W����. The weak-
interaction expansion �7� implies that Ec

����=Ec
GL2����2

+O��3� �recall that W0����Ex��� and W0�����2Ec
GL2���

�0� and thus

Tc
���� = 	Ec

GL2���	�2 + O��3� �� → 0� . �55�

On the other hand, since Tc
����=�0

�d� W����−�W����, the
scaling behavior �11� implies that

Tc
���	� = 	2Tc

��/	���� . �56�

In the present �singlet� system, the energy at �=0 is
purely kinetic. Moreover, since E0

S=0, see Eq. �19�, we have
Ts�R�=0 such that Tc

��R� is for all R the full kinetic energy in
the state ���R�. Equation �56� implies the scaling behavior

Tc
��R�= � aB

R
�2

Tc
�̄�aB�, with �̄=�R /aB. Therefore, we may con-

fine ourselves to the case R=aB. Figure 5 shows Tc
��aB� for

−1��� +5. The quadratic behavior �55� around �=0 is
evident. For �→ +�, the virial theorem for the harmonic
oscillator, given by the Hamiltonian �B6� in Appendix B,
demands that

aB

e2 Tc
��aB�→ 1

4
��. For �→−�, in contrast, the

virial theorem for the 2D attractive-electron pair in Appendix
C implies that Tc

��aB�→−E0= +�2 e2

aB
; see Eq. �C7�.

V. SUMMARY AND CONCLUSIONS

We have considered here a nontrivial �interacting� two-
electron system where the ground-state electron density does
not change when the Coulomb repulsion between the elec-
trons is multiplied by an arbitrary real number ��1. For
such a system, the external potential vext

� ���� ; r̂� in the Hamil-
tonian �6� is known and, trivially, is the same for all ��R.
Consequently, the coupling-constant integrand W��R� of this
system can be obtained directly by solving a regular
Schrödinger equation. Moreover, this Schrödinger equation

TABLE II. Correlation energies Ec�R� of the singlet system in second-order perturbation theory �GL2�, in
the ISI model �51�, and in the ISI3 model, using the function �41� and the additional coefficients W0��aB�
�0.71 e2

aB
and W�� �0. The “exact” values are obtained numerically via Eq. �49�.

R GL2 ISI ISI3 Exact

0.1 −0.2274 −0.2118 −0.2157 −0.2175

0.2 −0.2274 −0.1985 −0.2045 −0.2064

0.5 −0.2274 −0.1679 −0.1760 −0.1796

1.0 −0.2274 −0.1349 −0.1426 −0.1473

2.0 −0.2274 −0.0984 −0.1040 −0.1081

5.0 −0.2274 −0.0562 −0.0587 −0.0605

10.0 −0.2274 −0.0337 −0.0348 −0.0355
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can be simplified to a one-dimensional eigenvalue equation.
The numerical solution of this simple equation is very accu-
rate, at least when the interaction strength � is not extremely
large.

Knowing the exact integrand W��R�, we are able to test its
ISI model W�

ISI�R� of Ref. �5�. This test is all the more effi-
cient here, since the four ISI coefficients W0�R�, W0�, W��R�,
and W�� �R�, and then also the ISI model W�

ISI�R�, are known
analytically for this system. As can be seen in Fig. 4, W�

ISI�R�
is reasonably accurate. The same is true for the correspond-
ing ISI correlation energies in Table II. This success of the
ISI approach is particularly remarkable, since ISI uses only
the two leading terms of the perturbation expansion �7�. This
information alone cannot provide any reasonable prediction
for finite values ��1, see the inclined straight line in Fig. 4.
As the only additional information, however, ISI uses the
two leading terms of the strong-interaction limit �8�.

The present example for an exact integrand W��R� is not
only useful for a test of the ISI model, but, in particular, for
constructing new functionals for the correlation energy. Us-
ing three instead of only two leading terms in both the ex-
pansions �7� and �8�, the extended ISI model of Sec. IV B,
called “ISI3” here, improves the ISI results considerably.
Since ISI3 requires evaluation of the third order in the per-
turbation expansion of Ref. �4� �which is known accurately
only for the present system�, however, this improvement is
bought at a high price.

In addition to this analysis of the ISI approach, the corre-
lated two-electron wave functions have been studied and il-
lustrated in Fig. 1 for different values of the interaction
strength �. The corresponding ground-state energies are
shown in Fig. 2. For this study, also negative values of �
�describing attractive electrons� are included. Particular at-
tention is drawn to the extreme limits �→ +� and �→−�.
These limits are treated analytically in Appendixes B and C,
respectively. For both positive and negative values of �, the
kinetic energy is enhanced over its noninteracting value at
�=0, as can be seen in Fig. 5. Curiously, in contrast to the
spin-singlet system, the triplet system does not have a con-
stant uniform density, but one that changes as the parameter

� is varied. The only exception is the accidental case ��
−5.3 when the triplet state has a uniform ground-state den-
sity.

APPENDIX A: SOLVING THE SCHRÖDINGER
EQUATION

1. Correlation factors ��
S,T

„�…

The function ���� in Eqs. �25� and �26� has the domain
�� �0,��. For 	�	�1 when v���� 1

� and tan ��sin ���,
we expand ����=��0�+���0��+ 1

2���0��2+¯ to find from
Eqs. �25� and �26� the cusp conditions

S: ���0� = ���0� ,

���0� =
1

2
��2 − E�

S���0� , �A1�

T: ���0� =
1

3
���0� ,

���0� =
1

12
��2 − 3�E�

T − 1����0� . �A2�

For �=�, in contrast, when the two electrons are at opposite
positions on the sphere, the wave function cannot have a
cusp. This implies the eigenvalue condition

����� = 0. �A3�

For the lowest-energy state, � must be node-free, �����0
for 0����. In this case, the wave function �24� represents
the state ����� in Eq. �1�, at least for the singlet system.
According to conditions �A1� and �A2� for ���0�, and con-
sistent with intuition, 	����	2 has for repulsive electrons ��
�0� a minimum, but for attractive ones ���0� a maximum
at �=0.

Starting at �=0 with the cusp conditions �A1� and �A2�,
Eqs. �25� and �26� are easily integrated numerically up to the
point �=� where the eigenvalue condition �A3� is used for
selecting the physical solutions �“eigenfunctions”�. The re-
sults of such a numerical integration are presented in Fig. 1.

At least for special values of �, even analytical solutions
exist �see Eqs. �30�, �32�, and �33��. Substituting ����
= f�cos �� and writing cos �=x, Eqs. �25� and �26� assume a
more familiar form,

S: �1 − x2�f��x� − 2xf��x� + �E�
S − �ṽ�x��f�x� = 0,

�A4�

T: �1 − x2�f��x� − �3x + 1�f��x� + �E�
T − 1 − �ṽ�x��f�x� = 0,

�A5�

where ṽ�x�= �2�1−x��−1/2. For �=0, Eq. �A4� is Legendre’s
differential equation. Its solutions are the Legendre polyno-
mials, f�x�= P��x�, with E0

S=���+1� and �=0,1 ,2 , . . .. For

��0, these solutions correspond to certain excited states �̃0
S

-1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

aB

e2 T
α
c [aB]

(R = aB)

FIG. 5. The enhancement Tc
��R� of the kinetic energy T��R� of

the interacting system beyond the noninteracting value Ts�R�. In the
present case, Ts�R�=0, such that Tc

��R��T��R� is simply the full
kinetic energy.
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of the noninteracting system with ��=��=�. This is evident
from the addition theorem for spherical harmonics,

�̃0
S��1,�2� �

P��cos ��
4�

�
1

2� + 1 �
m=−�

�

Y�m
* ��1�Y�m��2� .

�A6�

For ��0, however, the solutions f�x� of Eq. �A4� cannot be
polynomials, since the cusp condition �A1� implies that
	f��1�	=�. Note, however, that the function ṽ�x� is closely
related to the Legendre polynomials, ṽ�x����=0

� P��x�.

2. Densities ��
S,T

„�…

Eventually, we consider the electron density ��
S,T��� in the

state �24�. For �=0 we have �0
S,T����1. For the general

case, we expand in terms of the P��x�,

	��
S,T���	2 = �

�=0

�

c�,�
S,TP��cos �� , �A7�

c�,�
S,T =

2� + 1

2
�

0

�

d� sin �P��cos ��	��
S,T���	2, �A8�

where c0,�
S,T=��,0. Then, we have

��
S,T��1� = 2� d�2	��

S,T���	2	�0
S,T��1,�2�	2

= 2�
�=0

�

c�,�
S,T 4�

2� + 1 �
m=−�

�

Y�m
* ��1�

�� d�2 Y�m��2�	�0
S,T��1,�2�	2, �A9�

where we have used the addition theorem �A6� for P��cos ��.
In the singlet case �20�, the �2 integral equals

� 1
4�

�2�4���,0�m,0 such that ��
S���= 2

4�c�,0
S . Normalization im-

plies c�,0
S =1 and, as expected, this surface density is uniform

for all �,

��
S��� =

2

4�
�all � � R� . �A10�

In the triplet case �21�, the �2 integral in Eq. �A9�
is easily evaluated after expressing the products
Y1m��2�Y1m���2� in terms of the functions Y2m��2�,
with the result ��

T���= �c�,0
T − 1

5c�,2
T �	Y00	2+ �c�,0

T − 2
3c�,1

T

+ 1
5c�,2

T �	Y1���	2. Consequently, normalization �d� ��
T���

=2 yields the condition c�,0
T = 1

3c�,1
T which can be used to

eliminate c�,1
T ,

��
T��� =

c̃�

4�
+ �2 − c̃��	Y1���	2,

c̃� � c�,0
T −

c�,2
T

5
. �A11�

As it turns out, c̃��2 for all � except for one particular
value ��−5.3. Consequently, the triplet density is typically

nonuniform. In particular, it is not the same for different
values of �. Therefore, unfortunately, the triplet states
��

T��1 ,�2� do not represent the state ����� in Eq. �1� for
the triplet system.

APPENDIX B: STRICTLY CORRELATED ELECTRONS
(�\ +�)

In the strong-repulsion limit �→� which is not acces-
sible by perturbation theory, the two electrons are strictly
correlated �8�, staying always exactly at opposite positions
on the sphere,

lim
�→�

	����1,�2;�1,�2�	2 =
��
1 + 
2 − �����1 − �2 + ��

4� sin 
2
.

�B1�

At large but finite ��1, this strictly-correlated motion is
superimposed by quantum-mechanical zero-point oscilla-

tions �8�. Driven by the strong repulsion �V̂ee between the
electrons, these oscillations are fast. Therefore, we can study
small oscillations around a frozen pair
��
1

�0� ,�1
�0�� , �
2

�0� ,�2
�0��� of strictly-correlated positions, for

example �� �
2 ,0� , � �

2 ,���. Writing


1 =
�

2
+ �
1, �1 = ��1,


2 =
�

2
− �
2, �2 = � + ��2, �B2�

we introduce approximate Cartesian coordinates on the
sphere with radius R ��
i ,��i�1�,

xi = R��i, yi = R�
i. �B3�

Then the Hamiltonian �17� becomes

Ĥ��R� �
me

2
�ẋ1

2 + ẏ1
2� +

me

2
�ẋ2

2 + ẏ2
2� + �V��� . �B4�

Writing �
1−�
2��
 and ��1−��2���, the interaction
potential �16� can be expanded,

Vee��� �
e2

2R

1

�1 −
1

4
���2 + �
2�

�
e2

2R
�1 +

1

8
���2 + �
2�� .

�B5�

In terms of center-of-mass and relative coordinates, X
= 1

2 �x1+x2�, Y = 1
2 �y1+y2�, x=x1−x2, and y=y1−y2, the

Hamiltonian �B4� is separated into a free particle and an
oscillator,

Ĥ��R� �
M

2
�Ẋ2 + Ẏ2� +

�

2
�ẋ2 + ẏ2�

+ �� e2

2R
+

e2

16R3 �x2 + y2�� . �B6�

In the ground state, the free particle �mass M =2me� has only
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potential energy � /2R, while the oscillator �mass �=
me

2 � has
the 2D zero-point energy 2

2���=���e2 /8�R3,

E�
S,T�R� �

�e2

2R
+

2

2
��� =

e2

2R
�� + ��aB/R + O��0�� .

�B7�

For R=aB, this result is equivalent to the asymptotic expres-
sion for E�

S,T in Eq. �30�.

APPENDIX C: STRONG-ATTRACTION LIMIT (�\−�)

In the strong-attraction limit ��−1 the electron pair on
the sphere forms a bound state in a 2D, asymptotically planar
environment. We therefore consider two attractive electrons
on a plane or, equivalently, a 2D positronium atom. For the
wave function ��r1 ,r2 ;�1 ,�2�=U�r1 ,r2����1 ,�2� �where
r1 and r2 are 2D position vectors and �1, �2 are spin vari-
ables� we introduce center-of-mass and relative coordinates,
R= 1

2 �r1+r2� and r=r1−r2, respectively,

U�r1,r2� = u�r�eiK·R. �C1�

In polar coordinates �r , �, the Schrödinger equation for the
relative wave function ur� reads

−
�2

2�
�1

r

�

�r
�r

�u�r�
�r

� +
1

r2

�2u�r�
� 2 � − 	�	

e2

r
u�r� = Eu�r�

��� =
me

2
� . �C2�

The ansatz u�r�=R�r�eim , with R�r�=g�r�e−!r and !2

�me	E	 /�2, yields the equation

g��r� + �1

r
− 2!�g��r� + � 	�	

aBr
−

!

r
−

m2

r2 �g�r�

= 0 �m = 0, ± 1, ± 2, . . . � . �C3�

Inserting the expansion g�r�=rk�"=0
� a"r"=�"=0

� a"r"+k, a0�0,
we obtain

rk−2�a0�k2 − m2�� + �
"=1

�

rk−2+"�a"��k + "�2 − m2�

+ a"−1�− 2!�k + " − 1
2� +

	�	
aB
�� = 0. �C4�

This can be fulfilled only with k2=m2. Since u�r� is regular
at r=0, the correct choice is k= 	m	. For the coefficients, we
obtain the recursion relation

a" =

2!�	m	 + " − 1
2� −

	�	
aB

"2 + 2	m	"
a"−1 �" = 1,2,3, . . . � . �C5�

Since a" /a"−1→2! /" as "→�, the series must be finite �and
g�r� a polynomial� to avoid the divergence g�r�→e+2!r as r
→�. Consequently, ! is restricted to the values

!n =
	�	
2aB

1

n + 1
2

�n � 	m	 + " − 1," = 1,2,3, . . . � . �C6�

The corresponding energy eigenvalues are

En = −
�2!n

2

me
= −

�2

�2n + 1�2

e2

aB
�n = 0,1,2,3, . . . � .

�C7�

For n=0,1, these are �in atomic units� identical with the
asymptotic energies �32� and �33�. The corresponding eigen-
functions unm

� �r , � are

u00
� �r� =

2	�	
�2�aB

e−	�	r/aB,

u1m
� �r, � =

2�2

9�3�aB
2

re−	�	r/3aBeim �m = 0, ± 1� . �C8�

Using the asymptotic correlation factors �32� and �33�, re-
spectively, these wave functions can also be extracted from
the ansatz �24�.
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