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The structure of the unnatural parity states of PsH, LiPs, NaPs, and KPs are investigated with the configu-
ration interaction and stochastic variational methods. The binding energies �in hartree� are found to be 8.17
�10−4, 4.42�10−4, 15.14�10−4, and 21.80�10−4, respectively. These states are constructed by first coupling
the two electrons into a configuration which is predominantly 3Pe, and then adding a p-wave positron. All the
active particles are in states in which the relative angular momentum between any pair of particles is at least
L=1. The LiPs state is Borromean since there are no three-body bound subsystems �of the correct symmetry�
of the �Li+, e−, e−, e+� particles that make up the system. The dominant decay mode of these states will be
radiative decay into a configuration that autoionizes or undergoes positron annihilation.
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I. INTRODUCTION

The stability of a bound state composed of two electrons
and a positron, the positronium negative ion, was first dem-
onstrated in a seminal calculation by Wheeler �1�. Shortly
after this calculation, the four-body systems, PsH and Ps2
were shown to be stable �2,3�. Since that time, only a few
other electronically stable states have been discovered that
can be formed from combinations of p+, e−, and e+. These
are additional bound states of Ps2 �4–7�, a compound that is
best described as e+PsH �8�, and a �p+, 4e−, 2e+� complex
�8�. Additionally, a number of atoms have been identified as
being capable of binding positronium and positrons �9–11�.

Just recently, a new class of positronic compounds that
are electronically stable was identified �12�. The new PsH
and NaPs bound states were unnatural parity states with sym-
metry conditions that act to prevent decay into the lowest
energy dissociation products. An unnatural parity state is a
state with parity equal to �= �−1�L+1, where L is the orbital
angular momentum of the state. These PsH and NaPs sys-
tems have the two valence electrons in a spin-triplet state, a
total orbital angular momentum of zero, and an odd parity,
i.e., L�=0−. In addition, these states had the unusual feature
of decaying very slowly by 2� or 3� annihilation.

In this paper, more details about the L�=0− negative par-
ity states of PsH and NaPs are given. Negative parity states
of LiPs and KPs are also identified as being electronically
stable. The LiPs state has the additional distinction of being
a Borromean state �13–16� since the �Li+, e−, e−, e+� system
has no stable three-body state that can act as a parent for the
four-body 2,4So state. We have adopted the definition of Ri-

chard: A bound state is Borromean if there is no path to build
it via a series of stable states by adding the constituents one
by one �13�.

It should be noted that there are analogs of these states in
the alkaline-earth metal sequence. Configuration interaction
�CI� approaches have been used to demonstrate the stability
of the Be−, Mg−, Ca−, and Sr− np3 4So states �17,18�. How-
ever, the issue of whether an electron can be attached to the
3Pe state of H− into an 4So state of H2− has been the subject
of some controversy. A complex rotation method was applied
to a large basis CI wave function and a shape resonanace
lying about 1.4 eV above the 3Pe threshold was predicted
�19�. However, this was contradicted by a much more sophis-
ticated hyperspherical calculation that exhibited no sign of a
resonance �20�.

II. THEORETICAL OVERVIEW

A. Symmetry conditions for binding

The stability of these systems lies in the symmetry rela-
tions between the pairs of particles that make up the system.
The discussion of these conditions will be addressed specifi-
cally to PsH, but these conditions, with some small modifi-
cations, will also apply to the other systems addressed in this
paper.

The electronic stability of PsH can be motivated by con-
sideration of the H−�2p2 3Pe� bound state �21–23�. This state
has an energy of −0.125 355 45 hartree �23� and is electroni-
cally stable due to symmetry conditions. It cannot decay into
the H�1s�+e− channel since the �=1 partial wave of the
electron automatically results in a state of negative parity.
The L�=0− state of PsH is formed when the positron is
trapped into a 2p state of the H− attractive potential well. The
possible decay modes are constrained by the symmetry con-
ditions. Dissociation into Ps�1s�+H�1s� is forbidden since
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�= �−1�L, where L is the orbital angular momentum between
the Ps�1s� and H�1s� fragments. Similarly, dissociation into
Ps�ns�+H�n�� or Ps�n��+H�ns� does not occur since it is
not possible to construct an L�=0− state if one of the angular
momentum is zero. The lowest energy dissociation channel
would be into Ps�2p�+H�2p� �with the two fragments in a
p-wave� with an energy threshold of −0.1875 hartree. An-
other possible decay would be into the H−�2p2 3Pe�+e+

channel but the threshold energy here is
−0.125 355 45 hartree �23�.

It is easy to see that there is potentially a large energy
advantage associated with binding the positron to the nega-
tive ion. If the H− state is regarded as a point particle with an
internal energy of �−0.125 hartree, then a positron in the 2p
state will lower the total energy to −0.250 hartree. In actual-
ity the H−�2p2 3Pe� state is diffuse �22�, but the advantage of
attaching the positron to the negative ion is clear.

B. Symmetry conditions for annihilation

The dominant electron-positron annihilation processes are
the 2� and 3� processes. The 2� annihilation rate for bound
systems is proportional to the probability of finding an elec-
tron and a positron at the same position in a spin-singlet state
according to

� = 4�re
2c����

i

Oip
S 	�ri − rp���	

= 2.018 788 � 1011�
i

�	�ri − rp�	S �1�

�24–26�, where the sum is over the electron coordinates, the
	-function expectation is evaluated in a0

3, and � is given
numerically in s−1. The operator Oip

S is a spin projection op-
erator to select spin-singlet states for the i , p electron-
positron pairs in the wave function � which is antisymme-
trized in the electron coordinates. The rate constant for the Ps
ground state is about 8�109 s−1. Equation �1� involves a
contact interaction which means that the relative angular mo-
mentum of the annihilating pair �Lrel� must be zero �24�.
However, electron-positron annihilation is possible even
when the relative angular momentum of the annihilating pair
is greater than zero. For example the Ps�2p� levels can un-
dergo 2� annihilation at rates proportional to 
5 and 
6,
respectively �27,28�. The rates for the different Ps�2p� levels
have been calculated to be approximately 104 s−1 �27,28�.
Similarly, the 3� process, which happens when the annihilat-
ing pair are in a spin-triplet state, can also occur at a rate
proportional to 
6 when the pair have a relative angular mo-
mentum of 1. The discussions below about the symmetry
conditions for positron annihilation concern the fast 2� and
3� processes for pairs in relative s states.

Consider the electron-positron annihilation of a PsH state
of 2So symmetry. The relative angular momentum of the an-
nihilating pair �Lrel� must be zero. This means the total an-
gular momentum of the state will come from the center-of-
mass motion of the annihilating pair �Lc.m.�, and from the
angular momentum of the spectator electron �Lspectator�. The
total parity of the state is determined by the parity of the

individual constituents, i.e., �= �−1�Lspectator+Lc.m.+Lrel. It is sim-
ply not possible to form an odd parity state with a total
angular momentum of zero if any one of the angular mo-
menta is zero. Consequently, a two electron–one positron
state of 2So symmetry cannot decay by the fast 2� process.

These arguments also apply to the 3� annihilation pro-
cess. The 3� process occurs for electron-positron pairs in a
spin-triplet state with a relative angular momentum of zero.
Once again, it is simply impossible to form a state of 2So �or
4So� symmetry if the relative angular momentum of the an-
nihilating pair is zero. So it is reasonable to conclude that the
lowest order 3� decay is not possible from a 2,4So state.

III. CALCULATION METHODS

A. Configuration interaction method

A majority of the calculations in the present paper were
performed with a configuration interaction approach �29–31�.
The CI basis was constructed by letting the two electrons
�particles 1 and 2� and the positron �particle 0� form all the
possible total angular momentum LT=0 configurations, with
the two electrons in a spin-triplet state, subject to the selec-
tion rules,

max��0,�1,�2� � J , �2�

min��1,�2� � Lint, �3�

�− 1���0+�1+�2� = − 1. �4�

In these rules �0, �1, and �2 are respectively the orbital an-
gular momenta of the positron and the two electrons. We
define �E	J to be the energy of the calculation with a maxi-
mum orbital angular momentum of J. The single particle
orbitals were Laguerre type orbitals �LTOs� with a common
exponent chosen for all the orbitals of a common � �29–31�.
The orbital basis sets for the positron and electrons were
identical.

A major technical problem afflicting CI calculations of
positron-atom interactions is the slow convergence of the
energy with J �10,31�. The J→� energy, �E	�, is determined
by the use of an asymptotic analysis. The successive incre-
ments, 
EJ= �E	J− �E	J−1, to the energy can be written as an
inverse power series �31–35�, viz.


EJ �
AE


J +
1

2
�6 +

BE


J +
1

2
�7 +

CE


J +
1

2
�8 +

DE


J +
1

2
�9 + ¯ .

�5�

The first term in the series starts with a power of 6 since all
the possible couplings of any two of the particles result in
unnatural parity states �36�.

The J→� limit, has been determined by fitting sets of
�E	J values to asymptotic series with either one, two, three,
or four terms. The coefficients, AE, BE, CE, and DE, for the
four-term expansion are determined at a particular J from
five successive energies ��E	J−4, �E	J−3, �E	J−2, �E	J−1 and

BROMLEY, MITROY, AND VARGA PHYSICAL REVIEW A 75, 062505 �2007�

062505-2



�E	J�. Once the coefficients have been determined it is easy
to sum the series to � and obtain the variational limit. Ap-
plication of an asymptotic series analysis to helium has re-
sulted in CI calculations reproducing the ground state energy
to an accuracy of �10−8 hartree �35,37�.

The treatment of the alkali metals Li, Na, and K requires
the use of a frozen core approximation. The details of this
approximation have been discussed in great detail elsewhere
�29–31�, so only the briefest description is given here. The
model Hamiltonian is initially based on a Hartree-Fock �HF�
wave function for the neutral atom ground state. The core
orbitals are then frozen. The direct part of the core potential
is attractive for electrons and repulsive for the positron. The
impact of the direct and exchange part of the HF core inter-
actions on the active particles are computed without approxi-
mation. One- and two-body semiempirical polarization po-
tentials are then added to the potential. The adjustable
parameters of the core-polarization potential are defined by
reference to the spectrum of neutral atom �30,38�.

B. Stochastic variational method (SVM)

In the stochastic variational approach an explicitly corre-
lated Gaussian �ECG� is constructed by placing the particles
�electrons and positrons� into Gaussian single particle orbit-
als

ri
lYlm�r̂i�exp�− �iri

2
 = Ylm�ri�exp�− �iri
2� , �6�

and using an

exp�− 
ij�ri − r j�2� , �7�

Gaussian correlation function between the ith and jth par-
ticles. The N-particle trial function is then

�LS�r� = A��†�Yl1
Yl2

�l12
Yl3

‡ . . . �LML
�SMS

��
i=1

N

exp�− �iri
2��

i�j

exp��− 
ij�r j − ri�2
�� ,

�8�

where A is an antisymmetrizer and �SMS
is the spin function

of the particles. The nonlinear variational parameters �i and

ij are selected by an iterative trial and error procedure. Full
details are given in Refs. �39,40�. The orbital angular mo-
mentum quantum numbers li are restricted to occupy the
lowest possible values consistent with the overall symmetry
of the state. The spherical part of the ECG basis functions
effectively allows the internal angular momentum to be dis-
tributed between the different parts of the systems. Accord-
ingly, Eq. �8� implicitly includes all possible internal sym-
metries that can make a contribution to the energy. This has
been verified with test calculations.

IV. RESULTS OF CALCULATIONS

A. A−
„np2 3Pe

… states

Table I gives the energies of the various parent states of
the APs systems �where A stands for H, Li, Na, K�. These are

relevant to the determination of the energy thresholds. The
energies for the A−�np2 3Pe� states were taken from CI cal-
culations which used an exact subset of the basis used for the
calculations upon the APs system. The energy for the
H−�np2 3Pe� state was taken from a large CI-Hylleraas cal-
culation �23� that was converged to eleven significant digits.
The results of an SVM calculation of this state are detailed in
Table II.

The dipole polarizabilities listed in Table I show an inter-
esting correlation between the polarizability of the A�np�
state and the electron affinity in the A−�np2 3Pe� channel. The
larger the polarizability, the larger the binding energy. The
Li�2p� level has the smallest polarizability and is the one

TABLE I. The energies of various parent states relevant to the
structure and energy threshold for the APs unnatural parity states.
The polarizability only allows for np→kd excitations since np
→ks excitations cannot occur in the 3Pe channel. The energy for the
H−�np2 3Pe� state was taken from Bylicki and Bednarz �23�, while
those for the alkali metal systems were from the present CI
calculations.

A�np� A�np2 3Pe� A�np�+Ps�2p� 
d �a0
3�

H −0.12500 −0.12535545 −0.1875 173.3

Li −0.13023850 Unbound −0.19273850 142.7

Na −0.11156287 −0.11382478 −0.17406287 302.0

K −0.10018265 −0.10450418 −0.16268271 557.6

TABLE II. Properties of the H−�3Pe�, PsH�2,4So� and LiPs�2,4So�
ground states. Data are given assuming an infinite nuclear mass �n�.
All quantities are given in atomic units. The magnitude of the bind-
ing energy against dissociation into the lowest energy fragmentation
channels is given by � while T+ and T− represent the positron and
electron kinetic energy operators.

Property PsH H− LiPs

N 400 400 1000

�V	 / �T	+2 5.1�10−8 4.4�10−9 5.6�10−5

E −0.188317 −0.12535545 −7.472871

� 0.000817 0.00035545 0.000215

�T−	 0.156579554 0.125355451

�T+	 0.031737544

�rne−	 8.867 11.657619 4.3177

�rne+	 14.243 12.991

�re−e−	 14.001 19.58289 7.6429

�re+e−	 12.722 12.531

�1/rne−	 0.174397 0.160521 1.4358

�1/rne+	 0.084716 0.089443

�1/re−e−	 0.089023 0.0700331 0.40130

�1/re+e−	 0.101789 0.096298

�rne−
2 	 121.185 271.2046 45.959

�rne+
2 	 247.910 192.691

�re−e−
2 	 245.959 556.893 92.533

�re+e−
2 	 202.204 182.800
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atom that is unable to support a negative ion in the 3Pe chan-
nel.

This behavior is reminiscent of the electron affinity sys-
tematics of the alkaline-earth metals in the 2Po channel. The
ground states of Be and Mg do not have an electron affinity
while those of Ca, Sr, and Ba have electron affinities that
become larger as the atom, and its polarizability, become
larger �41�. The critical polarizability for the alkali metal
sequence is somewhere between 142 and 173a0

3. The polar-
izability of calcium, which just binds an electron with an
electron affinity of �7�10−4 hartree �42–44�, is about
160a0

3 �38,45�.

B. PsH

1. Configuration interaction method

The Hamiltonian was diagonalized in a basis constructed
from a large number of single particle orbitals, including
orbitals up to �=10. There were 20 radial basis functions for
each �. Note, the symmetry of the state prevented the elec-
trons or positrons from occupying �=0 orbitals. The largest
calculation was performed with J=10 and Lint=3 and gave a
CI basis dimension of 369 200. The parameter Lint does not
have to be particularly large since it is mainly concerned
with electron-electron correlations �30�. The resulting Hamil-
tonian matrix was diagonalized with the Davidson algorithm
�46�, and a total of 300 iterations were required for the larg-
est calculation. The present calculation is very slightly dif-
ferent from that reported in �12�. One of the �=10 Laguerre
functions in �12� was input with the incorrect n. The inclu-
sion of the correct Laguerre function resulted in the final
binding energy reported in �12� changing by about 1%.

The energy of the PsH 2,4So state as a function of J is
given in Table III. The calculations only give an energy
lower than the H�2p�+Ps�2p� threshold of −0.1875 hartree
for J�9. Figure 1 shows the estimates of �E	� as a function
of J. A quick visual examination suggests that the extrapola-
tions are converging to a common energy which attests to the
reliability of the extrapolations in J. The impact of the ex-
trapolations is significant since they more than double the
binding energy. The best CI estimate of the binding energy is
the four-term extrapolation at J=10 listed in Table III,
namely 7.10�10−4 hartree. The main area where improve-

TABLE III. The energy of the 2,4So state of PsH as a function of J and with Lint=3. The threshold for
binding is −0.1875 hartree. The column n gives the total number of occupied electron orbitals �the number of
positron orbitals was the same� while NCI gives the total number of configurations. The radial expectation
values for the electron, �re	, and the positron, �rp	 are given in a0. The results of the J→� extrapolations
using Eq. �5� at J=10 are given.

J n NCI �E	J � �re	 �rp	

1 20 4200 −0.16755818 −0.01994182 7.08076 13.10807

2 40 16400 −0.17938458 −0.00811542 6.95155 11.88797

3 60 45000 −0.18327391 −0.00422609 7.08870 11.66425

4 80 85000 −0.18510516 −0.00239484 7.23884 11.70642

5 100 129200 −0.18612684 −0.00137316 7.37821 11.82951

6 120 177200 −0.18675237 −0.00074763 7.50464 11.97767

7 140 225200 −0.18715897 −0.00034103 7.61882 12.13043

8 160 273200 −0.18743569 −0.00006431 7.72208 12.27939

9 180 321200 −0.18763074 0.00013074 7.81562 12.42101

10 200 369200 −0.18777213 0.00027213 7.90047 12.55387

J→� extrapolations

1-term Eq. �5� −0.18800504 0.00050504 8.04024 12.77272

2-term Eq. �5� −0.18811689 0.00061689 8.14930 12.95211

3-term Eq. �5� −0.18817637 0.00067637 8.23457 13.09609

4-term Eq. �5� −0.18821031 0.00071031 8.30116 13.21039
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FIG. 1. The binding energy, �=−��E	+0.1875�, of the 2,4So state
of PsH as a function of J. The directly calculated energy is shown
as the solid line while the J→� limits using Eq. �5� with one, two,
three, or four terms are shown as the dashed lines. The binding
energy of the SVM wave function is also shown. The H�2p�
+Ps�2p� dissociation threshold is shown as the horizontal solid line.
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ment could be made is in the dimension of the radial basis. A
precursor to the present CI calculation with 15 LTOs gave an
extrapolated binding energy of 6.06�10−4 hartree.

The extrapolations of the other expectation values in
Table III were done using Eq. �5�. It should be noted that
there is no formal justification for the use of Eq. �5� for
expectation values other than the energy, so there is an addi-
tional degree of uncertainty for these extrapolations. In prac-
tice, this extra uncertainty is not that significant since the
finite dimension of the radial basis represents a larger source
of error.

2. Stochastic variational method

For the PsH calculation, the two electrons have been
placed in �1=�2=1 orbitals and coupled to an L=1 state with
a total spin of S=1. The positron is then placed into an
�0=1 orbital and the whole composite is coupled to L=0.
The largest calculation had a total of 400 ECGs. A summary
of the energy and other expectation values is given in Table
II.

The energy of the best SVM wave function was
−0.188 317, yielding a binding energy of 8.17
�10−4 hartree. The deviation of the wave function from the
exact virial theorem expectation, ��V	 / �T	+2�, was 5.1
�10−8. A many body system interacting by purely coulom-
bic interactions is known to satisfy ��V	 / �T	=−2� �39�. The
SVM binding energy is just over 10% larger than the CI
energy and should be closer to the variational limit.

One interesting aspect of the 4So state is that it is more
tightly bound than its H�2p2� parent. Its binding energy is
more that twice as large as the H�2p2� binding energy of
3.55�10−4 hartree �23�. It is also more compact. The mean
electron distance from the nucleus of �re	=8.86a0 is smaller
than that for H�2p2�, namely �re	=11.66a0. In short, the ad-
dition of the positron has resulted in a complex that has a
larger binding energy than its three-body parent.

The SVM radial expectation for the positron, �rp	 was
14.24a0, somewhat larger than the extrapolated CI value of
13.67a0. In the CI calculation the positron is localized closer
to the nucleus even though the CI wave function is less
tightly bound. This is a purely computational limitation, due
to the nature of LTO basis which is relatively compact. Im-
proving the radial expectation for the CI wave function
would require an increase in the number of radial functions
per �.

The interparticle correlation function, C�r�, is defined as
the probability of finding any pair of particles a certain dis-
tance apart. The correlation functions shown in Figs. 2 and 3
are consistent with a structure consisting of a Ps�2p� com-
plex weakly bound to the H�2p� state. Consider an idealized
structure consisting of a product wave function of the form
�=��Ps�2p����H�2p���Ps�R�, where �Ps�R� is the wave
function describing the motion of the Ps�2p� center of mass.
The �p ,e−� and �p ,e+� correlation functions arising from the
Ps�2p� cluster should be the same. Therefore, adding the
�p ,e+� correlation function to the �p ,e−� C�r� of H�2p� state
should give a correlation function that is the same as the
actual �p ,e−� correlation Fig. 2 shows a strong degree of

resemblance between the actual �p ,e−� correlation function
and that obtained from a ��Ps�2p����H�2p���Ps�R�. Simi-
larly, adding the �e− ,e−� correlation function to the �e+ ,e−�
C�r� of Ps�2p� state should give a correlation function that is
the same as the actual �e− ,e−� correlation function. Once
again, the two curves shown in Fig. 3 show a degree of
similarity.

The energies of the finite mass variants of PsH have also
been determined. The energies of Ps1H, Ps2H, and Ps3H are
−0.188 239 8, −0.188 278 4, and −0.188 291 3 hartree, re-
spectively. The binding energies are 8.078�10−4, 8.124
�10−4, and 8.140�10−4 hartree, respectively.

C. LiPs

The 2So state of LiPs is a very unusual state in that it is a
Borromean state �13–16�. This is because all the possible
three-body parent states, namely the 3Pe states of Li−, e+Li,
and Ps−, are themselves unstable.

0.00

0.10

0.20

0 10 20 30

C
(r

)

r (units of a0)

p-e-

p-e+

H(2p) + p-e+

FIG. 2. The correlation functions for the �p ,e−� and �p ,e+� par-
ticles of PsH. Also shown is a correlation function obtained by
adding the �p ,e+� correlation function to the �p ,e−� correlation
function of the H�2p� state.
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FIG. 3. The correlation functions for the �e− ,e−� and �e− ,e+�
particles of PsH. Also shown is a correlation function obtained by
adding the �e− ,e−� correlation function to the �e− ,e+� correlation
function of the Ps�2p� state.
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The Ps− ion has been thoroughly investigated and does
not possess a stable 3Pe state �47,48�.

Similarly, the Li− ion is believed not to have a stable 3Pe

state �49,50�. We have also performed some very large CI
calculations upon the Li− ion and these calculations gave no
indication of a bound state in the 3Pe symmetry.

Finally, the e+Li system is also not stable in the 3Pe chan-
nel. Once again a very large CI calculation has been per-
formed and once again there was no indication of a bound
state. Further, some calculations of e+-Li scattering in the 3Pe

channel also gave no sign of a bound state. The polarizabil-
ities given in Table I also indicate that it should be easier to
bind a positron to the H�2p� state than the Li�2p�. The SVM
was also used to check whether the e+H state is stable in the
3Pe channel, and once again there was no indication of a
bound state.

The calculations upon LiPs were very similar in scope
and scale to those carried out upon PsH although the calcu-
lations were taken to J=11 in order to have an explicit cal-
culation that gave binding. The sequence of CI energies and
other expectation values as a function of J are given in Table
IV. The binding energy �J is defined as �J=−��E	
+0.192 738 50�.

Figure 4 depicts the binding energy and extrapolations as
a function of J. Only for the J=11 basis has ��	J crossed the
threshold for binding.

The most reliable estimates of the energy is that given
after the four-term extrapolation is used to determine the J
→� limit of the binding energy. The different curves in Fig.
4 tend to be closer together as the number of terms in the
extrapolation increase. The binding energy of 4.42
�10−4 hartree is just over half that of the PsH state.

The positron can annihilate with the core electrons via the
2� process since the symmetry considerations are irrelevant
here. However, the annihilation rate of �core�4�104 s−1 is
small because the positron cannot occupy a �=0 orbital.

The mean positron-nucleus distance of �rp	=13.5a0 for
the CI wave function was almost the same as the CI wave
function estimate for PsH despite the smaller binding energy.
Part of the reason for this lies in the LTO basis sets which
were almost identical for the two atoms. The finite range of
the LTO basis could be acting to artificially confine the pos-
itron. However, it must be remembered that the asymptotic

TABLE IV. Results of CI calculations for the 1So state of LiPs for a series of J, with fixed Lint=3. The three-body energy of the system,
relative to the energy of the Li+ core, is denoted by E �in hartree�. The threshold for binding is −0.192 238 50 hartree, and � gives the binding
energy �in hartree� against dissociation into Ps�2p�+Li�2p�. The core annihilation rate in units of s−1 is given in the �c column. The numbers
in square brackets indicate powers of 10. Other aspects of the table design are identical to those of Table III.

J n NCI E � �re	 �rp	 �c

1 20 4200 −0.17291946 −0.01981904 6.86606 12.84274 4.5441�4�
2 40 16400 −0.18449498 −0.00824351 6.75226 11.69309 6.5727�4�
3 60 45000 −0.18828973 −0.00444877 6.89326 11.50143 6.5611�4�
4 80 85000 −0.19007657 −0.00266192 7.04675 11.56062 6.1767�4�
5 100 129200 −0.19107655 −0.00166195 7.18989 11.69580 5.7955�4�
6 120 177200 −0.19169133 −0.00104717 7.32070 11.85451 5.4761�4�
7 140 225200 −0.19209300 −0.00064550 7.43986 12.01755 5.2173�4�
8 160 273200 −0.19236789 −0.00037061 7.54860 12.17700 5.0080�4�
9 180 321200 −0.19256282 −0.00017568 7.64806 12.32954 4.8376�4�
10 200 369200 −0.19270505 −0.00003345 7.73914 12.47367 4.6972�4�
11 220 417200 −0.19281127 0.00007278 7.82273 12.60906 4.5806�4�

J→� extrapolations

1-term Eq. �5� −0.19300706 0.000268567 7.97681 12.85861 4.3656�4�
2-term Eq. �5� −0.19310120 0.000362688 8.09858 13.06361 4.2226�4�
3-term Eq. �5� −0.19315143 0.000412934 8.19533 13.23002 4.1331�4�
4-term Eq. �5� −0.19318032 0.000441825 8.27254 13.36466 4.0698�4�
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FIG. 4. The binding energy of the 2,4So state of LiPs as a func-
tion of J. The directly calculated binding energy is shown as the
solid line while the J→� limits using Eq. �5� are shown as the
dashed lines. The Li�2p�+Ps�2p� dissociation threshold is shown as
the horizontal solid line.
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Ps�2p� cluster will also be confined by the L=1 centrifugal
barrier.

2. The stochastic variational method

For the SVM, in the LiPs case, the first two electrons are
placed in the �1=�2=0 orbits and their spins are coupled to
zero, the next two electrons are in the �3=�4=1 orbits �with
the total angular momentum coupled to 1� and their spins are
coupled to 1. Finally, the positron is placed in an �0=1 orbit
and the total orbital angular momentum is coupled to 1.

The threshold for binding is the Li�2p� �E=
−7.410 156 5 hartree �51�� plus the Ps�2p� energy. So the
energy threshold for an absolute variational proof of binding
is at −7.472 656 5 hartree. The energy and expectation val-
ues of the SVM LiPs wave functions are listed in Table II.
The best variational energy was −7.472 871 hartree, equiva-
lent to a binding energy of 2.15�10−4 hartree. The energy
optimization was not fully completed and the binding energy
of the CI calculation is probably more reliable. The primary
purpose of the SVM calculation was to give an absolute
proof that the unnatural parity state of LiPs was electroni-
cally stable.

D. NaPs

The calculations upon NaPs were very similar in scope
and scale to those carried out upon LiPs. About the only
difference was that an extra �=1 orbital was added to the
electron basis.

The energies of the Na�3s� and Na�3p� states in the model
potential were −0.188 854 91 and −0.111 562 87 hartree. The
experimental binding energies are −0.188 858 and
−0.111 547 hartree, respectively �52�. Electronic stability re-
quires a total three-body energy of −0.174 062 87 hartree

and the binding energy �J is defined as �J=−��E	
+0.174 062 87�. The energy of the 3Pe excited state of Na− is
−0.113 425 29 hartree, i.e., the Na�3p� has an electron affin-
ity of 0.002 262 hartree with respect to attaching an electron
to the 3Pe state. This is reasonably close to the original value
of Norcross, 0.002 28 hartree �49�.

Table V gives the energies and radial expectation values
as a function of J while Fig. 5 shows the variation of �� as a
function of J. Once again the three- and four-term extrapo-
lations seem to be converging to a common energy. In this
case the J→� correction increases the binding energy by
about 40% from 10.87�10−4 hartree to 15.14�10−4

hartree. The binding energy of the NaPs unnatural parity
state is about twice as large as that of PsH.

TABLE V. The energy of the 2,4So state of NaPs as a function of J. Energies are given relative to that of the Na+ core while the threshold
for binding is −0.174 062 87 hartree. The column n− gives the total number of occupied electron orbitals, while n+ gives the number of
positron orbitals. Other aspects of the table design are identical to those of Table IV.

J n− n+ NCI E � �re	 �rp	 �c

1 21 20 4620 −0.15378569 −0.02027718 7.74287 13.88608 1.4441�5�
2 41 40 17220 −0.16614255 −0.00792032 7.58513 12.48950 2.2339�5�
3 61 60 46220 −0.17033251 −0.00373035 7.71039 12.16854 2.2948�5�
4 81 80 86620 −0.17231600 −0.00174687 7.85240 12.16161 2.1849�5�
5 101 100 131220 −0.17341763 −0.00064523 7.98365 12.25289 2.0625�5�
6 121 120 179620 −0.17408661 0.00002375 8.10085 12.37548 1.9577�5�
7 141 140 228020 −0.17451658 0.00045371 8.20440 12.50450 1.8733�5�
8 161 160 276420 −0.17480552 0.00074266 8.29583 12.62983 1.8060�5�
9 181 180 324820 −0.17500636 0.00094349 8.37645 12.74713 1.7523�5�
10 201 200 373220 −0.17514972 0.00108685 8.44734 12.85449 1.7093�5�

J→� extrapolations

1-term Eq. �5� −0.17538587 0.00132300 8.56412 13.03133 1.63839�5�
2-term Eq. �5� −0.17549381 0.00143094 8.65082 13.17118 1.59424�5�
3-term Eq. �5� −0.17554787 0.00148500 8.71500 13.27807 1.56638�5�
4-term Eq. �5� −0.17557663 0.00151376 8.76225 13.35833 1.54841�5�
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FIG. 5. The binding energy of the 2,4So state of NaPs as a
function of J. The directly calculated binding energy is shown as
the solid line while the J→� limits using Eq. �5� with one, two, or
three terms are shown as the dashed lines. The Na�3p�+Ps�2p�
dissociation threshold is shown as the horizontal solid line.
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The annihilation rate with the core electrons was �core
�1.5�105 s−1 is small. Although this is three times larger
than �core for LiPs, in absolute terms the annihilation rate is
still small.

E. KPs

The calculations upon KPs were very similar in scope and
scale to those carried out upon LiPs. About the only differ-
ence was that an extra �=1 orbital was added to the electron
basis.

The energies of the K�4s� and K�4p� states in the model
potential were −0.159 520 and −0.100 182 65 hartree. The
experimental binding energies are −0.159 516 and
−0.100 176 hartree, respectively �52�. Electronic stability re-
quires a total three-body energy of −0.162 682 65 hartree
and the binding energy �J is defined as �J=−��E	
+0.162 682 65�. The energy of the 3Pe excited state of K− is
−0.104 498 hartree, i.e., the K�4p� has an electron affinity of
0.004 322 hartree with respect to attaching an electron to the
3Pe state. This is close to the original value of Norcross,
0.004 37 hartree �49�.

Table VI gives the energies and radial expectation values
as a function of J while Fig. 6 shows the variation of �� as a
function of J. The three and four term extrapolations seem to
be converging to a common energy. In this case the J→�
corrections increase the binding energy by about 20% from
17.36�10−4 hartree to 21.80�10−4 hartree. The KPs sys-
tem has the largest binding energy of all the systems consid-
ered in this paper.

V. SUMMARY

A number of PsX systems �X=H, Li, Na, and K� are seen
to have electronically stable 2,4So complexes that are stable

against autoionization, and in addition these states only de-
cay slowly by positron annihilation. All the particles in these
effectively four-body complexes are in a relative P state with
respect to each other. The most unusual of the systems is
LiPs since the 2,4So states are of Borromean type. The se-
quence of calculations suggest that there would also exist
unnatural parity 2,4So complexes of RbPs and CsPs and, most
likely, they would have binding energies larger than KPs.

Due to their low binding energies, these systems can be
expected to have a structure composed of a Ps�2p� cluster
loosely bound to an atomic X�np� excited state. This has
been confirmed by the correlation functions for PsH which
were computed using the SVM.

Although these complexes are electronically stable and
decay very slowly by electron-positron annihilation there are
other decay processes that act to shorten the lifetime. These

TABLE VI. The energy of the 2,4So states of KPs as a function of J. The threshold for binding is −0.162 682 65 hartree and the energies
are given relative to that of the K+ core. Other aspects of the table design are identical to those of Table V.

J n− n+ NCI E � �re	 �rp	 �c

1 21 20 4620 −0.14168301 −0.02099965 8.49503 14.71924 3.4488�5�
2 41 40 17220 −0.15457885 −0.00810380 8.29108 13.13410 5.4508�5�
3 61 60 46220 −0.15914469 −0.00353796 8.39896 12.70578 5.7120�5�
4 81 80 86620 −0.16132591 −0.00135675 8.53370 12.64979 5.4824�5�
5 101 100 131220 −0.16253700 −0.00014566 8.66023 12.71399 5.1917�5�
6 121 120 179620 −0.16326995 0.00058729 8.77291 12.81839 4.9358�5�
7 141 140 228020 −0.16373804 0.00105538 8.87154 12.93315 4.7280�5�
8 161 160 276420 −0.16405038 0.00136772 8.95749 13.04566 4.5629�5�
9 181 180 324820 −0.16426580 0.00158314 9.03227 13.15085 4.4319�5�
10 201 200 373220 −0.16441830 0.00173564 9.09676 13.24589 4.3282�5�

J→� extrapolations

1-term Eq. �5� −0.16466950 0.00198684 9.20300 13.40245 4.1575�5�
2-term Eq. �5� −0.16478114 0.00209848 9.27933 13.52387 4.0541�5�
3-term Eq. �5� −0.16483516 0.00215250 9.33339 13.61318 3.9924�5�
4-term Eq. �5� −0.16486273 0.00218008 9.37076 13.67636 3.9562�5�

0.0

0.5

1.0

1.5

2.0

2.5

6 8 10

ε
(u

ni
ts

of
m

ha
rt

re
e)

εJ

ε∞ 1-term

ε∞ 2-term

ε∞ 3-term
ε∞ 4-term

KPs 2So

J

FIG. 6. The binding energy of the 2,4So state of KPs as a func-
tion of J. The directly calculated binding energy is shown as the
solid line while the J→� limits using Eq. �5� are shown as the
dashed lines. The K�4p�+Ps�2p� dissociation threshold is at �=0.
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complexes can emit a photon, decaying to a state of 2,4Pe

symmetry. For example, a Ps�np� fragment in the complex
can emit a photon decaying to a Ps�1s� type fragment. The
Ps�1s� fragment could then annihilate by the 2� or 3� pro-
cess. In addition, the resulting 2,4Pe state could also decay by
autoionization. The lifetime of these states can be expected
to be comparable to the lifetime of the fragments against
single photon decay, e.g., X�2p�→X�1s�. So the overall life-
times of the states can be expected to be of order
10−8–10−9 s.

It is unlikely that any of these complexes will be identi-
fied in the laboratory in the near future. The formation of
positronic compounds is known to be notoriously difficult
�53�. That these states are unnatural parity states compounds
the difficulty since such states are not readily formed in nor-
mal collision systems. For example, the 3Pe ion states
�21–23,49� that could serve as suitable parents have never
been identified in the laboratory.

Besides the PsH and APs systems, there are other related
physical systems that could have unnatural parity bound

states. For example, there is the possible existence of a new
biexciton excited state �54�. While the Ps− ion might not
have a stable 3Pe state, it is known that the �M+ ,e− ,e−� ion is
stable for M+ /me�0.4047 and M+ /me�16.8 �47,48�. It
could be expected that a biexciton state, �e− ,e− ,h ,h�, with
1,3,5So symmetry would be electronically stable when the
mass ratios make the 3Pe state of the charged exciton
�e− ,e− ,h� stable. The system might also exhibit Borromean
binding; there might be a bound biexciton state even though
neither of the 3Pe �e− ,e− ,h� or �e− ,h ,h� states was stable.
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