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The mean king problem is a quantum mechanical retrodiction problem, in which Alice has to name the
outcome of an ideal measurement made in one of several different orthonormal bases. Alice is allowed to
prepare the state of the system and to do a final measurement, possibly including an entangled copy. However,
Alice gains knowledge about which basis was measured only after she no longer has access to the quantum
system or its copy. We give a necessary and sufficient condition on the bases, for Alice to have a strategy to
solve this problem, without assuming that the bases are mutually unbiased. The condition requires the existence
of an overall joint probability distribution for random variables, whose marginal pair distributions are fixed as
the transition probability matrices of the given bases. In particular, in the qubit case the problem is decided by
Bell’s original three variable inequality. In the standard setting of mutually unbiased bases, when they do exist,
Alice can always succeed. However, for randomly chosen bases her success probability rapidly goes to zero
with increasing dimension.

DOI: 10.1103/PhysRevA.75.062334 PACS number�s�: 03.67.�a, 02.50.Cw, 03.65.Ta

I. INTRODUCTION

The mean king problem was first introduced by Vaidman
et al. �1�, and has since received a lot of attention as a basic
quantum mechanical retrodiction problem: In the story,
physicist Alice faces the mean king, who asks her to prepare
a quantum system, on which his men will perform a von
Neumann measurement in one of a specified set of orthonor-
mal bases. Alice is not present during this measurement, and
knows neither the basis chosen nor the result obtained. She is
then allowed a final check on the system �typically including
entangled records of the initial preparation�, leaving her with
some classical measurement values only. She is then told
which basis was used and is asked to correctly name the
values found by the king’s men. In this article we establish a
simple necessary and sufficient condition on the king’s bases
to decide whether Alice can solve this problem with cer-
tainty.

The solution to the mean king problem appears to be para-
dox: For the given state, the measurement results of the three
incompatible spin components can be reconstructed from the
results of a single measurement on the system and an en-
tangled copy.

Apart from its foundational interest, in a cryptographic
setting the scheme allows to get a raw key bit from every
quantum particle exchanged, without having to discard some
particles because of mismatched bases.

Most works on this subject assume that the king uses
mutually unbiased bases �MUB�, which means that after pre-
paring a basis state of any of these bases, the probability
distributions in all other bases will be uniform. It was shown
that a maximal set of �d+1� mutually unbiased bases exist
for a d-dimensional Hilbert space, whenever d is a power of
a prime �2,3�, and that Alice can always retrodict the out-
come in this case �4�. But to decide the existence of such a
set for other dimensions �e.g., d=6� has proved to be very
hard �5�.

However, the basic statement of the problem makes no
reference to the MUB property of the king’s bases. It might

seem as the hardest case for Alice, because if the game were
to be played many times, Alice could improve her guesses
using the correlations between bases. This gain is nullified in
the MUB case. But the problem is not set like that: We de-
mand of a solution that Alice is right in every single run, and
this is not made easier in the least by the existence of some
statistical correlations between the bases. In other words, the
intuition that unbiased bases are an especially mean choice
by the king is fallacious.

We therefore drop the assumption of unbiasedness and
ask, for any choice of finitely many bases by the king: Can
Alice find a strategy, consisting of an initial entangled prepa-
ration and a suitable measurement on the joint system after
the king’s men are through with their part, such that she gets
the right value with probability one?

Not very much has been done about the retrodiction prob-
lem without assuming mutual unbiasedness. Some special
cases have been discussed in �4,6–9�. However, the available
studies apparently remain incomplete even in the qubit case.

II. SUMMARY OF RESULTS

To state our main results, let us fix some notation for the
rest of the paper. The system Hilbert space on which the
king’s men make their measurement will be denoted by H,
and has dimension d. The number of bases chosen will be k,
and the bases themselves will be denoted by �b�i�, for b
=1, . . . ,k and i=1, . . . ,d. An important property of a choice
of bases is the space R of Hermitian operators spanned by
all the ��b�i����b�i��. This space describes how many density
operators we can distinguish with measurements in the given
bases. Since �i ��b�i����b�i� � =1 for any basis, we expect
only �d−1� dimensions giving new information for each ba-
sis, so together with the identity we expect R to be �k�d
−1�+1�-dimensional. If this number is achieved, we will call
the chosen basis set nondegenerate. Of course, dim R cannot
exceed the dimension d2 of the space of all Hermitian opera-
tors on H, so for k� �d+1� every choice of bases is degen-

PHYSICAL REVIEW A 75, 062334 �2007�

1050-2947/2007/75�6�/062334�4� ©2007 The American Physical Society062334-1

http://dx.doi.org/10.1103/PhysRevA.75.062334


erate in this sense. The interesting property in this case is that
dim R=d2, i.e., that the set of bases is tomographically com-
plete. Of course, for k= �d+1�, which is the standard case,
nondegeneracy and tomographic completeness are the same
property.

For any pair of bases, the values

pbc�i, j� =
1

d
����b�i���c�j���2 �1�

are the joint probabilities of a pair of d-valued random vari-
ables, each of which is uniformly distributed. We say that a
collection of k bases admits a classical model, if these prob-
abilities are marginals of some joint distribution of all k vari-
ables �each taking d values�. Since this property only in-
volves the absolute values of scalar products, not their
phases, and therefore captures only a small part of the infor-
mation about the relative position of the bases, it is perhaps
rather unexpected that the existence of a classical model is
very closely linked to the existence of Alice’s strategy. This
is described in the following theorem, our main result.

Theorem. Let 	�b�i�
 be a collection of k orthonormal
bases in a d dimensional Hilbert space. Then �1� if the bases
are nondegenerate �in particular, k� �d+1�� and the bases
admit a classical model, then Alice can find a safe strategy in
the mean king’s problem with these bases. �2� Conversely, if
the set of bases is tomographically complete �in particular,
k� �d+1��, and if Alice has a strategy, then the bases allow
a classical model. �3� In the case �1�, Alice’s strategy may
begin with a maximally entangled state, and in the case (2) a
pure initial state is necessarily maximally entangled.

Before going into the proof, let us see what this theorem
says about some basic examples.

A. Mutually unbiased bases

By definition a set of k bases in d dimensions is mutually
unbiased if, with the notation from Eq. �1�, we have

pbc�i, j� = �bc�ij
1

d
+ �1 − �bc�

1

d2 . �2�

From this a classical model is obvious, namely k statistically
independent uniformly distributed random variables. In order
to compute the dimension of the span of the ��b�i����b�i��,
let us take the �kd�� �kd� matrix of Hilbert Schmidt scalar
products �defined for operators A ,B by �A �B�HS: =tr�A*B��
of these vectors, which is just the expression �2�, interpreted
as a matrix Mbi,cj. Its rank is the dimension we are looking
for, and easily computed as k�d−1�+1, by determining all
eigenvalues of M. Hence MUBs are nondegenerate for all
k� �d+1�, and for any number of MUBs the mean king can
come up with, Alice has a strategy. This result was previ-
ously obtained by another method in �4�.

B. Qubits

Another interesting special case, discussed in �6�, is d
=2, k=3. Choosing a basis in d=2 is the same as choosing a
pair of antipodal points on the Bloch sphere. Three bases are

tomographically complete iff these points do not lie in a
plane. The existence of a classical model in this case is one
of the ancestral problems of quantum information theory,
namely precisely the existence of such models for three di-
chotomic variables characterized by Bell’s original three-
variable inequality �10�. The joint distribution �1� belonging
to two bases b, c is characterized �for d=2� by the single
number pbc�1,1�. Figure 1 shows the possible range of
triples �pab�1,1� , pbc�1,1� , pca�1,1��. The range of triples ad-
mitting a classical model, and hence a safe strategy for Alice,
is described by Bell’s inequalities as the tetrahedron inside
this body. If the bases are chosen independently and with
unitarily invariant distribution �Haar measure�, the probabil-
ity for this subset is exactly 1/3. This can be computed ana-
lytically by reducing it to a problem of three independent
uniformly distributed vectors on the Bloch sphere.

III. PROOF OF MAIN RESULT

In the first round, Alice chooses a Hilbert space K and
prepares a density operator � on H � K. The first system is
left to the king’s men, who perform their von Neumann
measurement in one of the bases �b, leaving a state
���b�i����b�i� � � 1�����b�i����b�i� � � 1�, conditional on their
measured result being i. Finally, Alice will make a measure-
ment on H � K, with some outcomes x�X. This is described
by positive operators Fx on H � K, with �xFx=1. The precise
nature of the outcomes is irrelevant. All that counts is that
the value x provides Alice with a rule what to answer, if the
king discloses that basis b was used by his men. We can
express this by introducing a “guessing function,” but we
might just as well take the rule itself as the outcome �possi-
bly grouping together some outcomes leading to the same
guesses�. Hence we choose the outcome set
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FIG. 1. �Color online� Possible range of triples �pab�1,1� ,
pbc�1,1� , pca�1,1��. The range of triples admitting a classical model
is described as tetrahedron inside this body, with the same corners.
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X = 	1, . . . ,d
k = 	x:	1, . . . ,k
 → 	1, . . . ,d



with the interpretation that x�b� is the answer Alice will give,
if her measurement gave the value “x,” and the King dis-
closes b. The requirement that she is right every time is the
basic equation for � and Fx we have to solve

tr„����b�i����b�i�� � 1�Fx���b�i����b�i�� � 1�…

= 	i,x�i,x�b�, 	i,x � 0, �
i,x

	i,x = 1. �3�

At this point we can make the first simplifications. Sup-
pose, for example, that Alice has found a solution using a
mixed state �, and that 
 is some unit vector in the support
of �, so that �
��
 � �	� for some positive 	. Then after
replacing � by �
��
�, the zeros in Eq. �3� will still all be in
the right places, and since we chose 
 as a unit vector, we
have found a solution with a pure initial state �= �
��
�.
Next, we write 
 as


 = �1 � S�� with � = �
�=1

d

���� � H � H . �4�

� is the maximally entangled vector, and S is an operator,
whose matrix elements in a suitable basis of K are the vector
components of 
, normalized so that tr�S*S�=1. Then in Eq.
�3� we can commute S past the projections acting only on the
first factor, and simplify the expression by introducing the
vectors

�̂�i� = ���b�i����b�i�� � 1�� = �b�i� � �b�i� � H � H ,

�5�

where the bar indicates componentwise complex conjugation
in the basis ���, in which � takes the form �4�. Then the
basic equation �3� becomes

��̂b�i���1 � S�*Fx�1 � S���̂b�i�� = 	i,x�i,x�b�. �6�

Now suppose 
 is a vector in the support of the operator in
this bracket. Then substituting �
��
� for the operator will
still give zero, whenever i�x�b�, and hence

���̂b�i��
� = 0 if i � x�b� . �7�

But also the scalar products for i=x�b� are essentially fixed:
We have �i ��b�i����b�i� � =1 for any basis b, which trans-

lates to �i�̂b�i�=� via Eq. �5�. Therefore, we can sum Eq.
�7� over i, obtaining

���̂b�i��
� = ����
��i,x�b�. �8�

We will call such vectors safe vectors for Alice �and the
particular outcome x�.

A. Structure of safe vectors

How many safe vectors can Alice find? A key role for
answering this question is played by the space R introduced

in Sec. II, or, equivalently by its image R̂�H � H under the
identification of operators on H and elements of H � H:

R̂ = linR	�b�i�
 , �9�

its complex linear span R̂C, and its orthogonal complement

R̂�. For every x�X we arrive at the following alternative: It
may happen that there is no vector 
 satisfying Eq. �8� with

�� �
��0. Then all solutions of that equation are in R̂�,
which also means that such values x can never occur as a
result of Alice’s measurement. Alice’s strategy will have to
rely on the other cases, i.e., the subset of those x�X, for
which a nontrivial solution 
 of Eq. �8� exists. To get a
standard solution, we multiply 
 with a scalar so that
�� �
�=1. Moreover, we can apply to 
 the orthogonal pro-

jection to R̂C, thus obtaining a solution which is uniquely
determined, since all scalar products with vectors from this
space are fixed. We note that since all its scalar products with

the �̂b�i� are real, we can even conclude that 
x�R̂. Hence
whenever a nonzero solution exists for some x�X, we can
pick a unique solution 
x, determined by the conditions

���̂b�i��
x� = �i,x�b� with 
x � R̂ . �10�

The fact that 
x lies in this real-linear subspace means that
the corresponding operator on H is Hermitian, or, expressed
in the standard basis that

�����
x� = �����
x� . �11�

It is clear that if Alice can find any safe vectors at all, she has
some success at a unambiguous retrodiction game, in which
she is allowed to pass, but has to be absolutely sure of her
guess otherwise. As in the problem of “unambiguous dis-
crimination” �11� her aim would be to minimize the prob-
ability for pass moves. In the mean king problem, however,
her success probability is required to be unity, which is the
same as saying that �xFx=1, and a guess x�X is produced in
every run.

B. Necessary conditions

The theorem states necessary conditions for the existence
of a strategy only in the tomographically complete case.

Then R̂�= 	0
, and the only choice Alice has is to pick safe
vectors, which are multiples of the 
x as in Eq. �10�. This
fixes the operators in Eq. �6� to be

�1 � S�*Fx�1 � S� = p�x��
x��
x� , �12�

with p�x��0. The values for x not allowing a nonzero safe
vector can be subsumed by setting p�x�=0. The overall nor-
malization condition �xFx=1 then reads

N = �
x

p�x��
x��
x� = �1 � S*S� . �13�

Taking matrix elements of this equation in the standard basis
and using the Hermiticity �11�, we find

����N������ = ����N������ . �14�

By Eq. �13� this amounts to ����n���=����n���, where n is
the matrix of S*S. With �=��=1 we find that S*S is also a
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multiple of the identity matrix. From the normalization con-
dition tr S*S=1 this multiple must be 1/d. Since S*S is just
the reduced density operator of the restricted state, we have
thus shown item �3� of the theorem: In the tomographically
complete case, the initial state of Alice must be maximally
entangled.

The connection with classical models is seen by taking
the matrix elements of Eq. �13� with other vectors. To begin
with, let us consider the matrix element with �. Then, since
N= �1/d�1, and �
x ���=1 whenever p�x��0, we get
�� �N ���= �1/d��� ���=1=�xp�x�. Hence the p�x� must in-
deed be a probability distribution on X, which is the same as
the collection of all measurement outcomes. Furthermore, for
any bases b ,c, and associated outcomes i , j,

��̂b�i��N��̂c�j�� = �
x

p�x��i,x�b�� j,x�c�. �15�

Clearly, the right-hand side is exactly the marginal pbc�i , j� of
the probability distribution p with respect to the d-valued
variables b and c. On the other hand, since N= �1/d�1,

the left-hand side evaluates to �1/d���̂b�i� ��̂c�j��
= �1/d� � ��b�i� ��c�j���2, so p is exactly a classical model in
the sense described in Sec. II.

This completes the proof of the theorem, part �2�, and the
corresponding statement in part �3�.

C. Sufficient conditions

Let us now suppose, as in part �1� of the theorem, that we
are given k� �d+1� bases. Then, for each x, Eq. �10�� is an
inhomogeneous linear system of equations for the vector 
x.
Taking only the first d−1 equations for each basis, plus one
normalization equation �� �
x�=1 eliminates the trivial de-
pendencies between these equations, so we have k�d−1�+1

equations for a vector in R̂. The condition of nondegeneracy
described in Sec. II is equivalent to saying that all these
equations are nonsingular, hence under the hypothesis of part
�1� of the theorem, 
x exists for all x.

Now suppose that a classical model exists in the form of a
set of p�x��0 such that the marginals �15� are consistent

with N= �1/d�1. Note, however, that R̂ may now be a proper

subspace, and the matrix elements with all �̂b�i� do not de-

termine the operator N completely. Nevertheless, we can set

Fx = dp�x��
x��
x� + F̃x �16�

with F̃x�0 summing to the projection onto R̂�. Then it is
immediate that with a maximally entangled initial state, i.e.,
with the choice S= �1/�d�1, the basic equation �6� is satis-
fied. This completes the proof of part �1� of the theorem.

IV. FINDING A STRATEGY NUMERICALLY

Given the marginals of Eq. �1�, the existence of a classical
model is a linear feasibility program in the p�x�. It can also
be cast as a semidefinite program, namely to maximize
�xp�x� subject to the constraints p�x��0 and
�xp�x� �
x��
x � �1 /d. If the maximum turns out to be
�xp�x�=1, we have found the desired joint distribution. Oth-
erwise, this is the probability for Alice to find an answer in
the unambiguous retrodiction game described at the end of
Sec. III A. The following table lists the numerical results for
low dimensions with independent Haar distributed bases,
where pS is the probability that a safe strategy exists, ES is
the expected overall success probability for unambiguous
retrodiction, and N is the sample size we used

d pS ES log10 N

2 0.3334 0.6666 7

3 0.0013 0.398 6

4 0 0.34 3

Higher dimensions, with dd+1 variables and constraints,
are a serious challenge for PC based computation. For d=6,
a strategy rarely exists, but one can first “debias” the bases
with a gradient search minimizing �i,j,a,bpab�i , j�2. Instead of
a semidefinite program one can then use the so-called EM
algorithm �12,13� to find a joint distribution, and this is typi-
cally successful for the debiased case, although convergence
is rather slow.
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