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The scalability of solid-state quantum computation relies on the ability of connecting the qubits to the
macroscopic world. Quantum chains can be used as quantum wires to keep regions of external control at a
distance. However, even in the absence of external noise their transfer fidelity is too low to assure reliable
connections. We propose a method of optimizing the fidelity by minimal usage of the available resources,
consisting of applying a suitable sequence of two-qubit gates at the end of the chain. Our scheme also allows
the preparation of states in the first excitation sector as well as cooling.
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I. INTRODUCTION

It is often noted that the advantage of solid-state compu-
tation is its scalability. This is because a typical chip can
contain a large amount of qubits and because the fabrication
of many qubits is in principle no more difficult than the
fabrication of a single one. In the last couple of years, re-
markable progress was made in experiments with quantum
dots �1� and superconducting qubits �2�. It should, however,
be emphasized that for initialization, gating, and readout,
those qubits have to be connected to the macroscopic world.
For example, in a typical flux qubit gate, microwave pulses
are applied onto specific qubits of the sample. This requires
many �classical� wires on the chip, which is thus a compound
of quantum and classical components. Unfortunately, any ex-
tra classical control wire is potentially an independent source
of noise as it adds extra coupling between the quantum com-
puting device and the external world. Consequently the num-
ber of wires is likely to be the bottleneck of the scalability as
a whole: too few will make the device not powerful enough,
too many will make it noisy.

In this situation, quantum chains may turn out to be ex-
tremely useful in the development of solid-state-based quan-
tum computer technology. They consist of lines of coupled
single qubits without external classical control. In many
cases, such permanent couplings are easy to build in solid-
state devices. Indeed the really difficult part usually is to
modulate or to suppress them, as has been clearly pointed out
for fabricated hard-wired couplings between superconduct-
ing qubits �3� or tunnel coupled quantum dots �4�. Naturally
then the question arises as to whether one can use such quan-
tum chains as nearly perfect channels for quantum commu-
nication despite the lack of classical controllability. If suc-
cessful, it will also be the application of a quantum many-
body system for a useful quantum information processing
task. The setup we have in mind is sketched in Fig. 1. It is a
distributed quantum computing architecture �5� built out of
blocks of qubits, some of which are dedicated to communi-
cation and therefore connected to another block through a
quantum chain. The block size is essentially determined by
the minimum number of controlling wires necessary to per-
form reliable arbitrary unitary operations on the block spins:
ultimately it depends the ability of implementing fault-toler-

ant gates �6� with the available current technology. The dis-
tance between the blocks is instead determined by the length
of the quantum chains between them. It should be large
enough to allow for classical control wiring of each block,
but short enough such that the time scale of the quantum
chain communication is well below the time scale of deco-
herence in the system.

Many interesting aspects of quantum chain communica-
tion were investigated in the last years �8–21�, both from a
physics point of view and from a quantum information point
of view. Here, we would like to concentrate on those
schemes �9–12� which require no further resources than
those outlined in Fig. 1. The chain couplings may be engi-
neered �10,11� to improve the theoretical communication fi-
delity, but coupling fluctuations and energy mismatches will
lower the fidelity in practice �13–17�. Hence even without
the contribution of external noise �17,18� the quality of trans-
fer may well be too low to yield a scalable system.

In this paper we will show that the fidelity can be im-
proved easily using the gates available in the regions of

FIG. 1. Small blocks �gray� of qubits �white circles� connected
by quantum chains. Each block consists of �say� 13 qubits, four of
which are connected to outgoing quantum chains �the thick black
lines denote their nearest-neighbor couplings�. The blocks are con-
nected to the macroscopic world through classical wires �thin black
lines with black circles at their ends� through which arbitrary uni-
tary operations can be triggered on the block qubits. The quantum
chains require no external control. This architecture is an example
of distributed quantum computation �5� where the computational
and the communication qubits are the same objects �i.e., the spins�:
in this respect no interfacing among different qubits species is re-
quired �compare this with the implementations of Ref. �7��, whose
extreme difficulty in the context of solid-state qubits is discussed,
for example, in Ref. �15�.
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quantum control. The main idea is to apply in certain time
intervals two-qubit gates at the receiving end of the chain.
The resulting sequence is determined a priori by the Hamil-
tonian of the system. As we shall see, the maximal fidelity
that can be reached this way is limited only by external
noise, and not by the spatial fluctuations of the couplings �cf.
�17��. This is similar in spirit to the dual-rail �17� and
memory protocols �19�, but here we give a protocol that is
optimal in the resources used: a single spin chain and a two-
qubit gate at the each end. It is optimal because two-qubit
gates at the sending and receiving end are required in order
to connect the chain to the blocks in all above protocols
�though often not mentioned explicitly�. Our scheme has
some similarities with �12�, but the gates used here are much
simpler, and arbitrarily high fidelity is guaranteed by a con-
vergence theorem for arbitrary coupling strengths and all
non-Ising coupling types that conserve the number of exci-
tations. Furthermore, we show numerically that our protocol
could also be realized by a simple switchable interaction.
This means that quantum state transfer experiments with our
protocol could be performed well before the realization of
the blocks from Fig. 1.

The paper is organized as follows. In Sec. II we introduce
the protocol and we present an analytical proof of the asymp-
totical convergence of the associated transfer fidelity. To do
so we restrict ourselves to a regime in which the two-qubit
gates applied at the end of the chain act instantaneously, i.e.,
they are activated over time intervals which are much shorter
than the typical time scale of the free spin evolution. This
hypothesis is not fundamental but it allows us to simplify the
math: we will drop it in Sec. III where, by using numerical
techniques, we generalize the convergence analysis to cases
in which the timing of the end gates are comparable with
those of the free dynamical evolution of the chain. The
manuscript ends with the conclusions in Sec. IV.

II. ARBITRARILY PERFECT STATE TRANSFER

Here we present an analytical proof of the convergence of
our transferring protocol. For the sake of simplicity we will
focus on a single chain from the setup of Fig. 1. In this case,
as in Ref. �9�, the left end side of the chain plays effectively
the role of a sender of quantum information while the right
end side plays the role of a receiver. Within this framework
we will show that the receiving block �gray area of Fig. 2�
can improve the transmission fidelity to an arbitrarily high
value by applying suitable two-qubit gates Wk �see below�
between the end of the chain and a “target qubit” of the
block. As mentioned in the Introduction, in order to get ana-

lytical results, we will restrict the analysis to the case in
which the gates Wk act instantaneously on the system.

A. Notation

Before entering into the details of the derivation let us fix
some notation and define the property of the system. We
label the qubits of the chain by 1,2 , . . . ,N and the target
qubit by N+1. We also define the states

�0� � �00 ¯ 0� ,

�n� � �n
+�0�, n = 1,2, . . . ,N + 1,

where �n
+ is the Pauli �+ operator acting on the nth qubit.

With these definitions the typical initial configuration of our
communication protocol will be described by vectors of the
form

��initial� = ��0� + ��1� , �1�

where all the qubits from 2 to N+1 are in the reference state
�0� while the first qubit has been prepared into the logical
state ��0�+��1�. This the quantum bits that one would like to
propagate along the chain.

The free evolution of the system is described by a Hamil-
tonian H which couples all the qubits but the target. Our
main assumption on H is that it has �0� as eigenstate with
eigenvalue 0, i.e., H�0�=0, and a N-dimensional invariant
subspace spanned by the vectors ��n� ;n=1,2 , . . . ,N	. Under
this condition H corresponds to a Hamiltonian that conserves
the number of excitations along the chain, which would be
the case, for example, of the Heisenberg or XY chains
considered in most of the protocol proposed so far
�8,9,11,12,17,19�. Thanks to this property the analysis
of the protocol can be restricted to the N+2-dimensional
Hilbert H=span��n� ;n=0,1 ,2 , . . . ,N+1	. Our final assump-
tion about H is that there exists a time t such that

N�exp�−itH	�1��0. Physically this means that the Hamil-
tonian has the capability of transporting excitations �and
hence information� from the first to the last qubit of the
chain. As mentioned in the Introduction, the fidelity of this
transport may be very bad in practice.

We denote the unitary evolution operator for a given time
tk as Uk�exp�−itkH	 and introduce the projector

P = 1H − �0�
0� − �N�
N� − �N + 1�
N + 1� .

A crucial ingredient to our protocol is the unitary transfor-
mation

W�c,d� � P + �0�
0� + d�N�
N� + d*�N + 1�
N + 1�

+ c*�N + 1�
N� − c�N�
N + 1� , �2�

where c and d are complex normalized amplitudes. One can
easily verify that W acts as the identity on all but the last two
qubits, and can hence be realized by a local two-qubit gate
on the qubits N and N+1. Furthermore, we have WP= P and

W�c,d���c�N� + d�N + 1�	� = �N + 1� . �3�

The operator W�c ,d� has the role of moving probability am-
plitude c from the Nth qubit to the target qubit. It can be
applied locally by the receiving block.

FIG. 2. A quantum chain �qubits 1 ,2 , . . . ,N� and a target qubit
�N+1�. By applying a sequence of two-qubit unitary gates Wk on
the last qubit of the chain and the target qubit, arbitrarily high
fidelity can be achieved for the transmission of quantum informa-
tion from the left-hand side to the right-hand side of the chain.
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B. The protocol

Using the time-evolution operator Uk and two-qubit uni-
tary gates on the qubits N and N+1 defined in Eq. �2� we will
now develop a protocol that transforms the state �1� into �N
+1�. Let us first look at the action of U1 on �1�. Using the
projector P we can decompose this time-evolved state as

U1�1� = PU1�1� + �N�
N�U1�1�

� PU1�1� + �p1�c1�N� + d1�N + 1�	 , �4�

where d1=0 and

p1 = �
N�U1�1��2, c1 = 
N�U1�1�/�p1.

Let us now consider the instantaneous application of the uni-
tary transformation W1�W�c1 ,d1� on the time-evolved state
of Eq. �4�. According to Eq. �3� this yields

W1U1�1� = PU1�1� + �p1�N + 1� . �5�

Hence with a probability of p1, the excitation is now in the
position N+1, where it is “frozen” �that qubit is not coupled
to the chain�. We will now show that at the next step, this
probability is increased. Applying U2 to Eq. �5� we get

U2W1U1�1� = PU2PU1�1� + 
N�U2PU1�1��N� + �p1�N + 1�

= PU2PU1�1� + �p2�c2�N� + d2�N + 1�	

with

c2 = 
N�U2PU1�1�/�p2, d2 = �p1/�p2, �6�

p2 = p1 + �
N�U2PU1�1��2 � p1. �7�

Applying W2�W�c2 ,d2� we get

W2U2W1U1�1� = PU2PU1�1� + �p2�N + 1� .

Repeating this strategy � times we get

�
k=1

�

WkUk��1� = �
k=1

�

PUk��1� + �p��N + 1� , �8�

where the products are arranged in the time-ordered way.
Using the normalization on the right-hand side of Eq. �8� we
get

p� = 1 − ��
k=1

�

PUk��1��2

.

From Ref. �17� we know that there exists a ��0 such that
for equal time intervals t1= t2= ¯ = tk=� we have lim�→	p�

=1. Therefore the limit of infinite gate operations for Eq. �8�
is given by

lim
�→	

�
k=1

�

WkUk��1� = �N + 1� . �9�

It is also easy to see that

lim
k→	

d� = 1, lim
k→	

c� = 0, �10�

which shows that for large k the gates Wk converge to the
identity operator, i.e., limk→	Wk=1H.

Equation �9� is the main result of the paper. Together with
the fact that WkUk leaves the vector �0� invariant �i.e.,
WkUk �0�= �0��, this expression can be used to show that an
arbitrary and unknown qubit at the first site �1� is transferred
to the last site, i.e.,

��initial� → ��final� = ��0� + ��N + 1� . �11�

This corresponds to an arbitrarily perfect state transfer. As
discussed in �21�, the convergence of Eq. �9� is asymptoti-
cally exponentially fast in the number of gates applied �a
detailed analysis of the relevant scaling can be found in
�17��. Equation �9� shows that any imperfect transfer can be
made arbitrarily perfect by only applying two-qubit gates on
one end of the quantum chain. On one hand, it avoids re-
stricting the gate times to specific times �as opposed to the
scheme in �17�� while requiring no additional memory qubit
�as opposed to the scheme in �19��. On the other hand, given
the similarities with the convergence proof of the protocols
of Ref. �17�, the speed of the convergence of the present
scheme is expected to be similar to that associated with such
protocols. It is worth noticing that the sequence of unitary
transformations Wk�W�ck ,dk� that needs to be applied to the
end of the chain to perform the state transfer is only depend-
ing on the Hamiltonian H of the quantum chain. The relevant
properties can in principle be determined a priori by preced-
ing measurements and tomography on the quantum chain �as
discussed in Ref. �17��. Furthermore, by performing projec-
tive measurements and conditional spin flips on the memory
qubit instead, the chain can also be cooled �this follows from
the convergence theorem in higher excitation sectors given in
�19,22��. Even state preparation of arbitrary known states in
the first excitation sector is possible by using a time-inversed
protocol �23�.

Of course, even though perfect quantum state transfer is
achieved only in the limit of infinitely many steps, nothing
prohibits one to stop the protocol after a finite number of
applications of Wk. In this case the resulting communication
fidelity will not be optimal but will be still higher than that
obtained in those schemes which only exploit direct propa-
gation of the excitations along the chain �9� �see Fig. 3�. In
realistic scenarios the choice of the maximum number of
steps one can use will depend upon the presence of external
noise sources that determine the coherence time scales of the
system. Since our scheme applies to all Hamiltonians that
conserve the number of excitations, it can also be applied to
improve the schemes that use engineered couplings �10,11�
in the presence of disorder. In this situation the initial fidelity
is already quite high, and the required number of operations
is even lower.

III. GENERALIZATION

Motivated by the result of the previous sections we now
investigate how the protocol may be implemented in prac-
tice, well before the realization of the quantum computing
blocks from Fig. 1.

The two-qubit gates Wk are essentially rotations in the
��01�, �10�	 space of the qubits N and N+1. It is therefore to
be expected that they can be realized �up to a irrelevant
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phase� by a switchable Heisenberg or XY type coupling be-
tween the Nth and the target qubit. However, in the above,
we have assumed that the gates Wk can be applied instanta-
neously, i.e., in a time scale much smaller than the time scale
of the dynamics of the chain. This corresponds to a switch-
able coupling that is much stronger than the coupling
strength of the chain. Here, we numerically investigate if a
convergence similar to the above results is still possible
when this assumption is not valid. We do, however, assume
that the switching of the interaction is still describable by an
instantaneous switching �i.e., the sudden approximation is
valid�. This assumption is mainly made to keep the numerics
simple. We do not expect qualitative differences when the
switching times become finite as long as the time-dependent
Hamiltonian is still conserving the number of excitations in
the chain. In fact it has recently been shown that the finite
switching time can even improve the fidelity �16�.

We have investigated two types of switching. For the first
type, the coupling itself is switchable, i.e.,

H�t� = J�
n=1

N−1

�n
−�n+1

+ + 
�t��N
−�N+1

+ + H.c., �12�

where 
�t� can be 0 or 1. For the second type, the target
qubit is permanently coupled to the remainder of the chain,
but a strong magnetic field on the last qubit can be switched,

H�t� = J�
n=1

N

�n
−�n+1

+ + H.c. + B
�t��N+1
z , �13�

where again 
�t� can be 0 or 1 and B�1. This suppresses the
coupling between the Nth and N+1th qubit due to an energy
mismatch.

For the purposes of the present discussion it is sufficient
to focus on a specific choice of control pulses 
�t�: this will
not give us the best achievable performances but it will
prove our point. Therefore in both cases, we first numerically
optimize the times for unitary evolution tk over a fixed time
interval such that the probability amplitude at the Nth qubit
is maximal. The algorithm then finds the optimal time inter-
val during which 
�t�=1 such that the probability amplitude
at the target qubit is increased. In some cases the phases are
not correct, and switching on the interaction would result in
probability amplitude floating back into the chain. In this
situation, the target qubit is left decoupled and the chain is
evolved to the next amplitude maximum at the Nth qubit.
Surprisingly, even when the time scale of the gates is com-
parable to the dynamics, near-perfect transfer remains pos-
sible �Fig. 4�. In the case of the switched magnetic field, the
achievable fidelity depends on the strength of the applied
field. This is because the magnetic field does not fully sup-
press the coupling between the two last qubits. A small
amount of probability amplitude is lost during each time evo-
lution Uk, and when the gain by the gate is compensated by
this loss, the total success probability no longer increases.

IV. CONCLUSIONS

We found an optimal strategy for achieving arbitrarily
perfect state transfer and state preparation �including cool-
ing� by applying a sequence of two-qubit operations at the
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FIG. 3. Even with a finite number � of two-qubit operations, the
success probability of the transfer can be improved significantly. We
give a numerical example of a Heisenberg chain of length N=23,
where the gate times are equidistant. In particular, the plots show
the transfer fidelity achievable after a time t has elapsed from the
initial condition assuming that in the time interval �0, t�, � two-
qubit operations Wk have being performed at times t1= t /�; t2

=2t /� , . . . ,t�−1= ��−1�t /�, and t�= t. For �=1 only a single two-
qubit gate is performed to transfer the information and our result
coincides with the original protocol �9�. Already for �=10 we find
an improvement of approximately 50% within the same time scale.
For �=N we obtain a near-perfect transfer. Notice that starting to
extract information from the chain too early causes a small quantum
Zeno effect �e.g., see the case �=23 which for t�10/J is outper-
formed by the original protocol �9��.
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receiving end of a quantum chain. Surprisingly, the gates can
be realized by a switchable interaction of the same strength
as the chain coupling. By pointing out the rather counterin-
tuitive fact that minimal control at one end enables a large
class of quantum many-body systems to be used as a perfect
quantum wire, we open up the field of whether a similar
result holds for other many-body systems.
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