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We propose and prove protocols of combined and controlled remote implementations of partially unknown
quantum operations belonging to the restricted sets �A. M. Wang, Phys. Rev. A 74, 032317 �2006�� using
Greenberger-Horne-Zeilinger �GHZ� states. We present the protocols in detail in the cases of one qubit, with
two senders and with one controller, respectively. Then we study the variations of protocols with many senders,
or with many controllers, or with both many senders and controllers using a multipartite GHZ state. Further-
more, we extend these protocols to the cases of multiqubits. Because our protocols have to request that the
senders work together and transfer the information in turn or receive the repertoire of extra supercontrollers,
or/and the controller�s� open the quantum channel and distribute the passwords in different ways, they defi-
nitely have the strong security in remote quantum information processing and communications. Moreover, the
combined protocol with many senders is helpful to arrive at the power of remote implementations of quantum
operations to the utmost extent in theory, since the different senders may have different operational resources
and different operational rights in practice, and the controlled protocol with many controllers is able to enhance
security and increase applications of remote implementations of quantum operations in engineering, since it has
some common features in a controlled process.
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I. INTRODUCTION

Quantum teleportation �1� is one of the most striking de-
velopments in quantum theory. It indicates that a quantum
state can be remotely transferred in a completely different
way compared with a classical state. Thus, one would like to
know whether and how a quantum operation can also be
remotely transferred in a completely different way compared
with a classical operation. This problem is called the remote
implementation of quantum operation �RIO�, which was
studied successfully by Huelga, Plenio, and Vaccaro �HPV�
�2,3� for the case of one qubit. Recently, we proposed and
proved a protocol of remote implementations of partially un-
known quantum operations of multiqubits via deducing the
general restricted sets of quantum operations and finding the
unified recovery operations �4�. Specifically, our restricted
sets of operations are not reducible to a direct product of two
restricted sets of one-qubit operations, and our recovery op-
erations have general and unified forms. Hence our protocol
can be thought of as a development of the HPV protocol but
not a simple extension of the HPV protocol to the cases of
multiqubits systems. At the same time, we have considered
its experimental implementation scheme in the cavity QED
�5�.

Remote implementation of a quantum operation means
that this quantum operation performed on a local system
�sender’s� is teleported and then it acts on an unknown state
belonging to a remote system �receiver’s� �2–4�. Here, a
sender is a person who transfers a quantum operation, and a
receiver is a person whose system receives this quantum op-
eration and this quantum operation acts on an unknown state

belonging to his or her system. Obviously, the RIO is differ-
ent from simple teleportation of quantum operation without
action, and it is also not an implementation of nonlocal quan-
tum operation �6,7�, although there are closed connections
among these tasks. Actually, all of them play important roles
in distributed quantum computation �6,7�, quantum program
�8,9�, and the other remote quantum information processing
and communication tasks. At present, a series of works on
the remote implementations of quantum operations have ap-
peared and made some interesting progress both in theory
�2–4,10� and in experiment �5,11–13�.

Both HPVs and our recent protocols of RIOs use Bell
states as a quantum channel. However, it is well known that
Greenberger-Horne-Zeilinger �GHZ� states �14� are also a
very important quantum resource in quantum information
processing and communications �QIPC�. Motivated by the
scheme of teleportation of quantum states using a GHZ state
�15–17� and the fact that it has been successfully applied to
quantum secret sharing �18�, we would like to investigate the
remote implementations of quantum operations using GHZ
state�s�. Specifically, using the GHZ state�s� in our RIO pro-
tocols can enhance security, increase variety, extend applica-
tions, as well as advance efficiency via fetching in many
senders and many controllers. Our results indicate that GHZ
states are powerful and important resources in QIPC.

It is useful and interesting to investigate the remote imple-
mentations of partially unknown quantum operations be-
cause they consume less overall resources than the ones of
the completely unknown quantum operations do, and such
RIOs can satisfy the requirements of some practical applica-
tions. Here, the “partially unknown” quantum operations are
thought of as those belonging to some restricted sets that
satisfy some given restricted conditions. Note that the re-
stricted sets of quantum operations are still very large sets of*Electronic address: anmwang@ustc.edu.cn
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�unitary� transformations because their unknown elements
take continuous values, which had been seen in Refs. �2–4�.
In the simplest case of one qubit, two kinds of restricted sets
of quantum operations are, respectively, a set of diagonal
operations and a set of off-diagonal operations �3�. For the
case of multiqubits, the general forms of restricted sets of
quantum operations were obtained by our recent work �4�
and every row and every column of these operations have
only one nonvanishing element.

It must be emphasized that the main feature of using GHZ
states in the RIO protocols is to provide the ability for fetch-
ing in more than one sender or/and �many� controller�s�.
When there is more than one sender, we called this RIO
protocol a combined one, when there is �are� the control-
ler�s�, we call this RIO protocol the controlled one, and when
there are both many senders and controllers, we called this
RIO protocol a combined-controlled one. A combined RIO
protocol has to have the senders’ cooperation, a controlled
RIO protocol has to have the controllers’ actions, and a
combined-controlled RIO protocol has to have both senders’
cooperation and controllers’ action. Otherwise, the corre-
sponding RIOs cannot be faithfully and determinedly com-
pleted.

In the combined RIO protocol, the later sender has to
obtain the classical information from all former senders in
the sending sequence of protocols so that the later sender can
correctly choose his or her operation. Therefore the com-
bined RIO protocol has a strong security mechanism. Note
that the feature of this strong security mechanism is actual-
ized in the classical sense, and it can be called “sequential
multiple-safety.” This concept can be understood and illus-
trated by a classical example of opening a safe-deposit box.
For simplicity, let us only consider the case of sequential
double-safety, whose example is how to open a safe-deposit
box with two locks and every lock has a set of various keys.
Suppose that the set of keys of the first lock is k1

A ,k1
B , . . ., and

the set of keys of the second lock is k2
A ,k2

B , . . .. Opening the
safe-deposit box requires one to use the sequential and paired
keys �k1

A ,k2
A�, or �k1

B ,k2
B� , . . . to complete it. Otherwise the

safe-deposit box cannot be opened. In other words, two
guardians �corresponding to two senders� have to cooperate
with each other via transferring information in turn. When
the first guardian opens the first lock using some given key
k1

C �corresponding to a quantum operation belonging to some
given restricted set�, he or she has to tell the second guardian
of his or her using key C so that the second guardian can
correctly use k2

C to open the safe-deposit box. Moreover, the
combined RIO protocol can accept the arrangement of a
single or several extra supercontrollers. The different senders
receive different repertoire distributed by these supercontrol-
lers, and the variations of repertoire will result in remote
implementations of different operations in general. This im-
plies that the final operation to be remotely implemented is
determined by the supercontrollers, and then there exist more
means to enhance security. If the receiver expects to gain an
operation belonging to a given restricted set, he or she can
play a supercontroller to distribute the repertoire that can
determine this given restricted set to the senders. It is inter-
esting that the combined RIO protocol with many senders is
helpful to arrive at the power of RIOs to the utmost extent in

theory. Actually, since it is possible that different senders
have different operational resources and different operational
rights in practice, their cooperations can combine more or
more suitable and applicable operations, and thus the com-
bined protocol with many senders has a higher practical
power of RIOs than one with only one sender.

While in the controlled RIO protocol, not only does a
controller play such a role that the quantum channel between
sender and receiver is opened by his or her operations, but
also the controller’s measurement �classical information� af-
fects the form of the sender’s operations or the receiver’s
operations. This implies that the controller’s action contains
two aspects of “start up” and “authorization” so that the
RIOs can be faithfully and determinedly completed. Based
on this fact, we can say the controlled RIO protocol defi-
nitely enhances the security of remote quantum information
processing and communications. Startup of the quantum
channel in the controlled RIO protocol is easy to understand.
However, from our point of view, the necessity of the autho-
rization from controllers and the variations of its ways in the
controlled RIO protocol, that is, why, how, and when to dis-
tribute the passwords �carry out authorization�, by the con-
trollers need to be carefully studied in order to faithfully and
determinedly complete the protocol in the different cases and
for the different purposes of RIOs. It will be seen that they
are not trivial or simple, and they have practical significance
and applications in engineering. For example, if the control-
ler trusts in the sender or is easy to communicate with the
sender, he or she authorizes the sender; if the controller trusts
in the receiver or is easy to communicate with the receiver he
or she authorizes the receiver; if the controller hopes to “say
the last words,” he or she authorizes the receiver at a chosen
stage of the protocols. In addition, it should be pointed out
that a controller has only a qubit here. When there are many
controllers, they can form one or several controlled parties.
Every controlled party is made of m controllers, and then the
length of its distributing password will be to m c-bits.

As to the combined-controlled RIO protocol, it includes
the above features and advantages of both the combined and
controlled RIO protocols. However, it requires one to use the
multipartite GHZ states. If we only use three partite GHZ
states in our protocols, we have at most two senders or one
controller in the one-qubit RIO. In fact, the number of the
senders and/or the number of controllers depend�s� on the
partite number of GHZ states. Hence when using more than
three partite GHZ states, we can further extend our protocols
to the cases of more than two senders and many controllers,
even to the cases of many senders and many controllers to-
gether. In addition, in the cases of RIO of many qubit sys-
tems, the possible number of controllers depends on the
number of GHZ states.

Because the no-cloning-broadcast theorem �19,20� forbids
one to faithfully transfer an unknown, even partially
�un�known quantum operation to more than one location at
the same time, we give up to consider such a scheme with
more than one receiver. However, alternatively, we can con-
struct a symmetric scheme among three parties �locations�, in
which two partners play as two senders and the other partner
plays as a receiver in the combined RIO protocol, or every
partner plays a role among sender, receiver, and controller in
the controlled RIO protocol.
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Besides Sec. I written as an introduction, this paper is
organized as follows: in Sec. II, we simply recall the RIO
protocols using Bell states and introduce our restricted sets
of quantum operation of multiqubits; in Sec. III we propose
and prove a protocol of combined remote implementations of
partially unknown quantum operations of one qubit using
one GHZ state; in Sec. IV we propose and prove protocols of
controlled remote implementations of partially unknown
quantum operations of one qubit using one GHZ state; in
Sec. V we study the variations of protocol when using mul-
tipartite GHZ states; in Sec. VI, by aid of the explicit forms
of our restricted sets of quantum operations of N qubits �4�
and the general swapping transformations, we extend our
protocols to the cases of multiqubits; in Sec. VII, we sum-
marize and discuss our results; in the appendixes, we analyze
and study the general swapping transformations used in this
paper and provide the proofs of our protocols in detail for the
cases of more than one qubit.

II. RIO PROTOCOL USING BELL STATES

In the HPV protocol �2,3�, the joint system of Alice and
Bob initially reads

��ABY
ini � = ��+�AB � ���Y , �1�

where

��+�AB =
1
�2

��00�AB + �11�AB� �2�

is one of four Bell states which is shared by Alice �the first
qubit� and Bob �the second qubit�, and the unknown state
�the third qubit�

���Y = y0�0�Y + y1�1�Y �3�

belongs to Bob. Note that the Dirac’s vectors with the sub-
scripts A, B, and Y in the above three equations indicate their
bases, respectively, belonging to the qubits A, B, and Y.

The quantum operation to be remotely implemented be-
longs to one of the two restricted sets defined by

U�0,u� = �u0 0

0 u1
	, U�1,u� = � 0 u0

u1 0
	 . �4�

We can say that they are partially unknown in the sense that
the values of their matrix elements are unknown, but their
structures, that is, the positions of their nonzero matrix ele-
ments, are known. In our notation, a restricted set of one-
qubit operations is denoted by U�d ,u�, where d=0 or 1 in-
dicates, respectively, this operation belonging to a diagonal
or off-diagonal restricted set, while u is its argument �made
of unknown elements�.

The simplified HPV protocol can be expressed by five
steps �4�, which are Bob’s preparing, the classical communi-
cation from Bob to Alice, Alice’s sending, the classical com-
munication from Alice to Bob, and Bob’s recovering. The
whole protocol can be illustrated by the quantum circuit �see
Fig. 1�.

In order to extend the RIO protocol to the cases of mul-
tiqubits, we first have to seek for the correct restricted sets of

quantum operations of multiqubits that can be remotely
implemented in a faithful and determined way. Actually, we
have obtained their general and explicit forms in our recent
works �4�, that is, the restricted sets of quantum operations of
N qubits have such forms that their every row and every
column only has one nonzero element. Thus it is easy to
know that there are 2N! restricted sets of operations in the
N-qubit systems. Denoting the xth restricted set by TN

r �x , t�,
and its nonzero element in the mth row by tm, we have

TN
r �x,t� = 


m=1

2N

tm�m,D��pm�x�,D� . �5�

Here, x=1,2 , . . . ,2N and

p�x� = „p1�x�,p2�x�, . . . ,p2N�x�… �6�

is an element belonging to the set of all permutations for the
list �1,2 , . . . ,2N
. Moreover, when the requirement of the
unitary condition is introduced, tm will be taken as ei�m, and
�m is real.

To remotely implement quantum operations belonging to
the above restricted sets, the sender�s� needs a mapping table
which provides one-to-one mapping from TN

r �x , t� to a clas-
sical information x �x=1,2 , . . . ,2N!�, and the receiver knows
a mapping table which gives out one-to-one mapping from a
classical information x �x=1,2 , . . . ,2N!�to RN�x� with the
following expression:

RN�x� = TN
r �x,0� = 


m=1

2N

�m,D��pm�z�,D� . �7�

Obviously, it has the same structure as TN
r �x , t� to be remotely

implemented, and it is an important part in the final recovery
operation.

For simplicity, let us consider the case of two qubits. It is
clear that there are 24 kinds of restricted sets of quantum
operations that can be remotely implemented. In our RIO
protocol, we use two Bell states ��+�A1B1

, ��+�A2B2
as the

quantum channel, where qubits A1 ,A2 belong to Alice and
B1 ,B2 belong to Bob. Initially, an unknown state ���Y1Y2

also

A a

AB
�� b aa

B b

Y� bb d a

Y YdU �)(

b� U )(d H

d� )(ar

FIG. 1. Quantum circuit of the simplified HPV protocol, where
U�d� is a quantum operation to be remotely implemented and it is
diagonal or off-diagonal, H is a Hadamard gate, �b ,�d are identity
matrices or NOT gates ��1� with respect to b ,d=0 or b ,d=1, respec-
tively, and r�a�= �1−a��0+a�3 is an identity matrix when
a=0 or a phase gate ��3� when a=1. The measurements �a� �a� and
�b� �b� are carried out in the computational basis �a ,b=0,1�. “⇒”
�crewel with an arrow� indicates the transmission of classical com-
munication to the location of the arrow direction.
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belongs to Bob. Bob first performs two controlled-NOT

�CNOT� transformations by using Y1 ,Y2 as control qubits and
B1 ,B2 as target qubits, respectively. Then he measures his
qubits B1 and B2 in the computational basis �b1�B1

�b1 �
� �b2�B2

�b2�, where b1 ,b2=0 ,1 and sends the results to Alice.
After receiving the two classical bits, Alice first carries out
the quantum operations �b1

A1 � �b2

A2 on her two qubits A1 ,A2.
Next Alice acts T2

r�x , t� on A1A2 and executes two Hadamard
gate transformations HA1

� HA2
. Then she measures her two

qubits in the computational basis �a1�A1
�a1� � �a2�A2

�a2 �
�a1 ,a2=0 ,1� and sends the results a1a2 and x to Bob. As we
have mentioned, the transmission of x is to let Bob choose
R2�x� correctly. With this information, Bob’s recovery opera-
tions are taken as �rY1�a1� � rY2�a2�� R2�x�, where r�y�= �1
−y��0+y�3. Finally, our protocol is completed faithfully and
determinedly through the above five steps.

III. COMBINED RIO PROTOCOL IN THE CASE
OF ONE QUBIT USING ONE GHZ STATE

As is well known, Bell state and GHZ state are both im-
portant quantum resources in QIPC. It is interesting whether
a task of QIPC that can be carried out by using Bell states
can also be done by using less GHZ states too. It will be seen
that this is true for the combined RIO. Actually, this problem
is related to the essential feature of utilizable entanglement
existing within them.

A quantum operation of N-qubits is a product of two parts
U2 and U1, that is, U=U2U1. Assuming U1 and U2 both belong
to the restricted sets, we can denote them by TN

r �x1 ,v1� and
TN

r �x2 ,v2�, respectively, in our notation. Thus the remote
implementation of U can be completed via sending U1 and U2
in turn by one sender in the known protocols �3,4�, but 2N
shared Bell pairs are needed. However, we find that this task
can be faithfully and determinedly completed by two senders
via N GHZ states. Moreover, such a combined RIO protocol
has a strong security mechanism. More analysis about the
security mechanism has been given in the Introduction.

A. Some notations

Without loss of generality, for the RIO protocols of one
qubit using a GHZ state, we can write the initial state in a
symmetric form of three partite subsystems:

��ini� = �GHZ+�ABC���X���Y���Z, �8�

where the GHZ state has the form

�GHZ+� =
1
�2

��000� + �111�� , �9�

and it is shared by Alice, Bob, and Charlie. While ���X, ���Y,
and ���Z are all unknown states of one qubit system. The six
qubits of the joint system are divided into three pairs, in
which the qubits A and X belong to Alice, the qubits B and Y
belong to Bob, and the qubits C and Z belong to Charlie.
Obviously, their roles are initially symmetric for RIO of one
qubit.

In order to clearly express our protocol and strictly prove
it, we denote that the Hilbert space of the joint system is
initially taken as a direct product of all qubit Hilbert spaces
according to the following sequence:

H = HA � HB � HC � HX � HY � HZ. �10�

We can simply call this direct-product “space structure” and
denote it by a bit-string, for example, the space structure of
the above Hilbert space is ABCXYZ. Note that the above
space structure is only a notation rule used here, it is abso-
lutely not a precondition of the protocols. If we would like to
prove our protocols generally for the cases of multiqubits,
such a kind of notation rule is convenient, as is shown in
Appendix A. Obviously, since taking such a space structure,
the subspaces belonging to Alice, or Bob, or Charlie are
separated. This will lead to inconvenience in the whole-space
expression of local operations, especially for the cases of
multiqubits. Hence there is the requirement to change the
space structure, and the change can be realized by a series of
swapping transformations, which is studied in Appendix A.

In our protocols, despite that only local operations and
classical communication are used, the problems we deal with
are related with the whole system because there is entangle-
ment among various partite subsystems. Thus knowing the
space structure will be helpful for us to understand the effect
of local operations, especially for multiqubits systems. In
fact, our protocol in the multiqubit cases can be found par-
tially due to the reasons that we clearly express an appropri-
ate space structure and general swapping transformations.
Hence in the following we want to keep the above sequence
of direct products of qubit spaces via the whole-space ex-
pressions of our formula in the joint system.

From the symmetric initial state �8�, any two parties can
play as two senders and the other party is one receiver. We
are always able to swap their positions in a given space
structure among three partite subsystems using so-called
general swapping transformations that are defined in Appen-
dix A. Without loss of generality, as soon as two senders are
chosen, we can rewrite the initial state space structure as

HSender1 � HSender2 � HReceiver � HUnknown State. �11�

This means that the first and second qubits belong, respec-
tively, to sender 1 and sender 2, the third qubit is mastered by
the receiver, and the fourth qubit is an unknown state in the
receiver’s hands. Obviously, the unknown states belonging to
two senders are needless in the combined RIO protocol as
soon as the roles of attendees are fixed.

B. Protocol steps

Without loss of generality, we set Alice and Bob as two
senders, Alice first sends U�d1 ,u� and Bob then sends
U�d2 ,v�, which are defined by Eq. �4�. Charlie plays a re-
ceiver. The initial state can be rewritten as

��ini� = �GHZ+�ABC���Z, �12�

and the receiver’s �Charlie’s� unknown state is denoted by
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��� = z0�0�Z + z1�1�Z. �13�

Our combined protocol is made of the following seven steps.
Step one: Charlie’s preparing. As a receiver, Charlie first

performs a controlled-NOT using his qubit occupied by the
unknown state �to be the acted state� as a control, his shared
part �the third qubit in the above initial state� of the GHZ
state as a target, and then measures his shared part of the
GHZ state in the computational basis �c� �c� �c=0,1�, that is

PC�c� = I4 � ����c�C�c�� � �0
Z���0

C
� CNOT�2,1��
 , �14�

where �0 is the 2�2 identity matrix, �i �i=1,2 ,3� are the
Pauli matrices, Im is a m dimensional identity matrix, and
CNOT is a controlled-NOT defined by

CNOT�2,1� = �0 � ��0��0�� + �1 � ��1��1�� =�
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0
� .

�15�

while �2, 1�, as the variable of CNOT, indicates that the second
qubit is a control and the first qubit is a target.

The purpose of this step is to let the unknown state be
correlated with all senders’ local qubits. This is a precondi-
tion that all senders are able to remotely implement a quan-
tum operation belonging to the restricted sets.

Step two: First classical communication. Charlie sends
the classical information c to Alice and Bob. The aim of this
step is that the receiver tells Alice and Bob that he is ready to
receive the remote operation, as well as his prepared way.

It must be emphasized that for the cases of one qubit, the
receiver’s preparing has two equivalent ways with respect to
c=0 or 1, respectively. If the receiver first fixes the value of
c and tells all senders before the beginning of protocol, this
step can be saved. In particular, when c is just taken as 0, the
sender does not need the transformation �c in the next steps,
since �0 is trivial.

Step three: Alice’s sending. Alice’s operation includes four
parts. After receiving Charlie’s classical bit c, Alice first per-
forms a prior transformation �c dependent on c, second, car-
ries out the quantum operation U�d1 ,u� to be remotely
implemented on her qubit �the first qubit�, third, executes a
Hadamard transformation

H =
1
�2

�1 1

1 − 1
	 , �16�

and finally measures her qubit in the computational basis
�a�A�a � �a=0,1�. All of Alice’s local operations and mea-
surement are just

SA�a,c;d1,u� = ���a�A�a���HAU�d1,u���c
A
 � I8. �17�

The action of the first part �c is to perfectly prepare the
state of the joint system as such a superposition that the basis
in the locally acted system �belonging to the sender’s sub-
system� of every component state is the same as its basis in
the remotely operated system �belonging to the space of the
unknown state in the receiver’s subsystems� and the corre-

sponding coefficients are ones of the unknown state. The
second part of the sending step is an operation belonging to
the restricted sets, which will be remotely implemented in
the protocol. The third part of the sending step, the Had-
amard gate, is often seen in quantum computation and quan-
tum communication. Its action is similar to the cases in the
teleportation of states. The fourth part of the sending step is
a measurement on the computational basis whose aim is to
project to the needed result.

Step four: Second classical communication. Alice sends
the classical information d1 to Bob and a ,d1 to Charlie.

The communication to Bob is that the first sender tells the
second sender which kind of operations �denoted by d1� has
been transferred so that Bob can correctly chose his second
sending operation. The communication to Charlie is that the
first sender tells the receiver what measurement �denoted by
a� has been done and which kind of operations �denoted by
d1� has been transferred. In the protocol, the sender has a
one-to-one mapping table to indicate a kind of restricted set
by a value of classical information. For the case of one qubit,
it can be encoded by one c-bit, in which 0 denotes a re-
stricted set of diagonal operations and 1 denotes a restricted
set of off-diagonal operations. This communication is neces-
sary in order to faithfully and determinedly finish the proto-
col.

Step five: Bob’s sending. After receiving Alice’s classical
bit d1, Bob first joins Charlie’s classical bit c �replacing
Charlie’s transfer, this classical bit also can be sent by Alice�,
and performs a prior transformation �d1

�c, and then carries
out the quantum operation U�d2 ,v� to be remotely imple-
mented on his qubit �the second qubit�. Finally, Bob executes
a Hadamard transformation and measures his qubit in the
computational basis �b�A�b� �b=0,1�. All of Bob’s local op-
erations and measurement are expressed as

SB�b,c;d1,d2,v� = �0 � ���b�B�b���HBU�d2,v����d1

B �c
B�
 � I4.

�18�

Step six: Third classical communication. Bob sends the
classical information b and d2 to Charlie. The aim of this
communication is to let Charlie know what measurement
�denoted by b� has been done and which kinds of operations
�denoted by d2� are transferred by Bob, and then correctly
build his recovery operations.

Step seven: Charlie’s recovering. Based on four classical
bits a ,d1 and b ,d2, respectively, from two senders Alice and
Bob, Charlie first is required to do a recovery operation that
consists of two parts. The first part is r�a��d1

, where r�a� is
a diagonal phase gate with a parameter that is defined by

r�z� = �1 − z��0 + z�3 = �1 0

0 1 − 2z
	 = �1 0

0 �− 1�z 	 .

�19�

Note that z=0,1, and then �−1�z=1−2z. The two factors of
the first part correspond, respectively, to a fixed form of a
restricted set which has the same structure and the phase
transformation in order to fix the phase. The second part is
r�b��d2

so that the second part of the operation is recovered.
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Note that for the cases of one qubit, the fixed forms of the
restricted sets of diagonal and off-diagonal operations are,
respectively, �0 and �1. Thus we obtain

RC�a,b;d1,d2� = I4 � „�0
C

� ��r�b��d2
��r�a��d1

�
… .

�20�

All of the operations and measurements in our above proto-
col can be jointly written as

IR�a,b,c;d1,d2,u,v�

= ��a�A�a�HAU�d1,u��c
A� � ��b�B�b�HBU�d2,v��d1

�c
A�

� ���c��c� � r�b��d2
r�a��d1

�CNOT�2,1�
 . �21�

Its acting on the initial state gives

��C
final�a,b,c;d1,d2,u,v��

= IR�a,b,c;d1,d2,u,v���C
ini�

=
1

2�2
�abc�ABC � U�d2,v�U�d1,u����Z, �22�

where a ,b ,c=0,1 denote the spin up or down, and d1 ,d2
=0 and d1 ,d2=1, respectively, indicate the operations of di-
agonal and off-diagonal restricted sets. Therefore the remote
implementations of the combination of two quantum opera-
tions belonging to restricted sets are faithfully and deter-
minedly completed. It can be called the combined remote
implementation of quantum operations which can be dis-
played by Fig. 2.

C. Protocol proof

Charlie’s preparation gives

��P�c�� = PC�c���ABCZ
ini � =

1
�2

��c � �c � I4�

k=0

1

zk�kkck�ABCY ,

�23�

with the relation

�I4 � ���c�c � �0�CNOT�2,1��
�GHZ+��k�

=
1
�2

��c � �c � I4��kkck� . �24�

Its proof needs to use �c�c�= �0� and �c�1−c�= �1� for c
=0,1 �4�. After receiving the classical information c from
Charlie �receiver�, Alice supplements a �c transformation,
and then performs the first sending operations, we have

��1
S�a,c;d1,u�� = SA�a,c,d1,u���P�c��

=
1
�2



k=0

1

zk��a�A�a�HU�d1,u��k����c�k�B��ck�CY .

�25�

Alice then tells Bob d1 and Charlie a ,d1. In succession,
based on the classical information c �coming from Charlie�
and d1 �coming from Alice�, Bob first carries out �d1

�c, and
then performs the second sending operations:

��2
S�a,b,c;d1,d2,u,v��

= SB�b,c,d2,v���1
S�a,c,d1,u��

=
1
�2



k=0

1

zk��a�HU�d1,u��k�A�b�HU�d2,v��d1
�k�B�

��abck�ABCY . �26�

Finally, Bob’s recovery operation gives

��final�a,b,c;d1,d2,u,v��

= RB�a,b,d1,d2���2
S�a,b,c,d1,d2,u,v��

=
1
�2



k=0

1

zk��a�HU�d1,u��k��b�HU�d2,v��d1
�k��

��abc�ABC�r�b��d2
r�a��d1

�k�Z� . �27�

Based on the forms of the restricted set of one qubit and the
phase transformation r�a�, we rewrite them as

U�d1,u� = U�0,u��d1
= 


j=0

1

uj�j��j��d1
, �28�

r�a� = 

l=0

1

�− 1�al�l��l� , �29�

and substitute them into the above expression of ��final�. The
result is

��final�a,b,c;d1,d2,u,v��

=
1
�2



j=0

1



k=0

1



l=0

1

ujyk��a�H�j��j��d1
�k��b�HU�d2,v��d1

�k��

� �abc�ABC�r�b��d2
�− 1�al�l�Y�l��d1

�k�� . �30�

Because

�j��d�k��l��d�k� = �j��d�k�	 jl, �31�

A a
c d1 aa

B ABC
GHZ� b

c bb

C c

Z� cc d1 a d2 b

Z ZdUdU �)()( 1122

c� H

)(ar

1d��

)( 11 dU

c�� H

1d�� 2d�� )(br

)( 22 dU

FIG. 2. Quantum circuit of the combined remote implementa-
tion of quantum operation with two senders Alice and Bob. Here,
U1�d1� and U2�d2� are, respectively, a part of the quantum operation
U�d1 ,d2�=U2�d2�U1�d1� that is remotely implemented by combin-
ing Alice and Bob’s actions, H is a Hadamard transformation,
�c ,�d1

,�d2
are identity matrices or NOT gates ��1� for c ,d1 ,d2=0 or

c ,d1 ,d2=1, respectively, and r�x�= �1−x��0+x�3 is an identity ma-
trix if x=0 or a phase gate ��3� if x=1. The measurements �a��a�,
�b��b�, and �c��c� are carried out in the computational basis �a ,b ,c
=0,1�. “⇒” �crewel with an arrow� indicates the transmission of
classical communication to the location of the arrow direction.
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�a�H�j��− 1�aj = 1/�2, �32�

it further becomes

��final�a,b,c;d1,d2,u,v��

=
1

2
�abc�AB�


j=0

1



k=0

1

ujyk��b�HU�d2,v��d1
�k���j��d1

�k��
�r�b��d2

�j�Y . �33�

Again inserting the complete relation after U�d2� and using
the above same skills, that is U�d2�=U�0,v��d2
=
i=0

1 vi�i��i��d2
and r�b�=
l=0

1 �−1�bl�l��l�, we obtain

��final�a,b,c;d1,d2,u,v��

=
1

2�2
�abc�ABC�


i=0

1



j=0

1



k=0

1

viujyk�i��d2
�j��j��d1

�k���i�Y

=
1

2�2
�abc�ABC�U�d2,v�U�d1,u����Y� . �34�

The proof of our protocol with two senders using one GHZ
state is finished.

IV. CONTROLLED RIO PROTOCOL IN CASES
OF ONE QUBIT USING ONE GHZ STATE

Now, let us investigate the controlled remote implemen-
tations of quantum operations belonging to restricted sets of
one qubit using one three-partite GHZ state. When a task in
QIPC is done by the given number of the Bell states, more
things can be done by the same number of the GHZ states
because the utilizable entanglement within the GHZ state is
more than one within the Bell state from our point of view. It
will be seen that the controlled RIO protocol, as a good
example in this aspect, obviously increases the variety of
RIO and enhances the security of RIO. The controller’s ac-
tions in the controlled RIO protocol include two aspects of
startup and authorization. Since startup of the quantum chan-
nel is easy to understand, we will stress, here, the necessity
of authorization and the variations of its ways, that is, why,
how, and when to distribute the passwords, by the controller.
It will be seen that these problems are not trivial and are
worthy of studying due to their practical significance and
applications in engineering. Concrete analysis is mentioned
in the Introduction.

From the initial state Eq. �8�, it is easy to find that any one
partite subsystem of them plays a possible role among a
sender, a receiver, and a controller in the protocol. In other
words, when a controller is fixed to a given partite sub-
system, the other two partite subsystems play as a sender and
a receiver, respectively. In terms of general swapping trans-
formation, as soon as a controller is chosen or dominated, we
can rewrite the initial state space structure as

HController � HSender � HReceiver � HUnknown State. �35�

This means that the first qubit belongs to the controller, the
second qubit is in the sender’s partite subsystem �the local

subsystem�, the third qubit is mastered by the receiver, and
the fourth qubit is an unknown state in the receiver’s hands.
Obviously, the unknown states belonging to sender and con-
troller are needless in the protocol as soon as the roles of
attendees are fixed.

A. Protocol steps

When we introduce a controller, the protocol of controlled
remote implementations of quantum operations belonging to
the restricted sets is made up of seven steps, of which there
are four steps of quantum operations including measurement
and three of classical communications. Since the significance
and actions of the most related operations have been ex-
plained in Sec. III, we do not intend to repeat them here.
However, we still would like to emphasize the significance
of the controller’s role and the variations of the protocol.

Controlling step. This step is carried out by the controller:

C�
� = ��
��
�H� � I8, �36�

This step is a key matter in the controlled RIO protocol.
In fact, when the controller has not done it, there is no quan-
tum entanglement between any two partite subsystems, so
there are no feasible remote implementations of quantum
operations. Only if a controller agrees or wishes that the
other two partite subsystems implement the RIO protocol
does he or she carry out this operation and measurement. Its
action is to open the quantum channel between the sender
and receiver that is necessary for the remote implementation
of quantum operations belonging to the restricted sets.

Allowing step. This step still has to be completed by the
controller, that is, he or she transfers one c-bit 
 to the sender
or the receiver, which is denoted by Ccs�
� or Ccr�
�, respec-
tively.

This allowing step as well as the above controlling step
can be arranged at any time in the RIO process correspond-
ing to the different requirements, however, the different ar-
rangement will result in influences on the steps of this pro-
tocol. If the classical bit 
 is arranged to transfer to the
sender, this communication has to be done before the other
parts of the sending operations. If the classical bit 
 is cho-
sen to transfer to the receiver, this communication is able to
be done at the beginning �before the receiver’s preparation�,
or in the middle �before the recovered operations�, or at the
end �after the standard recovered operations�. In these cases,
although the receiver can have the different choices to finish
this protocol, we prefer to use a unified method for the one-
qubit RIO, that is, we use the classical information 
 before
the end of the protocol.

This step can be understood figuratively as that the con-
troller distributes the “password” 
 to one of sender and
receiver, or gives an authorization to one of them, or says the
last word �to the receiver� in the protocol. This indicates that
the role of the controller is very important and indispensable.
In other words, this is not trivial in engineering because the
above means are useful in the controlled process and imply
potential applications in practice. Without the password dis-
tribution by the controller, the sender and receiver cannot
faithfully and determinedly complete the RIO. This can be
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clearly seen in the following proof about this protocol.
Preparing step. This step is carried out by the receiver.

There are two kinds of cases, respectively, based on whether
the classical information from the controller is obtained by
the receiver or not.

�a� Case one. The receiver does not obtain the classical
information from the controller, his or her preparing is

P��� = I4 � ��������� � �0�CNOT�2,1� . �37�

�b� Case two. The controlling step has happened and the
receiver gets the classical bit 
 from the controller, the pre-
paring step has three different forms according to the time to
obtain the classical bit 
 in general.

�1� When the classical bit 
 is known at the beginning of
this step, the receiver has to add a prior operation,

Ppre�
� = I4 � r�
� � �0, �38�

before the above operation �37�. Of course, since it com-
mutes with the project measurement, it also can be inserted
between the measurement and the controlled-NOT in the op-
eration �37�.

�2� When the classical bit 
 is known after the operation
�37� or before the next recovery operation, the receiver per-
forms a supplementary operation

Paft�
� = I4 � r�
� � r�
� , �39�

where we have used the fact that

�r�
� � r�
���������� � �0�CNOT�2,1��

= �������� � �0�CNOT�2,1���r�
� � �0� . �40�

�3� When the classical bit 
 is known after the next re-
covery operation, this case is discussed in the following re-
covery step. It is clear that for the above two cases, the
receiver always can delay using the classical information up
to after the recovery operation. Therefore this case is more
general. However, it will be seen that the delaying method is
able to lead to the unexpected complication in the recovery
step for the cases of multiqubits.

Classical communication from receiver to the sender. This
step is that the receiver transfers a c-bit � to the sender,
which is denoted by Crs���.

Sending step. This step is carried out by the sender. There
are two cases.

�1� Case one. There is no classical information transferred
from the controller to the sender. Thus Alice’s sending can be
jointly written as

S��,�;d,u� = ��0 � ���������HU�d,u���� � I4
 . �41�

�2� Case two. The sender obtains the classical information

 from the controller, he or she has to add to a prior opera-
tion

Sadd�
� = �0 � r�
� � I4 �42�

at the beginning of this step. This means that the sending step
becomes

Sall��,�,
;d,u� = S��,�;d,u�SA
add�
� . �43�

Classical communication from sender to receiver. This

step is that the sender transfers the classical information �
and d to the receiver, which is denoted by Csr�� ;d�.

Recovery step. This step is carried out by the receiver.
Therefore the receiver’s recovery operations are written as

R��;d� = I8 � �r����d� , �44�

where d=0 or 1.
It must be emphasized that the above R�� ;d� can only

guarantee that the operation U�d ,u� is faithfully and deter-
minedly transferred, if the protocol sets that the controller
transfers his or her classical bit 
 before its action. Just as the
statement above, if 
 is transferred to the sender, the sender
has a prior preparation part; when 
 is sent to the receiver
before his or her preparing step, he or she can add a supple-
mentary part at the beginning, in the middle, or at the end of
the preparing step. Obviously, the end of the preparing is just
before the recovering, and so we can move this supplemen-
tary part here. However, if the receiver obtains 
 from the
controller after the above R�� ;d� action, the receiver has to
perform an additional recovery part

Raft�
;d� = �− 1�
dI4 � r�
� � r�
� , �45�

where r�z� is defined in Eq. �19�. Note that r�
�������
= �−1�
�������, we obtain its other form,

Raft��,
;d� = �− 1�
�d+��I8 � r�
� . �46�

It is clear that when the protocol sets that the controller
transfers his or her classical bit 
 to the receiver, we always
can delay using the classical information 
. In other words,
in order to standardize the protocol in the cases of one qubit,
we do not add any Ppre and Paft in the preparing step, but we
always use the above Raft at the end of the protocol. Thus the
whole recovery operations are

Rall��,
,d� = Raft�
;d�R��;d� . �47�

However, for the case of multiqubits, it is not so simple.
Generally, we put the additional recovery operations before
the standard recovery operations �44�, even before the pre-
paring step in order to have the simplest additional opera-
tions for the cases of multiqubits. Of course, if we persist in
putting the additional recovery operation last, we will pay
the price that it gets a little complicated to express.

In summary, when there is a controller, we have proposed
four kinds of protocols for controlled remote implementation
of operations belonging to the restricted sets. �1� The sender
obtains the password; �2�–�4� the receiver obtains the pass-
word, respectively, before the preparing, after the preparing
�before the recovering�, and after the recovering. The second,
third, and fourth kinds of our protocols can be unitedly ex-
pressed without obvious difficulty in the case of one qubit. If
the controller transfers his classical bit 
 to the sender, the
sequence of the above steps in our protocol will become

C�
� → Ccs�
� → P��� → Crs��� → Sall��,�,
;d�

→ Csr��;d� → R��;d� , �48�

if the controller transfers his classical bit 
 to the receiver,
the sequence of the above steps in our protocol is
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C�
� → Ccr�
� → P��� → Crs��� → S��,�;d� → Csr��;d�

→ Rall��,
;d� . �49�

It is clear that transferring 
 to the sender or the receiver
can be figuratively understood as distributing a “password,”
especially while transferring 
 to the receiver at the end of
protocol, it can be figuratively understood as “saying the last
word.” They are both important controlled means. Besides
the password distributing, the controller owns the right to
open the quantum channel. All of these are some main fea-
tures of a controlled process. Therefore we called the above
process a controlled remote implementations of operations.

Now, as an example, we fix the controller as Charlie, Al-
ice as a sender, and Bob as a receiver without loss of gener-
ality. Thus the initial state is simplified as

��ABCY
ini � = F4

−1�1,3���GHZ+�CAB���Y� , �50�

where F4�1,3� is a forward rearrangement made of two
swapping transformations between the neighbor qubits, and
it is defined in Appendix A. Similarly, we can discuss the
other choices of the controller, sender, and receiver, but we
do not intend to discuss them here.

If we set that Charlie �the controller� transfers the pass-
word to the sender, it is the first of our protocols. All of the
operations and measurements in our protocol can be jointly
written as

IR�a,b,c;d� = F4
−1�1,3�„��c�C�c�HC�

� ��a�A�a�HAU�d,u��b
A
r�c��

� ���0 � r�a��CNOT
…F4�1,3� . �51�

Note that the operations with the superscripts A ,C denote
their Hilbert spaces belonging, respectively, to the spaces of
qubits A ,C. Sometimes, if there is no confusion, we omit
these superscripts. This whole space form of our protocol has
covered up the sequence of operations and steps of classical
communication, but its advantage is clear. Its action on the
initial state �50� yields

��ABCY
final �a,b,c;d�� = IR�a,b,c;d���ABCY

ini �

=
1

2�2
�abc�ABC � U�d,u����Y . �52�

The unknown state to be remotely implemented is just ���Y in
Bob’s partite subsystem defined by Eq. �3�. Our protocol is
then determinedly and faithfully completed.

When setting that Charlie’s information transfers to Alice,
the whole process of controlled remote implementation of
quantum operations belonging to the restricted sets is shown
in Fig. 3.

Here, we only express the full operations for the first of
our protocols, and provide a figure of its quantum circuit. For
the other three kinds of our protocols, the full operations and
the figures of quantum circuits are similar. In addition, we
should note that the controller cannot choose who is a sender
and who is a receiver in the other two partite subsystems. In

other words, when Charlie is a controller, either Alice or Bob
can be chosen as a sender and the other one partite sub-
system plays as a receiver.

B. Protocol proof

In this section, let us prove the controlled RIO protocol in
detail. For simplicity, we only consider the cases that Alice is
a sender, Bob is taken as a receiver, and Charlie is a control-
ler. Initially, the joint system is in the state �50�. Charlie’s
action gives

��ABCY
C �c�� = F4

−1�1,3�C�c�F4�1,3���ABCY
ini �

=
1

2
F4

−1�1,3���0 � r�c� � I4�

���c�C � ��00�AB + �11�AB� � ���Y� �53�

=
1

2
F4

−1�1,3��I4 � r�c� � �0�

���c�C � ��00�AB + �11�AB� � ���Y� , �54�

where we have used the definition of r�y� in Eq. �19�. Thus
Alice and Bob now share a Bell state, and they can carry out
the protocol of RIO. However, because HPV protocol is de-
pendent on the type of Bell state, Charlie has to send the
“password” c to Alice or Bob. Actually, this indicates that
Charlie has his control right. We need to consider such two
cases.

The first case is that the protocol sets Charlie to transfer
his classical information c to Alice. Using P�b�, Bob pre-
pares his state as

��ABCY
P �b,c�� = F4

−1�1,3�P�b�F4�1,3���ABCY
C �

=
1

2
�F4

−1�2,4��r�c��b � I8�


���y0�00�AY + y1�11�AY� � �bc�BC� ,

�55�

A a
c b aa

B ABC
GHZ� b

bb

C c

Y� cc d a

Y YdU �)(

b� H

d�

)(dU

)(ar

)(cr

H

FIG. 3. Quantum circuit of the controlled remote implementa-
tions of quantum operations with a controller Charlie. Here, U�d�
belonging to the restricted sets is a quantum operation to be re-
motely implemented, H is a Hadamard transformation, �b ,�d are
identity matrices or NOT gates ��1� for b ,d=0 or b ,d=1, respec-
tively, and r�x�= �1−x��0+x�3 is equal to an identity matrix if x
=0 or a phase gate if x=1. The measurements �a��a�, �b��b�, and
�c��c� are carried out in the computational basis �a ,b ,c=0,1�. “⇒”
�crewel with an arrow� indicates the transmission of classical com-
munication to the location of the arrow direction.
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Alice starts with a supplementary operation r�c� on her qubit
�that is, Eq. �42� in the whole space� so that the state of joint
system is perfectly ready, and then begins sending. The result
is

��S�a,b,c;d�� = F4
−1�1,3�Sall�a,b,c,d�SA

add�c�F4�1,3���ABCY
P �

=
1

2
F4

−1�2,4���

k

1

yk�a�HU�d,u��k��a�A�k�Y	
� �bc�BC� . �56�

The second case is that the protocol sets Charlie to trans-
fer his classical information c to Bob. If Bob chooses to first
perform Ppre, then the result is the same. Therefore when
Alice finishes the sending operation, we also obtain Eq. �56�.
Noting that Paft�c�P�b�=P�b�Ppre�c�, we can, after P�b�
acts, use Paft�c�. From R�a ;d�Paft�c�= �−1�cdPaft�c�R�a ;d�,
this also means that Bob can delay the additional recovery
operation to the end. It is clear that the results of three kinds
of procedures are the same.

Now, Bob performs recovery operation �44�. Similar to
the proof of Eq. �34� by using the relations �28�, �29�, �31�,
and �32�, we can obtain

��final�a,b,c;d�� = F4
−1�1,3�R�a,d�F4�1,3���ABCY

S �

=
1

2�2
�a�A � F3

−1�1,3�

���

j=0

1



k=0

1

ujyk�j��d�k��j�Y	 � �bc�BC�
=

1

2�2
�abc�ABC � U�d,u����Y . �57�

This is the conclusion �52� of our protocol. Therefore we
finish the proof our protocols of controlled RIO with a con-
troller in the cases of one qubit.

V. VARIATIONS OF PROTOCOLS USING MULTIPARTITE
GHZ STATES

In Secs. III and IV, we limit ourselves to using a three
partite GHZ state. If we use a many partite GHZ state, there
will be more variations among our RIO protocols. The varia-
tions can include the RIO protocols with more than two
senders, or with many controllers, or with both many senders
and controllers. For simplicity, we only consider the four
partite GHZ state, and the initial state is taken as

��A1A2A3BY� =
1
�2

��0000�A1A2A3B + �1111�A1A2A3B�

� �y0�0�Y + y1�1�Y� . �58�

Our RIO protocols can have, respectively, three senders, two
controllers, and two senders adding one controller. In the
following, we only present the operation and measurement
steps, and all classical communications are omitted.

Three senders. Set Alice1, Alice2, and Alice3 as senders.
After Bob’s preparing

PB�b� = I8 � ���b��b� � �0�CNOT�2,1�� , �59�

all senders’ sending operations read

SA1A2A3
�a1,a2,a3;d1,d2,d3;v1,v2,v3;�

= ��a1��a1�HA1U�d1,v1��b�

� ��a2��a2�HA2U�d2,v2��d1
�b�

� ��a3��a3�HA3U�d3,v3��d2
�d1

�b� � I4. �60�

In practice, �i=1
n �di

can be simplified as �
i=1
n di mod 2 since

di=0,1 for any i, while Bob’s recovering becomes

RB�a1,a2,a3,d1,d2,d3� = I16 � �r�a3��d3
r�a2��d2

r�a1��d1
� .

�61�

Two controllers. Set Alice1 and Alice2 as two controllers
and Alice3 as one sender. Two controllers both perform a
Hadamard transformation and then measure their individual
qubit

C�a1,a2� = ��a1��a1�H� � ��a2��a2�H� � I4. �62�

It is clear that

C�a1,a2���A1A2A3BY� =
1

2�2
�a1a2� � ���0 � r�a2�r�a1��

���00�A3B + �11�A3B�


� �y0�0�Y + y1�1�Y� �63�

=
1

2�2
�a1a2� � ��r�a2�r�a1� � �0�

���00�A3B + �11�A3B�


� �y0�0�Y + y1�1�Y� . �64�

In practice, r�a1�r�a2�=r�a2�r�a1� can be simplified as r�a1

+a2� since a1 ,a2=0 ,1. Besides the fact that an extra supple-
mentary operation r�a2� is needed in the beginning of the
recovery step, the remaining steps are similar to the case of
one controller. It is clear that security can be enhanced via
increasing the number of controllers because the faithful and
determined implementation of this protocol requires that all
the controllers cooperate and are authorized. If Alice1 and
Alice2 are actually one compound subsystem �or called one
controlled party�, the enhancement of security then comes
from increasing the ‘‘password’’ length �complication�.

Two senders and one controller. Set Alice1 as one con-
troller and Alice2 and Alice3 as two senders. Alice1’s con-
trolling step will result in

CA1
�a1���A1A2A3BY� =

1

2
�a1� � ��r�a1�A3

� I4���000�A2A3B

+ �111�A2A3B�
 � �y0�0�Y + y1�1�Y�

�65�
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=
1

2
�a1� � ��I2 � r�a1�A3

� I2�

���000�A2A3B + �111�A2A3B�


� �y0�0�Y + y1�1�Y� �66�

=
1

2
�a1� � ��I4 � r�a1�B1

�

���000�A2A3B + �111�A2A3B�


� �y0�0�Y + y1�1�Y� . �67�

Besides the fact that an extra supplementary r�a1� is needed
to be added to the beginning of the sending step by one of
the senders �Alice2 or Alice3�, or the recovery operation by
the receiver �Bob�, the remaining steps are similar to the RIO
protocol with two senders.

These variations of the RIO protocols can be proved in a
similar way in Secs. III and IV, and we do not intend to
present them here. It is clear that the summation of the send-
ers number and the controllers number is m when we use an
�m+1�-partite shared GHZ state in the RIO protocols of one
qubit.

VI. EXTENSION OF PROTOCOLS
TO CASES OF N QUBITS

We have seen that when a new sender or controller is
fetched in the protocols for the case of one qubit, the en-
tanglement resource actually used for the remote transferring
operation is still one Bell pair, despite the fact that our pro-
tocols are carried out via one GHZ state. In other words, the
design of a new sender or/and adding a controller will use a
part of the entanglement resource of GHZ states, the remain-
ing entanglement is finally used for the rest of the transfer of
quantum operations. For the cases of more than one qubit
using GHZ states, the process of RIO utilizes the entangle-
ment in a similar way, and hence our restricted sets �4� are
still suitable for our combined and controlled RIOs.

By comparing with the cases of one qubit, we can extend
the combined and controlled RIO protocols to the cases of N
qubits in terms of our restricted sets. However, we find that
the variety of protocols is more obvious, and the expressions
and proofs of the protocols get a little complicated. Our pro-
tocols are still made up of seven steps for combined and
controlled remote implementations of N-qubit quantum op-
erations belonging to the restricted sets.

A. Some notations

Usually, in order to avoid possible errors, we need to
denote the sequential structure of the direct product space
of qubits, or a sequence of direct products of qubit
space basis vectors in the multiqubit systems. For Alice’s
space, we set its sequential structure as A1A2¯AN, in other
words, its basis vector has the form �a1�A1

�a2�A2
¯ �aN�AN

�or �a1a2¯aN�A1A2¯AN
�. Similarly, we set the sequen-

tial structure of Bob’s space as B1B2¯BNY1Y2¯YN,

in other words, its basis vector has the form
�b1�B1

�b2�B2
¯ �bN�BN

�k1�Y1
�k2�Y2

¯ �kN�YN
. It is clear that for

an N-qubit system, its space structure can be represented by
a bit-string with the length of N.

Without loss of generality, we denote that the initial state
with the shared GHZ state�s� between the senders and re-
ceiver, or between the controller�s� and the receiver, or
among the the senders, controller�s�, and receiver, has the
following form:

��N
ini� = ��

i=1

N

�GHZ+�mi + 1��	 � ���Y1Y2¯YN
, �68�

where the �mi+1�-partite GHZ state is defined by

�GHZ+�mi + 1�� =
1
�2
���

�i=1

mi

�0�A�i
	 � �0�Bi

+ ��
�i=1

mi

�1�A�i
	 � �1�Bi� �69�

and mi
1. Especially, when some mi is taken as 1, this state
will reduce to the Bell state. ���y1Y2¯yN

is an arbitrary �un-
known� pure state in the N-qubit systems, that is,

���Y1¯YN
= 


k1,. . .,kN=0

1

yk1¯kN
�k1k2 ¯ kN� . �70�

Hence we know that the space structures are initially

��
i=1

N ��
�i=1

mi

Ai	Bi��
t=1

N

Yt. �71�

It must be emphasized that if the total system is initially
in the state �68�, our task is to remotely implement a quan-
tum operation of N qubits, and Bob is a receiver, then the
allowing number of senders is, at most, min�mi , �i
=1,2 , . . . ,N�� and the allowing number of controllers is, at
most, 
i=1

N �mi−1�. When the number of senders is taken as n
�1�n�min�mi , �i=1,2 , . . . ,N���, the maximal number of
controllers is equal to 
i=1

N mi−nN. Obviously, for a given j,
if mj �1, there is no sender since min�mi , �i=1,2 , . . . ,N��
�0. This implies that there is no RIO protocol of N-qubit
systems. When mi=1 for any i, the shared entangled states
are all Bell states. Hence there is no controller since
�
i=1

N mi�mi=1−nN�0, and there is only one sender.
For simplicity, in the following, we consider the com-

bined RIO protocol of N-qubit systems with n senders by
using N n-partite GHZ states and the controlled RIO proto-
col of N-qubit systems with n controllers by using n three
partite GHZ states and N−n Bell states. The variations of the
protocols including the cases of both many senders and many
controllers can be described in similar ways, and so they are
omitted to save space. Moreover, we only present the opera-
tions and measurements and omit the steps of classical com-
munications. Of course, we have to remember the imple-
menting sequence of them. In addition, the significance and
action of every step will not be stressed in detail as they can
be understood from the corresponding cases of one qubit.
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B. With n senders by using Nn+1-partite GHZ states

The combined RIO protocol of N-qubit systems with n
senders requires the N shared n+1-partite GHZ states, and
the initial state can be taken as

��N
ini� = � �

m=1

N

�GHZ+�n + 1��Am1Am2¯AmnBm
	 � ���Y1Y2¯YN

.

�72�

Let us set Bob as a receiver, Alice1, Alice2, up to Alicen the
first, second, up to the nth senders, and send, respectively,
TN

r �x1 ,v1�, TN
r �x2 ,v2�, up to TN

r �xn ,vn�. This implies that the
quantum operator to be remotely implemented has the form

UN�n� = TN
r �xn,vn�TN

r �xn−1,vn−1� ¯ TN
r �x1,v1� . �73�

Here, every TN
r �xk ,vk� belongs to our restricted sets of

N-qubit quantum operations �4�.
In order to write our formula compactly and clearly, then

prove our protocols more conveniently, we need to introduce
two general swapping transformations

�A�n� = �
i=1←

n−1

�3�n + 2 − i,n + 2 − i,N� � I2iN� , �74�

�B�n� = �I2nN � �
−1�1,2,N���3�n + 1,n + 1,N� � I2N� ,

�75�

where ��� ,n ,N� and 3�� ,n ,N� are defined in Appendix A
and “←” means that the factors are arranged from right to
left corresponding to the index i from small to large. It is
easy to obtain

�A�n��� �
m=1

N

�am1am2 ¯ amnbm�Am1Am2¯AmnBm
	� �

m=1

N

�km�Ym
	�

= ��
i=1

n � �
m=1

N

�ami�Ami
	�� �

m=1

N

�bm�Bm
	� �

m=1

N

�km�Ym
	 , �76�

�B�n��� �
m=1

N

�am1am2 ¯ amnbm�Am1Am2¯AmnBm
	� �

m=1

N

�km�Ym
	�

= � �
m=1

N

�am1am2 ¯ amnbm�Am1Am2¯Amn
	� �

m=1

N

�bmkm�BmYm
	 ,

�77�

�A�n��� �
m=1

N � �
�=1

n

Mam�

Aam�	 � Mbm

Bm� � � �
m=1

N

Mkm

Ym	��A
−1�n�

= � �
�=1

n � �
m=1

N

Mam�

Am�	� � � �
m=1

N

Mbm

Bm	 � � �
m=1

N

Mkm

Ym	 , �78�

�B�n��� �
m=1

N � �
�=1

n

Mam�

Aam�	 � Mbm

Bm� � � �
m=1

N

Mkm

Ym	��B
−1�n�

= � �
m=1

N � �
�=1

n

Mam�

Aam�	� � � �
m=1

N

Mbm

Bm � Mkm

Ym	 . �79�

Hence Bob’s preparing is written as

PB�b1,b2, . . . ,bN� = �B
−1�n��I2nN � � �

m=1

N

��bm�Bm
�bm�

� �0
Ym�CNOT�2,1�	��B�n� �80�

=3−1�n + 2,n + 2,N�� �
m=1

N

I2n � ��bm�Bm
�bm�

� �0
Ym�CNOT�2,1�	 3 �n + 2,n + 2,N� .

�81�

When there are many senders, our protocol is actually the
combination of remote implementations in turn. However,
after the former operation is transferred remotely, the next
sender’s local system loses perfect correlation with the re-
mote system to be operated. Since we use the GHZ states as
a quantum channel, the former transfers have not exhausted
all of the correlation in the joint system. Recalling the cases
of one qubit, we can obtain the method to rebuild their cor-
relation through replacing all �di

by the corresponding fixed
forms of the former operations. Hence the kth Alice’s send-
ing is

SAk
�amk,x1,x2, . . . ,xk,vk,b1,b2, . . . ,bm�

= �A
−1�n��I2�k−1�N � �� �

m=1

N

�amk�Amk
�amk�	� �

m=1

N

HAmk	
�TN

r �xk,vk�� �
j=1←

k−1

RN�xj�	� �
m=1

N

�bm

Bm	� � I2�n−k+2�N�
��A�n� , �82�

where RN�xj� is the fixed form TN
r �xj ,v j� when all compo-

nents of v j take 1.
Bob’s recovery operation is

RB�a11, . . . ,a1N; . . . ;an1, . . . ,anN;x1, . . . ,xn�

= I23N � �
j=1←

n �� �
m=1

N

rYm�amj�	RN�xj�� , �83�

where r�xj� is defined by Eq. �19�.
It must be pointed out that the classical communications

are, respectively, listed as the following. First, Bob transfers
N c-bits b1b2¯bN to all of the senders. Second, Alice1 trans-
fers �log2�2N!��+1 classical c-bits �x1� to Alice2, and
N+ �log2�2N!��+1 classical c-bits ��a11a21¯aN1 ;x1
� to Bob,
where �¯� means to take the integer part and �log2�2N!��
+1 comes from encoding length for the number of the re-
stricted sets. This process continues in turn and the kth Alice
transfers k��log2�2N!��+1� classical c-bits ��x1 ,x2 , . . . ,xk
� to
the �k+1�th Alice, and N+ �log2�2N!��+1 classical c-bits
��a1ka2k¯aNk ;xk
� to Bob. Up to the �n−1�th Alice transfers
�n−1���log2�2N!��+1� classical c-bits ��x1 ,x2 , . . . ,xn−1
� to
the last sender, that is, the nth Alice, and N+ �log2�2N!��+1

AN MIN WANG PHYSICAL REVIEW A 75, 062323 �2007�

062323-12



classical c-bits ��a1�n−1�a2�n−1�¯aN�n−1� ;xn−1
� to Bob. Fi-
nally, the last sender only transfers N+ �log2�2N!��+1 classi-
cal c-bits ��a1na2n¯aNn ;xk
� to Bob.

Obviously, the whole operations and measurements can
be jointly written as

IR = RB� �
j=1←

n

SAj	PB. �84�

The proof of this protocol is put in Appendix B.
At the end of this section, we would like to point out that

the combined RIO protocol can be carried out under one or
several extra supercontrollers’ commands. In this situation,
the transferring information among the senders in turn is
replaced by the supercontrollers. That is, based on the
decomposition of the operation to be remotely imple-
mented �Eq. �73��, the supercontrollers build a repertoire
�x1 ,x2 , . . . ,xn
 and then distribute, respectively,
�x1 ,x2 , . . . ,xk
 to the kth sender and make the senders build
their own sending operations. This implies that the final op-
eration to be remotely implemented is decided by the super-
controllers, and then there exist more means to enhance se-
curity. It is clear that the main steps of the above protocol do
not change.

C. With n controllers by using n three-partite GHZ states
and N−n Bell states

For the cases with n controllers, we set Charlie as con-
trollers, Alice as a sender, and Bob as a receiver. The initial
state with n shared three-partite GHZ states and
N−n shared Bell states reads

��N
ini� = � �

m=1

n

�GHZ+�CmAmBm
	 � � �

s=n+1

N

��+�AsBs
	 � ���Y1Y2¯YN

.

�85�

Its space structure is

�
m=1

n

CmAmBm �
s=n+1

N

AsBs�
t=1

N

Yt. �86�

Here, Charlie’s subsystem is written at the front for simplic-
ity.

In order to write out our formula compactly and clearly,
and then prove our protocols more conveniently, we need to
introduce several general swapping transformations

�A�n� = �I2n � ��1,2,N� � I2N����1,3,n� � I23N−2n� ,

�87�

�B�n� = �I2n � 3

−1�3,3,N�����1,3,n� � I23N−2n� , �88�

�C�n� = ��1,3,n� � I23N−2n, �89�

where ��� ,n ,N� and 3�� ,n ,N� are defined in Appendix A,
and we have

�A�n��� �
m=1

n

�cmambm�CmAmBm
	� �

s=n+1

N

�asbs�AsBs
	��

t=1

N

�kt�Yt
	�

= � �
m=1

n

�cm�Cm
	� �

s=n+1

N

�as�As
	��

t=1

N

�bt�Bt
	��

t=1

N

�kt�Yt
	 , �90�

�B�n��� �
m=1

n

�cmambm�CmAmBm
	� �

s=n+1

N

�asbs�AsBs
	��

t=1

N

�kt�Yt
	�

= � �
m=1

n

�cm�Cm
	� �

s=1

N

�asbsks�AsBsYs
	 , �91�

�C�n��� �
m=1

n

�cmambm�CmAmBm
	� �

s=n+1

N

�asbs�AsBs
	 � ��

t=1

N

�kt�Yt
	�

= � �
m=1

n

�cm�Cm
	� �

s=1

N

�asbs�AsBs
	 � ��

t=1

N

�kt�Yt
	 . �92�

Similarly, we can obtain the transformed relations acting on
the operations �or matrices�:

�A�n��� �
m=1

n

Mcm

Cm � Mam

Am � Mm
Bm	

� � �
s=n+1

N

Mas

As � Mbs

Bs	 � ��
t=1

N

Myt

Yt	��A
−1�n�

= � �
m=1

n

Mcm

Cm	 � � �
s=n+1

N

Mas

As	 � � �
m=1

N

Mbm

Bm	 � � �
m=1

N

Mym

Ym	 ,

�93�

�B�n��� �
m=1

n

Mcm

Cm � Mam

Am � Mbm

Bm	 � � �
s=n+1

N

Mas

As � Mbs

Bs	
� ��

t=1

N

Myt

Yt	��B
−1�n�

= � �
m=1

n

Mcm

Cm	 � � �
s=1

N

Mas

As � Mbs

Bs � MYs	 , �94�

�C�n��� �
m=1

n

Mcm

Cm � Mam

Am � Mbm

Bm	
� � �

s=n+1

N

Mas

As � Mbs

Bs	 � ��
t=1

N

Myt

Yt	��C
−1�n�

= � �
m=1

n

Mcm

Cm	 � � �
s=1

N

Mas

As � Mbs

Bs	 � ��
t=1

N

Myt

Yt	 . �95�

The controllers’s �all Alice2� startup is

C�c1, . . . ,cn� = �C
−1�n�� �

m=1

n

��cm�Cm
�cm�HCm� � I23N��C�n� .

�96�

Bob’s prior preparation is
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PB
add�c1, . . . ,cn� = �B

−1�n��I2n � �� �
m=1

n

�0
Am � rBm�cm� � �0

Ym	
� I23�N−n����B�n� . �97�

Bob’s preparing is

PB�b1,b2, . . . ,bN� = �B
−1�n��I2n � � �

m=1

N

�0
Am � ���bm�Bm

�bm�

� �0
Ym�CNOT�2,1��	��B�n� . �98�

Alice’s prior sending is

SA
add�c1, . . . ,cn� = �A

−1�n��I2n � �� �
m=1

n

r�cm�	 � I2N−n�
� I4N��A�n� . �99�

Alice’s sending is

SA�a1, . . . ,aN;b1, . . . ,bN;x,u�

= �A
−1�n��I2n � �� �

m=1

N

�am�Am
�am�	� �

m=1

N

HAm	
� TN

r �x,u�� �
m=1

N

�bm

Am	� � I4N��A�n� . �100�

Bob’s supplementary recovering is

RB
add�c1, . . . ,cn� = � �

m=1

n

�0
Cm � �0

Am � rBm�cm�	 � I22�N−n�

� �� �
m=1

n

r�cm�Ym	 � I2N−n� . �101�

Bob’s recovering is

RB�a1,a2, . . . ,aN;x� = I2�2N+n� � � �
m=1

N

r�am�Ym	RN�x� .

�102�

In particular, since RN�x����m=1
n

r�cm�Ym� � I2N−n
RN
† �x� and

��m=1
N

r�am�Ym� are diagonal, they commute each other. Again
from RN

† �x�RN�x�= I2N, it follows that

RN�x��� �
m=1

n

r�cm�Ym	 � I2N−n�RN
† �x��� �

m=1

N

r�am�Ym	RN�x��
= �� �

m=1

N

r�am�Ym	RN�x���� �
m=1

n

r�cm�Ym	 � I2N−n� . �103�

Therefore we obtain a final recovery operation

RB
aft�c1,c2, . . . ,cn;x�

= � �
m=1

n

�0
Cm � �0

Am � rBm�cm�	 � I22�N−n�

� �RN�x��� �
m=1

n

r�cm�Ym	 � I2N−n�RN
† �x�� .

�104�

Obviously, such a final additional recovery operation is com-
plicated in form compared with the other additional opera-
tions. Perhaps it is not worth using in our protocols.

It must be pointed out that three ways of classical com-
munication are, respectively, �1� Charlie �controllers� to Al-
ice �sender� or Bob �receiver� n c-bits; �2� Bob to Alice N
c-bits; and �3� Alice to Bob N+ �log2�2N!��+1 c-bits. (x may
be encoded by �log2�2N!��+1 c-bit string, where �¯� means
taking the integer part.)

Based on the kinds and time of the controllers distributing
to the sender or receiver, we only can use one prior operation
for Bob or Alice, which has been seen in the cases of one
qubit. Except for the controlling step, the rest of the opera-
tions and measurements can be jointly written according to
four cases �omitting arguments for simplicity�:

�1� Alice �sender� obtains the password before her sending

IR�1� = RBSASA
addPB; �105�

�2� Bob �receiver� obtains the password before his prepa-
ration

IR�2� = RBSAPBPB
add; �106�

�3� Bob �receiver� obtains the password after his prepara-
tion

IR�3� = RBRB
addSAPB; and �107�

�4� Bob �receiver� obtains the password after his recovery
operations

IR�4� = RaftRBSAPB. �108�

Because the controlling step commutes with all the other
operation steps, it only requires doing before the next opera-
tion needs the controller’s classical information. The proofs
of these protocols are put in Appendix B.

In the end of the section, we would like to point out that
n controllers can form k controlled parties with, respectively,
n1 ,n2 , . . . ,nk controllers and 
i=1

k ni=n. Thus the above pro-
tocols almost do not change, but the length of passwords
distributed by the nith party is increased to ni c-bits.

VII. DISCUSSION AND CONCLUSION

We have investigated the combined and controlled remote
implementation of N-qubit quantum operations belonging to
our restricted sets �4� using the GHZ states. The interest in
theory to use the GHZ states as a quantum resource is to
reveal and explore the difference between the existing utiliz-
able entanglement within the GHZ state and that within the
Bell state. The typical problems focus on two aspects: one is
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a similar task of QIPC such as how to finish the combined of
the RIO by using a smaller number of the GHZ states than
using one of the Bell states, and the other is that for a class of
tasks of QIPC such as the RIO when it is done by using the
same number of GHZ states as one of the Bell states, whose
example is just the controlled RIO protocol. This will help us
to understand the nature of quantum entanglement and suffi-
ciently use the valuable quantum resources. The main rea-
sons to use the GHZ states in our protocols are to enhance
security, increase variety, extend applications, as well as ad-
vance efficiency via fetching in many senders or/and many
controllers. Taking the important applications of the RIO in
distributed quantum computation �6,7�, quantum program
�8,9�, and the other remote quantum information processing
tasks into account, we think that the significance of our re-
sults is obvious.

It is clear that knowing the forms of the restricted sets of
quantum operations that can be remotely implemented is a
key matter to successfully carry out the RIO protocols. In our
recent work �4�, we obtained their general and explicit forms.
Moreover, we provided evidence of the uniqueness and op-
timization of our restricted sets based on the precondition
that our protocol only uses N maximally entangled states. It
must be emphasized that before the beginning of our proto-
cols, we have to build two mapping tables: one of them
provides one-to-one mapping from TN

r �x��TN
r to the classi-

cal information x which is known by the senders, and the
other one provides one-to-one mapping from a classical in-
formation x to RN�x� which is known by the receiver. Since
the unified recovery operations are able to be obtained, all of
the quantum operations belonging to our restricted sets can
be remotely implemented via our protocols in a faithful and
determined way. In addition, although the important and in-
teresting quantum operations belonging to the restricted sets
should be unitary, this limitation does not affect the validity
of our protocols.

It should be pointed out that the implementations of RN�x�
are important in our protocols. It is a key to design recovery
quantum circuits in the near future. In principle, we can con-
struct RN�x� by using a series of universal gates �21�. Espe-
cially, we have found that R2�x� can be constructed by Cnot

and �1 �5�:

R2�1� = IY1
� IY2

, �109�

R2�2� = CNOT�Y1,Y2� , �110�

R2�3� = CNOT�Y2,Y1�CNOT�Y1,Y2�CNOT�Y2,Y1� , �111�

R2�4� = CNOT�Y2,Y1�CNOT�Y1,Y2� , �112�

R2�5� = CNOT�Y1,Y2�CNOT�Y2,Y1� , �113�

R2�6� = CNOT�Y2,Y1� , �114�

R2�7� = CNOT�Y1,Y2��I � �1� , �115�

R2�8� = �I � �1� , �116�

R2�9� = ��1 � I�CNOT�Y1,Y2�CNOT�Y2,Y1� , �117�

R2�10� = CNOT�Y2,Y1��I � �1� , �118�

R2�11� = CNOT�Y2,Y1���1 � I�CNOT�Y1,Y2�CNOT�Y2,Y1� ,

�119�

R2�12� = CNOT�Y2,Y1�CNOT�Y1,Y2��I � �1� , �120�

R2�13� = CNOT�Y2,Y1�CNOT�Y1,Y2���1 � I� , �121�

R2�14� = CNOT�Y2,Y1�CNOT�Y1,Y2���1 � I�CNOT�Y2,Y1� ,

�122�

R2�15� = CNOT�Y2,Y1���1 � I� , �123�

R2�16� = CNOT�Y1,Y2���1 � I�CNOT�Y2,Y1� , �124�

R2�17� = ��1 � I� , �125�

R2�18� = CNOT�Y1,Y2���1 � I� , �126�

R2�19� = �I � �1�CNOT�Y2,Y1� , �127�

R2�20� = CNOT�Y1,Y2��I � �1�CNOT�Y2,Y1� , �128�

R2�21� = CNOT�Y2,Y1���1 � I�CNOT�Y1,Y2� , �129�

R2�22� = CNOT�Y2,Y1�CNOT�Y1,Y2��I � �1�CNOT�Y2,Y1� ,

�130�

R2�23� = ��1 � I�CNOT�Y1,Y2� , �131�

R2�24� = ��1 � �1� , �132�

where CNOT�Y1 ,Y2� means that we use qubit Y1 as the control
qubit, Y2 as the target qubit to do the control-NOT transfor-
mation, and CNOT�Y2 ,Y1� means we use qubit Y2 as the con-
trol qubit and qubit Y1 as the target qubit. Furthermore, we
are interested in the construction of a unified recovery quan-
tum circuit, which will be studied in another paper. Using the
above construction, we have considered the experimental
implementation scheme in the cavity QED of our RIO pro-
tocol �5�. It is worth pointing out that the unified recovery
operations in our protocols imply that quantum operations
that can be remotely implemented can belong to all of the
restricted sets but not only a kind of restricted set. This ad-
vantage obviously reveals that the power of remote imple-
mentations of quantum operations in our protocols is en-
hanced.

In this paper, we not only propose our protocols in detail,
but also prove them strictly in the cases of one and more than
one qubit. Through describing the cases with two or more
than two senders as well as one or many controllers, we
explain clearly their roles in our protocols.

For the combined remote implementation of quantum op-
erations, we have shown that many senders complete the
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remote implementations of many parts of a quantum opera-
tion and then combine them together to obtain the finally
remote implementation of the whole quantum operations via
multipartite GHZ states. Because the next sender has to
know the classical information from all of the former send-
ers, the combination of many parts of operations has a se-
quence. This implies that the cooperation of all the senders is
needed. In practice, it is possible that different senders have
different operational resources and different operational
rights. Therefore we can set a suitable combination of their
resources and rights. This implies that the combined remote
implementation can overcome the senders’s possible short-
comings and help us to arrive at the power of our protocols
to the utmost extent in theory. Moreover, the transferring
information among the senders in turn can be replaced by
distributing the repertoire from one or several extra super-
controllers to the senders. This makes the supercontrollers
have their right to determine the final operation to be re-
motely implemented, and hence the enhancement of security
of RIO can be obtained by new means. In addition, it is
interesting theoretically to study the quantum resource cost
in the RIO protocols with many senders by comparing the
different schemes using GHZ states with using more Bell
states.

From the controlled RIOs, we have seen that the control-
ler�s� is �are� an �a group of� administrator�s� in our proto-
cols. If the controllers �controller� accept�s� the application
of remote implementations of operations from sender and
receiver, or intend�s� to let sender�s� and receiver�s� carry out
the RIO task, they �he or she� will perform the startup op-
eration �controlling step� and then transfer the classical in-
formation as a “password” to the sender�s� or the receiver
�allowing step� so that the protocols can begin and be faith-
fully completed. When controllers, a sender, and a receiver
share N GHZ states, it does not mean that the sender and
receiver can carry out RIO protocols due to the fact that the
quantum channel between the sender and receiver has not
been opened. The startup of the quantum channel is obtained
by the controllers’ operation. It is just one of the reasons why
we use the name of controller�s�. Then, the controller�s�
transfers his or her classical information as a “password.”
However, as soon as the password is transferred, the control-
ler has no means to stop the protocols. Therefore we suggest
a scheme to delay this transmission �password distributing�
and send the password�s� to the receiver until the finishing of
the receiver’s standard recovered step so that the control-
ler�s� keeps his or hers interrupting right up to the end of the
protocols, that is, “saying the last word.” However, it is pos-
sible this may lead to a little complicated form of the receiv-
er’s recovery operation for the multiqubits cases, so we may
give up this kind of scheme and put the additional recovery
operation before the standard recovery operations.

It should be pointed out that when three partite sub-
systems share N GHZ states, their position and right are sym-
metric. Therefore any partite subsystem can be one of con-
troller, sender, and receiver. The controller is determined by
the other two parties’ choice based on their requirement of
RIO, and/or his or her own decision in order to authorize the
other two partite subsystems carrying out RIO. If an ad-
vanced administrator nominates a controller, he or she can

demand this controller open the quantum channel between
the other two partite subsystems but keep the classical infor-
mation in his or her hands as a controlled means. If the
number of shared GHZ states is n less than N, only two
partite subsystems will be symmetric and they can be chosen
as either a sender and a receiver; the other one partite sub-
system with n qubits only can play as the controllers.

Our protocols with more than two senders, or both many
controllers and many senders, require the shared entangled
states with more than three partite subsystems when we re-
motely implement N-qubit operations only using N GHZ
states. In general, for the cases of RIO of N qubits, the initial
states have the form �68�. Note that mi�1 is necessary for
any i. Otherwise, we do not have the sender. In other words,
there is no N-qubit RIO protocol. If the number of senders is
taken as n �1�n�min�mi , �i=1,2 , . . . ,N���, the number of
controllers is equal to 
i=1

N mi−nN. Obviously, when initially
shared entangled states contain the Bell states �that is, to
allow some mj =1�, there is only one sender; when initially
shared entangled states are all Bell states, the controller is
not allowed and the number of senders is only 1; when ini-
tially shared entangled states are all three-partite GHZ states,
the number of senders is, at most, 2, or there is one sender
and N controllers. It is worth pointing out that many control-
lers can form one or several controlled parties, and the length
of passwords distributed by a given controlled party made of
m controllers increases to m c-bits. In this paper, we have
studied the above different situations in the case of one-
qubit. In order to save space, we only present the combined
RIO protocol with n senders by using N n+1-partite GHZ
states in the cases of N-qubits and controlled RIO protocol
with n controllers by using n three-partite GHZ states and
N−n Bell states, because the variations of the protocols are
direct extensions via jointly considering combined and con-
trolled RIO protocols of N-qubit systems.

In summary, using GHZ states in the RIOs protocols in-
deed can enhance the security, increase the variety, extend
the possible applications, and even advance the efficiency of
the RIOs. Therefore our conclusions indicate that GHZ states
are indeed powerful and important resources in quantum in-
formation processing and communications.
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APPENDIX A: SWAPPING TRANSFORMATION

In this appendix, we first study the general swapping
transformations which are the combinations of a series of
usual swapping transformations. They are used in our proto-
cols in order to express our formulas clearly and compactly,
and prove our protocols more conveniently and easily.
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Note that a swapping transformation of two neighbor qu-
bits is defined by

SW =�
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
� . �A1�

Its action is

SW��X�Y� = ��Y�X�, SW�MX
� MY�SW = MY

� MX.

�A2�

This means that the swapping transformation changes the
space structure HX � HY into HY � HX.

For an N-qubit system, the swapping gate of the ith qubit
and the �i+1�th qubit reads

SN�i,i + 1� = �0
��i−1�

� SW � �0
��N−i−1�. �A3�

Two rearranged transformations are defined by

FN�i, j� = �
�=1←

j−i

SN�j − �, j + 1 − �� , �A4�

PN�j,k� = �
�=j←

k−1

SN��,� + 1� , �A5�

where FN�i , j� extracts out the spin-state of site j and rear-
ranges it forwards to the site i �i� j� in the qubit-string,
PN�j ,k� extracts out the spin-state of site j and rearranges it
backwards to the site k �k
 j� in the qubit-string. Note that
“←” means that the factors are arranged from right to left
corresponding to � ,� from small to large.

In terms of F�i , j� and P�j ,k�, we can obtain the many
general swapping transformations, and then change the space
structure. For example, the initial space structure is

�
i=1

N ��
�=1

m

Ai�	 , �A6�

we would like to change it into

��
j=1

m

Aj�	�
i=1

N ���
�=1

�−1

Ai�	��
�=1

�+1

Ai�	� , �A7�

�
i=1

N ���
�=1

�−1

Ai�	��
�=1

�+1

Ai�	���
j=1

m

Aj�	 . �A8�

The corresponding general swapping transformations are,
respectively, defined by

���,m,N� = �
i=1←

N

FmN�i,mi − �m − ��� , �A9�

3��,m,N� = �
i=1←

N

PmN�m�N − i� + �,mN − i + 1� ,

�A10�

where F�n ,n� and P�n ,n� are thought of as the identity op-
erator. Hence

���,m,N��
i=1

N

�ai1ai2 ¯ aim�

= ��
i=1

N

�ai��	 � �
i=1

N

�ai1 ¯ ai��−1�ai��+1� ¯ aim� ,

�A11�

���,m,N���
i=1

N

�Mai1
� Mai2

� ¯ � Maim
���

−1��,m,N�

= ��
i=1

N

Mai�	 � �
i=1

N

�Mai1
� ¯ � Mai��−1�

� Mai��+1�

� ¯ � Maim
� , �A12�

3��,m,N��
i=1

N

�ai1ai2 ¯ aim�

= �
i=1

N

�ai1 ¯ ai��−1�ai��+1� ¯ aim� � ��
i=1

N

�ai��	 ,

�A13�

3��,m,N���
i=1

N

�Mai1
� Mai2

� ¯ � Maim
��3−1��,m,N�

= ��
i=1

N

�Mai1
� ¯ � Mai��−1�

� Mai��+1�
� ¯ � Maim

��
� ��

i=1

N

Mai�	 . �A14�

More generally, considering the set QN to be a whole per-
mutation of the bit-string a1a2¯aN, and denote the z ele-
ment with a bit-string form Q�z�=q1�z�q2�z�¯qN�z�, we al-
ways can obtain such a general swapping transformation WN
that a computational basis �a1a2¯aN� of N-qubit systems
can be swapped as another basis �q1�z�q2�z�¯qN�z�� in
which q1�z�q2�z�¯qN�z� is an arbitrary element of QN. Thus
we can write a given general swapping transformation
WN�a1a2¯aN→q1�z�q2�z�¯qN�z��,

WN�a1a2 ¯ aN → q1�z�q2�z� ¯ qN�z���a1a2 ¯ aN�

= �q1�z�q2�z� ¯ qN�z�� . �A15�

Furthermore, if we denote two-dimensional space Ai spanned
by �ai� �ai=0,1 and i=1,2 , ... ,N�, and MAi is a matrix be-
longing to this space, we obviously have
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WN
−1�a1a2 ¯ aN → q1�z�q2�z� ¯ qN�z��

���
i=1

N

MAi	WN�a1a2 ¯ aN → q1�z�q2�z� ¯ qN�z��

= ��
i=1

N

MAqi�z�	 . �A16�

Therefore the general swapping transformation WN defined
above can be used to change the space structure of multiqu-
bits systems.

APPENDIX B: PROOF OF OUR PROTOCOL IN CASES
MORE THAN ONE QUBIT

Here, we would like to prove our protocols of controlled
and combined RIO belonging to our restricted sets in the
cases of more than one qubit.

First, let us prove the combined RIO of N-qubit systems
with n senders. An important skill of the proof is to rewrite
the initial state �72� as

�B1�

Like Ref. �4�, we have

�B2�

Thus Bob’s preparing yields

��N
P� = PB�b1, . . . ,bN���N

ini�

=
1

�2N
3

−1�n + 2,n + 2,N�

�� 

k1,. . .,kN=0

1

yk1,. . .,kN
�

m=1

N

���bm
��n

� I4�

���km��n�bmkm���
=

1
�2N

�A
−1�n�� 


k1,. . .,kN=0

1

yk1,. . .,kN� �
�=1

n � �
m=1

N

�bm

Am��km�Am�
	�

��� �
m=1

N

�bm�	� �
m=1

N

�km�	�� . �B3�

Omitting the swapping transformations as well as coeffi-
cient and keeping the relevant subspaces, we have

��N
P� � 


k1¯kN=0

1

yk1¯kn� �
�=1

n � �
m=1

N

�bm

Am��km�Am�
	� � � �

m=1

N

�km�Ym
	 .

�B4�

Alice1’s sending leads to

SA1
��N

P� � 

k1¯kN=0

1

yk1¯kn
� �

m=1

N

�am1�Am1
	

� �� �
m=1

N

�am1�	� �
m=1

N

H	TN
r �x1,v1�� �

m=1

N

�km�	�
� � �

�=2

n � �
m=1

N

�bm

Am��km�Am�
	� � � �

m=1

N

�km�Ym
	 .

�B5�

It is a key matter that we can prove the relation

TN
r �1,v�RN�x� = 


m=1

2N

vm�i,D��m,D�

n=1

2N

�n,D��pn�x�,D�

= 

m=1

2N

vm�m,D��pm�x�,D� = TN
r �x,v� , �B6�

and we have known that

TN
r �1,v� = 


j1,. . .,jN=0

1

v j1j2¯jN�j1j2 ¯ jN��j1j2 ¯ jN� , �B7�

where m is a number in decimal system, but j1j2¯ jN corre-
sponds to its binary system form. Substituting them into Eq.
�B5�, we have

SA1
��N

P� � � �
m=1

N

�am1�Am1
	 


k1¯kN=0

1

v1
j1¯jNyk1¯kn

� ��
m=1

N

�am1�H�jm1�	�� �
m=1

N

�jm1�	RN�x1�

�� �
m=1

N

�km�	� � � �
�=2

n � �
m=1

N

�bm

Am��km�Am�
	�

� � �
m=1

N

�km�Ym
	 . �B8�

Similarly, considering all sending and recovering opera-
tions and again omitting unimportant subspaces, we obtain
the final state:
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��N
final� � 


k1¯kN=0

1

yk1¯kn��
�=0

n � 

l1�¯lN�=0

1 	�
���

�=1

n � 

j1�¯jN�=0

1

v1
j1�¯jN�	�

� ��
�=1

n ��
m=1

N

�am��H�jm��	�
���

�=1

n �� �
m=1

N

�jm��	 �
k=1←

�

RN�xk�� �
m=1

N

�km�	��
� ��

�=1

n � �
m=1

N

�lm��	�� �
m=1

N

r�am��	RN�x���
�� �

m=1

N

�lm��−1��	���
m=1

n

	kmlm0	� �
m=1

N

�lmn�Ym
	 .

�B9�

By using the relations

r�am� = 

lm=0

1

�− 1�amlm�lm��lm� , �B10�

�am�H�jm��− 1�amjm =
1
�2

, �B11�

and dropping unimportant coefficients, we can rewrite the
final state as

��N
final� � 


k1¯kN=0

1

yk1¯kn��
�=0

n � 

l1�¯lN�=0

1 	�
���

�=1

n � 

j1�¯jN�=0

1

v1
j1�¯jN�	�

���
�=1

n

�
m=1

N

�− 1�am��jm�+lm���
� ��

�=1

n � 

i10
�
¯iN0

� =0

1 ��
�=1

� � 

i1�
�
¯iN�

� =0

1 	
�� �

m=1

N

�im�
� �	RN�x��� �

m=1

N

�im��−1�
� �	���

m=1

N

	im0
� km	��

���
�=1

n � �
m=1

N

�lm��	RN�x��� �
m=1

N

�lm��−1��	�
���

�=1

n

�
m=1

N

	 jm�im�
� 	��

m=1

N

	kmlm0	� �
m=1

N

�lmn�Ym
	 . �B12�

It is clear that the matrix elements related to RN�x�� have
�n−�+2� factors. They read

��
�=�

n � �
m=1

N

�im�
� �	RN�x��� �

m=1

N

�im��−1�
� �	�� �

m=1

N

�lm��	RN�x��

�� �
m=1

N

�lm��−1��	 . �B13�

Especially, when �=1,2, it becomes

��
�=1

n � �
m=1

N

�im1
� �	RN�x1�� �

m=1

N

�im0
� �	�� �

m=1

N

�lm1�	RN�x1�

�� �
m=1

N

�lm0�	 , �B14�

��
�=2

n � �
m=1

N

�im2
� �	RN�x2�� �

m=1

N

�im1
� �	�� �

m=1

N

�lm2�	RN�x2�

�� �
m=1

N

�lm1�	 . �B15�

Note that there are the 	 factors ��m=1
N 	kmlm0

� and
���=1

n �m=1
N 	im0

� km
� in the final state �B12�, we can rewrite

them as

��
m=1

N

	kmlm0	��
�=1

n

�
m=1

N

	im0
� lm0	 . �B16�

Thus since ���=1
n �m=1

N 	im0
� lm0

�, the expression �B14� can be
replaced by

��
�=1

n

�
m=1

N

	im1
� lm1	� �

m=1

N

�lm1�	RN�x1�� �
m=1

N

�lm0�	 . �B17�

Here, we have continuously used the relation

�� �
m=1

N

�jm�	RN�x�� �
m=1

N

�km�	��� �
m=1

N

�lm�	RN�x�� �
m=1

N

�km�	�
= ��

m=1

N

	 jmlm	�� �
m=1

N

�jm�	RN�x�� �
m=1

N

�km�	� . �B18�

This relation is obtained because every row or every column
of RN�x� has only one nonvanishing element. Again based on
���=1

n �m=1
N 	im1

� lm1
�, the expression �B15� can be replaced by

��
�=2

n

�
m=1

N

	im2
� lm2	� �

m=1

N

�lm2�	RN�x2�� �
m=1

N

�lm1�	 . �B19�

In turn, we can replace the expression �B13� by

��
�=�

n

�
m=1

N

	im�
� lm�

	� �
m=1

N

�lm��	RN�x��� �
m=1

N

�lm��−1��	
�B20�

for � taking the values from 1 to n. Because the 	 factors
���=1

n �m=1
N 	 jm�im�

� � and ���=1
n �m=1

N 	im�
� lm�

� appear in the final
state, they make jm�= lm�. This means that the factor
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��
�=1

n

�
m=1

N

�− 1�am��jm�+lm��� �B21�

can be replaced by 1. Therefore by summation to eliminate 	
functions, the final state is simplified as

��N
final� � 


k1¯kN=0

1

yk1¯kn��
�=1

n � 

j1�¯jN�=0

1

v1
j1�¯jN�	�

� 

j10¯jN0=0

1 ��
m=1

N

	 jm0km	
� ��

�=1

n � �
m=1

N

�jm��	RN�x��� �
m=1

N

�jm��−1��	�
�� �

m=1

N

�jmn�Ym
	 �B22�

=� �
�=0←

n

TN
r �x�,v��	���Y1¯YN

. �B23�

After restoring the coefficient, adding the other subspaces,
and rearranging the space structure, we have

��N
final� =

1
�2N+n� �

m=1

N �� �
�=1

n

�am��Am�
	�bm�Bm��UN�n�

���N�Y1¯YN
, �B24�

where UN�n� is defined by Eq. �73�. Therefore we finish the
proof of our combined RIO protocol with n senders in the
cases of N qubits by using �n+1�-partite GHZ states.

Now, let us prove the controlled RIO protocol with n
controllers. Since

�I2 � ��cm��cm�HCm� � I2��GHZ+�

=
1

2
�SW � I2��cm���00� + �− 1�cm�11�� , �B25�

the initial state is transformed as

��N
C� = C�c1,c2, . . . ,cn���N

ini� =
1

�2n
�C

−1�n��� �
m=1

n

�cm�	
�� �

m=1

n

�Bellcm
�AmBm

	� �
s=n+1

N

�Bell+�AsBs
	 � ���y1¯yN� ,

�B26�

where �Bell+�= ��+� defined by Eq. �2� and

�Bellcm
� =

1
�2

��00� + �− 1�cm�11�� . �B27�

From the transformation r�x� defined by Eq. �19�, it follows
that

�Bellcm
� = ��0 � r�cm���Bell+� = �r�cmc� � �0��Bell+� .

�B28�

Hence

��N
C� =

1
�2n

�C
−1�n��� �

m=1

n

�cm�	��� �
m=1

n

�cm

Am � �0
Bm	 � I22�N−n��

�� �
s=1

N

�Bell+�AsBs
	� � ���y1¯yN

� �B29�

=
1

�2n
�C

−1�n��� �
m=1

n

�cm�	��� �
m=1

n

�0
Am � �cm

Bm	 � I22�N−n��
�� �

s=1

N

�Bell+�AsBs
	� � ���y1¯yN

� . �B30�

Note that r�x�r�x�= I2; therefore whatever controllers �all
of Charlie’s� transfer their information to the sender �Alice�
or the receiver �Bob�, all factors r�cm� will be eliminated
because the product of it and the prior transformation r�cm�
becomes 1. If we delay the controllers’ information to after
the preparing, then we can similarly discuss in terms of Eq.
�40�. If we delay the controllers’ information to the end of
our protocols �that is, “say the last word”� in the cases of
multiqubits, we will pay the price that a more complicated
additional recovery operation results in. For simplicity, we
only need to prove the case that the controllers’ information
is transferred to Bob. It is clear that the further proof is the
same as the RIO protocol of N-qubit systems using Bell
states. This has been given in our paper �4�, and thus it is
omitted here.
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