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The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum
walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is
shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum
circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains,
as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and
hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the
quantum Fourier transform, the key element of Shor’s algorithm, to a quantum walk system doing the same.
The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which
coupling to a dynamic quantum environment is included.

DOI: 10.1103/PhysRevA.75.062321 PACS number�s�: 03.67.Lx

I. INTRODUCTION

In many quantum-mechanical systems at low energies, the
Hilbert space truncates to the point where the system is mov-
ing between a set of discrete states �which may, however, be
very large in number�. In this case we can describe the sys-
tem, with complete generality, as equivalent to a system in
which a particle �which may itself possess internal degrees of
freedom� “hops” between a set of “nodes” or “sites” on some
graph—the nodes of this graph can then be identified with
states in the Hilbert space of the original system.

The hopping amplitudes between nodes are just the tran-
sition amplitudes in the original Hamiltonian, so that the to-
pology of the graph is entirely determined by these transition
amplitudes. In general, we may allow the Hamiltonian to be
time dependent, so that both the hopping amplitudes and the
on-site energies are allowed to change. We can also allow the
internal state of the hopping particle to couple to its coordi-
nate on the graph.

In path integral language, one can think of the trajectory
of a quantum particle moving between 2 nodes A and B on
this graph as a “quantum walk,” made up of a succession of
discrete hops. The amplitude to go from A to B is then given
by summing over all possible paths �or “walks”� between
them, with the appropriate amplitudes.

Formulated in this way, the problem of a quantum walk is
very familiar to most physicists, and has in fact been under
study since the very beginning of quantum mechanics. No-
table examples come from solid-state physics �where par-
ticles hop around both crystalline lattices �1� and disordered
systems of various topology �2��, from quantum magnetism
�3� �where an assembly of spins makes transitions between
different discrete spin states�, from atomic physics and quan-
tum optics �where one deals with discrete atomic states, and
where in the last few years “optical lattices” have come un-
der study �4��, and from a large variety of problems on dif-
ferent sorts of graph in quantum statistical mechanics �5�.

Quantum walks and quantum information. A certain class

of quantum walks has recently come under study in the con-
text of quantum information processing �6�. These walks are
intended to describe the time evolution of quantum algo-
rithms, including the Grover search algorithm and Shor’s
algorithm. The general idea is that each graph node repre-
sents a state in the system Hilbert space, and the system then
walks in “information space.” In some cases explicit map-
pings have been given between the Hamiltonian of a quan-
tum computer built from spin-1 /2 “qubits” and gates, and
that for a quantum particle moving on some graph �6,7�.
More generally, the mapping between a walk and an algo-
rithm is most transparent for spatial search algorithms with
the local structure of the database.

The quantum dynamics between two sites A and B on a
given graph has been shown for certain graphs to be much
faster �sometimes exponentially faster� than for a classical
walk on the same graph �8–10�. It has also been argued that
quantum walks may generate new kinds of quantum algo-
rithm, which have proved very hard to find. Those algo-
rithms based on quantum walks proposed so far fall into one
of two classes �11�. The first is based on exponentially faster
hitting times �7,8,10�, where the hitting time is defined as the
mean “first passage” time taken to reach a given target node
from some initial state. While several examples have been
found, such as the “glued trees” of Childs et al. �12�, there is
presently no application of these to solve some useful com-
putational problem. The second class uses a quantum walk
search �9,13,14� providing a quadratic speedup. In the case
of a spatial search, the quantum walk algorithms can perform
more efficiently than the usual quantum searches based on
Grover’s algorithm. Amongst the graphs so far studied for
quantum walks are “decision trees” �7,8,12� and hypercubes
�13,14�; quantum walks on some other graphs, and their con-
nection to algorithms, were recently reviewed �6�.

Several recent papers have proposed experimental imple-
mentations of quantum walks for quantum information pro-
cessing �15,16�, in various architectures such as ion traps,
optical lattices, and optical cavities. Some of these proposals
involve walks in real space, whereas others are purely com-
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putational walks �e.g., a walk in the Hilbert space of a quan-
tum register �16��. To our knowledge, two quantum walk
experiments have been carried out: a quantum walk on the
line, using photons �17�, and a walk on a N=4 length cycle,
using a three qubit NMR quantum computer �18�. However,
many experiments over the years, particularly in solid-state
physics, have also been implicitly testing features of quan-
tum walks.

The variety of walks that one may consider is quite
enormous—one may vary the topology of the graphs, and, as
we will see below, even quite simple walks may have a com-
plicated Hamiltonian structure on these graphs. Even the
solid-state and statistical physics literature has only consid-
ered a small part of the available graph structures. In the
quantum information literature, the discussion of walks has
so far been confined to a very restricted class of graphs and
Hamiltonians on these graphs. Attention has focused almost
exclusively on either regular hypercubic lattices, on trees �or
trees connected by random links�, and on “coin-tossing”
walks on lines. Often it is not obvious how one might imple-
ment these walks in some real experiment—clearly one is
not going to be building, for example, a d-dimensional hy-
perlattice. Thus one pressing need, which is addressed in
considerable detail in the present paper, is to give explicit
mappings between the kinds of qubit or gate Hamiltonian
that one is interested in practice, and quantum walk Hamil-
tonians.

Quantum walks and quantum environments. The range of
possible quantum walk systems becomes even more impres-
sive if one notes that any quantum walker will couple to its
environment. In general, one needs to understand what form
the couplings will take, and how they will influence the dy-
namics of the quantum walk. Typically these couplings can
be formulated in terms of “oscillator bath” �19,20� or “spin
bath” �21,22� models of the environment; in the case of
quantum walks we will see that various couplings to these
are allowed by the symmetries of the problem. It has been
common in the quantum information literature, at least until
very recently, to model decoherence sources and environ-
mental effects using simple noise sources �usually Markov-
ian�. Results derived from such models are highly
misleading—they miss all the nonlocal effects in space and
time, which result when a set of quantum systems are
coupled to a real environment, and also give a physically
unrealistic description of how decoherence occurs in many
systems.

Thus another pressing need is to set up a Hamiltonian
description of quantum walkers coupled to the main kinds of
environment, which do exist in nature, showing how these
Hamiltonians transform when one maps between quantum
walk systems and qubit or quantum gate systems. This then
allows a bridge to real experiments. This is actually a rather
substantial task which is undertaken in a separate paper �23�.

Plan of paper. The main goal of the present paper is to set
up a Hamiltonian description of quantum walk systems, and
to give a detailed derivation of the mappings that can be
made between quantum walk systems and more standard qu-
bit and gate systems. The results are in some cases quite
complex, and in order to make them both useful and easier to
follow we give detailed results for several examples. Two

things we do not do in this paper are �i� incorporate cou-
plings to the environment into the discussion—this is the
subject of another paper �23�; and �ii� work out the dynamics
of walkers for any of the Hamiltonians we derive �see, how-
ever, for an example, Ref. �24��.

In Sec. II we begin by setting up a formalism for the
discussion of different kinds of quantum walk. In Sec. III we
then show one may systematically map from different quan-
tum walk Hamiltonians to various qubit systems and quan-
tum circuits. This is done first with single-excitation encod-
ing and multiexcitation encoding of walks into many-qubit
systems, and then more generally; the mappings are illus-
trated with simple examples, notably walks on a hyperlattice.
In Sec. IV we do the reverse, mapping qubit systems back to
quantum walks. This is done first for systems which can be
mapped to spin chains, and then for more general qubit sys-
tems, both static and dynamic; to illustrate the mappings we
discuss various chains and small qubit systems, and show
how to map the quantum Fourier transform to a quantum
walk. Finally, in the concluding Sec. V, we summarize our
results.

II. QUANTUM WALK HAMILTONIANS

In this section we discuss the structure of the different
kinds of quantum walk Hamiltonian we will meet. We deal in
this paper with “bare” quantum walks �i.e., those without any
coupling to a background environment�. We emphasize that
in this section �and the next� our primary object of study is
the quantum walk, as opposed to, e.g., qubit networks or
quantum circuits. However, in Sec. IV we will be freely
mapping between quantum walk systems and other kinds of
network.

We assume, as in the Introduction, that the bare walk is
defined by the topology of the graph on which the system
walks, and by the “on-site” and “intersite” terms appearing
in the Hamiltonian. We can then begin by distinguishing two
kinds of bare quantum walk, which we call “simple” and
“composite,” as follows:

A. Simple quantum walk

The simple quantum walker has no internal states, so that
we can describe its dynamics over a graph with N nodes or
vertices, each labeled by an integer j� �0,N−1�, by a
Hamiltonian of the form

Ĥs = − �
ij

�ij�t��ĉi
†ĉj + ĉiĉ j

†� + �
j

� j�t�ĉj
†ĉj

� − �
ij

�ij�t���i�	j� + �j�	i�� + �
j

� j�t��j�	j� . �1�

Here each node j corresponds to the quantum state �j�
= ĉj

†�0�, such that �j� denotes the state where the “particle” is
located at node j of the graph. The two terms correspond to
a “hopping” term with amplitudes �ij�t� between nodes, and
on-site node energies � j�t�, both of which can depend on
time. There is no restriction on either the topology of the
graph, or on the time dependence of the 
�ij�t� ,� j�t��. Thus,
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for example, one can design a pulse sequence for the param-
eters �ij�t� and � j�t�, as a method of dynamically controlling
the quantum walk.

Two of the simplest topologies that have been discussed
in the literature for quantum walks are d-dimensional hyper-
cubes and hyperlattices. The hypercube simply restricts the
simple quantum walk described above to a hypercubic
graph—its interest resides in the fact that we can map a
general Hamiltonian describing a set of d interacting qubits
to a quantum walk on a d-dimensional hypercube. This map-
ping is discussed in Sec. IV. Hyperlattices extend the hyper-
cube to an infinite lattice in d dimensions; it is common to
assume “translational symmetry” in the lattice space, which
means writing a very simple “band” Hamiltonian

Ĥ = − �
ij

�o�ĉi
†ĉj + ĉiĉ j

†� � �
p

�o�p�ĉp
†ĉp, �2�

where �o is a constant, and p is the “quasimomentum” �also
called the “crystal momentum” in the solid-state literature�;
the “band energy” is then

�o�p� = 2�o�
�=1

d

cos�p�ao� , �3�

and the states of the walker can be defined either in the
extended or reduced Brillouin zone of quasimomentum
space. In Eq. �3� we assume a lattice spacing ao, and the
same along each lattice vector �henceforth we will set ao
=1�. All results can be scaled appropriately if these restric-
tions are lifted.

B. Composite quantum walk

The composite walker has “internal” degrees of freedom,
which can function in various ways. We assume these inter-
nal modes have a finite Hilbert space, and they can often be
used to modify or control the dynamics of the walker. Thus
we assume a Hamiltonian in which the simple walker
couples at each node or vertex j to a mode with Hilbert space
dimension lj, and on each link or edge 
ij� between nodes to
a mode with Hilbert space dimension mij, and we have a
Hamiltonian

ĤC = − �
ij

�Fij�Mij;t�ĉi
†ĉj + H.c.� + �

j

Gj�L j;t�ĉj
†ĉj

+ Ĥo�
Mij,L j�� . �4�

This composite Hamiltonian reduces to the simple walker
when Fij�Mij ; t�→�ij�t� and when Gj�L j ; t�→� j�t�. We do
not at this point specify further what are Fij�Mij ; t� and
Gj�L j ; t�, nor the form of their dynamics �which is governed
not only by the coupling to the walker but also by their own

intrinsic Hamiltonian Ĥo�
Mij ,L j���, but we will study sev-
eral examples below. The bulk of this paper will be con-
cerned with the simple walker in Eq. �1�, which is already
rather rich in its behavior.

We emphasize that the internal variables are assumed to
be part of the system of interest—that is, they are not as-
sumed to be part of an “environment” whose variables are

uncontrolled and have to be averaged over in any calcula-
tion. In the context of quantum information theory these in-
ternal variables are assumed to be under the control of the
operator. For example, Feynman’s original model of a quan-
tum computer �25� is a special case of a composite quantum
walk with Hamiltonian

ĤC = − �
ij

�Fij��;t�ĉi
†ĉj + H.c.� , �5�

where � corresponds to a set of register spins, where the
computation is performed. The walker implements the clock
of this autonomous computer. Another example of a compos-
ite quantum walk is given by the Hamiltonian

ĤC = − �
ij

�
n

��t − tn�f�Lj;t��ĉi
†ĉj + H.c.� + Ĥo�
Lj�� , �6�

in which decisions about where the walker hops to are made
at various times tl by discrete variables 
Lj�. Such models
include examples where some sequence of pulses acting on
the internal walker variables are used to influence its dynam-
ics. A simple special case of such Hamiltonians assumes the
walk is entirely on a one-dimensional line, and that the dis-
crete variable Lj is just a spin-1 /2 variable; for example, we
can assume the form

ĤC = −
1

2�
j

�
n

��t − nto���1 + �̂ j
z�ĉj+1

† ĉj + �1 − �̂ j
z�ĉj−1

† ĉj�

+ Ĥo�
�̂ j�� , �7�

which is just the discrete-time coin-tossing Hamiltonian, in
which a walker at site j hops to the left �right� depending on
whether the “coin”—the spin-1 /2—at this site is up �down�,
with decisions being made after regular intervals of discrete
time to. Obviously one can cook up many more examples of
composite walk systems.

We have sometimes found it convenient to rewrite both
Eqs. �1� and �4� as sums over the original graph G and an
ancillary graph G* formed from the edges of the graph. This
requires a mapping taking the edges of the original graph G
to the vertices of the ancillary graph G*, and vice versa. Thus
we can write, for example,

ĤC = − �
j��G*

�Fj��M j�;t�ĉi
†ĉj + H.c.� + �

j�G
Gj�L j;t�ĉj

†ĉj

+ Ĥo�
M j�,L j�� . �8�

This representation puts the “nondiagonal” or “kinetic” terms
on the ancillary lattice on the same footing as the “diagonal”
or “potential” terms existing on the original lattice. Such a
maneuver can be very useful in studying the dynamics of the
walker, but we will not need it in this paper.

In our study in this paper of mappings from quantum
walks to systems of qubits and/or quantum gates �or vice
versa�, we will concentrate on simple walk systems, for two
reasons. First, as we will see, the results just for simple walks
are rather lengthy. Second, a proper discussion of these map-
pings in a Hamiltonian framework requires a treatment of
nonlocal effects in time, which also arise in the discussion of

QUANTUM WALKS, QUANTUM GATES, AND QUANTUM… PHYSICAL REVIEW A 75, 062321 �2007�

062321-3



the coupling of the walker to the environment. Thus we re-
serve a detailed treatment of composite walks for another
paper.

III. ENCODING QUANTUM WALKS
IN MULTIQUBIT STATES

We would now like to map quantum walk systems to a
standard quantum computer made from qubits acted on by
quantum gates. This means that we wish to map from a quan-
tum walk Hamiltonian like Eq. �1�, acting on states �j�, to a
qubit Hamiltonian acting on M qubits; we require an encod-
ing of the node state �j� in terms of the 2M computational
basis states. We will use the following notation for the com-
putational basis states:

�z1z2 ¯ zM� = �z1� � �z2� � ¯ � �zM� , �9�

where zk� �↑ , ↓ � �we use spin operators here, instead of the
more standard �0, 1�, so as to avoid confusion with the node
indices�.

We now describe two such encodings and the correspond-
ing multiqubit operators needed to implement the quantum
walk described by the Hamiltonian �1�, thereby deriving the
equivalent qubit Hamiltonian.

A. Single-excitation encoding

Our first encoding implements the quantum walk in an
M-dimensional subspace of the full 2M-dimensional Hilbert
space for M qubits. In this sense, this encoding is inefficient
in its use of Hilbert space dimension. However, the opera-
tions can prove to be more easily implementable, requiring
only two-qubit terms in the Hamiltonian.

The subspace we are interested in is spanned by the
M-qubit states with only a single excitation—the states with
only a single qubit in the “up” state �↑ �k state, with all other
qubits in the �↓ � j state �for all j�k�. Each node of the graph
is then encoded via the location of the excitation �in this
case, we label the nodes from 1 to N� i.e., �k���↓ �1 � �↓ �2
� ¯ � �↑ �k � ¯ � �0�N. In this encoding, the general quan-
tum walk Hamiltonian �1� is

Ĥ = − �
i,j

�ij�t��̂i
+�̂ j

− + �̂i
−�̂ j

+ + 2�
j

� j�t��1 + � j
z� , �10�

which consists solely of two-qubit terms between each pair
of qubits connected by an edge of the graph. This encoding
allows the implementation of any quantum walk using only
two-qubit terms in the Hamiltonian, provided arbitrary pairs
of qubits can interact.

To simulate evolution according to Hamiltonian �10� it
suffices to be able to explicitly perform controlled evolution

according to each term in the Hamiltonian. Letting Ĥ

=�kĤk, for time-independent parameters, we use the Trotter
formula

e−i�tĤ � �
k

e−i�tHk/N�N
, �11�

approaching equality as N→�. For time-varying parameters
in the Hamiltonian H�t�, evolution is given by the unitary

U�t,0� = exp+− i��
0

t

H�t��dt�� , �12�

where exp+ is the time-ordered exponential. This can be ex-
panded as the product

U�t,0� = U„m�,�m − 1��… ¯ U��,0� , �13�

for small time step �= t /m. By choosing � sufficiently small,
we approximate each term in the Hamiltonian to be constant
over this time interval,

U„�n + 1��,n�… = exp+− i��
n�

�n+1��

H�t��dt��
� exp�− i��H�n��� . �14�

Since � is small, we then apply the Trotter formula.
So to simulate the quantum walk on a quantum computer

using this single-excitation encoding, we must perform uni-
tary operators of the form

Ûij��� = e−i����̂i
+�̂j

−+�̂i
−�̂j

+�, �15�

between pairs of qubits representing connected nodes of the
corresponding graph, along with the single-qubit terms

V̂k��� = e−i���z
k
. �16�

In this way, this encoding represents a “physical” walk, of a
single spin up over a network of qubits, defined by the pair-
wise interactions.

It is interesting to note the scaling of the resources re-
quired for such a simulation of quantum walks over a general
graph. In terms of space, the number of qubits required for a
given graph is the corresponding number of nodes. The num-
ber of gates representing time �assuming only one- and two-
qubit operations� is at the very least of the order of the num-
ber of edges, assuming each qubit is in direct interaction with
all others. Details of the scaling of gate resources will de-
pend upon the structure of both the graph and the quantum
computing architecture �26�.

B. Binary expansion-based encoding

The most efficient way to encode each node is to use the
binary expansion of the integer labeling the node. We start
from the state at the “origin” of the quantum walk, and label
this state by the ket �0�, making this equivalent to the qubit
“vacuum state” where all spins are “down”. Consider a two-
qubit system. Then we have the mappings �0�= �↓↓�, �1�
= �↓↑�, �2�= �↑↓�, and �3���↑↑�. The number of qubits re-
quired will depend upon the number of nodes of the graph—
M qubits can encode up to N=2M nodes. The corresponding
many-qubit Hamiltonian for the quantum walk depends upon
how the nodes of the graph are labeled. We start with the
simple example of a free quantum walk on the hypercube,
before discussing the construction for general graphs, and
quantum circuit constructions.

This encoding represents a walk in information space—
the information about the position of the walker is stored in
a quantum register. A similar construction for the simulation
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of discrete-time quantum walks on a quantum computer was
conducted by Fujiwara et al. �17�. Results in this section can
be viewed as analogous to this work, extended to the con-
struction of quantum circuits for simulating continuous-time
quantum walks.

1. Mapping a Hypercube walk to a set of qubits

Consider first the simplest possible quantum walk, where
we take � j =0 �i.e., a “free walk”�, and �ij =�o in Eq. �1�.
We also restrict the sum �ij to nearest neighbors, so that
H=−�o�	ij��ĉi

†ĉj +H.c.�. An easily visualized and trivial ex-
ample is a free quantum walk on the regular three-
dimensional cube. This graph has eight nodes, so it requires
three qubits to encode. Figure 1 displays a specific labeling
�6� and the corresponding qubit encoding. To determine the
three-qubit Hamiltonian corresponding to this free quantum
walk, one considers a single element, i.e.,

�1�	5� = �↓↓↑�	↑↓↑� = �↓�	↑ � � �↓�	↓ � � �↑�	↑ � = �̂+
� P↓ � P↑,

�17�

where Pk= �k�	k�. Continuing this process, we obtain

Ĥ = − 2���̂+
� Î � Î + Î � �̂+

� Î + Î � Î � �̂+ + H.c.�

=− 4���̂x
� Î � Î + Î � �̂x

� Î + Î � Î � �̂x� , �18�

which is simply a sum of single-qubit terms.
It is simple to extend this free walk to M dimensions,

where M qubits are required. Each qubit represents one of
the M orthogonal directions the quantum walker may move
in from each node, and the value of the qubit corresponding
to that direction gives at which end of that direction the
walker is located. The corresponding qubit Hamiltonian for
the M-dimensional free quantum walk is thus

H = − 2�0�
i=1

D

�i
x. �19�

The quantum circuit to simulate this Hamiltonian is simply
single-qubit rotations on each qubit, the angle determined by
the time of the walk. Scaling of resources for the simulation
is trivial—the number of nodes N=log M, while the number
of gates is the number of qubits, all of which can be applied
simultaneously.

Interactions between qubits are inevitably associated with
a “potential” � j defined over the nodes, weighted edges,
and/or next-nearest-neighbor couplings �in Sec. IV below we

derive the relation between the � j and �ij on the hypercube
and the parameters of a general qubit Hamiltonian�.

2. General walks and circuit constructions

From the simple example of the hypercube, we can see
how to construct the multiqubit Hamiltonian corresponding
to the general quantum walk Hamiltonian using this encod-
ing. Each vertex or node is now labeled by a bit string z̄
=z1¯zM, with ↑�1, ↓�0. A given on-site term in the gen-
eral quantum walk Hamiltonian �1� becomes

cz̄
†cz̄ � �z̄�	z̄� = �

k=1

M

�zk�	zk� = �
k=1

M

Pzk
= �

k=1

M

�1 − �− 1�zk�̂k
z� ,

�20�

where Pzk
denotes a projection operator.

For the hopping terms, we have

cz̄
†cw̄ + cw̄

† cz̄ � �z̄�	w̄� + �w̄�	z̄� = �
k=1

M

�zk�	wk� + �
k=1

M

�wk�	zk� .

�21�

For each term in the tensor product, either the bit values are
equal, and we have a projection operator, or the values are
opposite, and we have a ladder operator, ��+ ,�−�, such that

�z̄�	w̄� + �w̄�	z̄�

= �
k=1

M

�Pk
zk���zk−wk���1 − zk − wk��k

+��1 + zk − wk��k
− �22�

=�
k=1

M

�Pk
zk���zk−wk���k

x + i�zk − wk��k
y�1−��zk−wk� + H.c., �23�

where ��x� is the delta function. Expanding the tensor prod-
uct in terms of Pauli x and y operators, the addition of the
Hermitian conjugate terms ensure only products with even
numbers of �k

y survive, i.e.,

�↑↓↑↑↑↓�	↑↓↑↓↓↑� + �↑↓↑↓↓↑�	↑↓↑↑↑↓�

= P1
↑P2

↓P3
↑��4

x�5
x�6

x + �4
x�5

y�6
y + �4

y�5
x�6

y − �4
y�5

y�6
x� . �24�

To simulate the evolution of a general quantum walk on a
�qubit� quantum computer using this encoding, we again
make use of the Trotter formula �11�, meaning we must be
able to implement unitaries corresponding to evolution ac-
cording to each term in the total Hamiltonian. For the on-site
or potential terms, this corresponds to unitaries of the form

U��� = e−i���z̄�	z̄�. �25�

A simple circuit to implement this unitary �27� uses a single
ancilla qubit, initialized in the �↓� state, and a multiqubit gate
which takes all qubits as input and flips the ancilla qubit if
the walker qubits are in the state �z̄�. An example is shown
below for the state with z̄= ↑ ↑↓,

10

6 7

4

2
3

5

FIG. 1. Qubit encoding of a quantum walk on the cubic lattice in
three dimensions, using three qubits.
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where the solid �hollow� circles indicate control on ↑ �↓�, and

A� = �1 0

0 e−i�� � . �26�

The multiply controlled-NOT �C�NOT gates can be con-
structed using three-qubit Toffoli gates, additional ancilla
�M −1 gates and ancilla for M control qubits�, and a single
�C�NOT gate �see �27�, p. 184�.

For the hopping terms, we must simulate unitaries, which
implement evolution according to some product of �x’s and
�y’s on some subset of walker qubits, if the other qubits are
in some given state—a multiqubit controlled operation. First,
the evolution by the Hamiltonian consisting of a product
over �z operators can be simulated using �C�NOT gates and a
phase gate with a single ancilla �27�,

which outputs exp�−i���1
z�2

z�3
z����. Using U exp�−iV�U†

=exp�−iUVU†� for unitaries U and V, we can use single-
qubit gates and the circuit above to simulate any product of
�x’s and �y’s. Since �C�NOT is its own inverse, the controlled
evolution is implemented by simply making the A� a con-
trolled gate, i.e.,

gives exp�−i��P1
↑P1

↓P1
↑�̂4

x�̂5
y�̂6

x� for U�̂zU†= �̂x and V�̂zV†= �̂y.
The complexity of the circuit to simulate a quantum walk

will depend upon the graph, and how the nodes are labeled.

One simplification is to minimize the Hamming weight
�number of different bits� between connected nodes, which
we use below for the walk on the line and hyperlattice.

3. Hyperlattice walks mapped to qubits and gates

We start with a line with 2N nodes such that the general
Hamiltonian is H=−�1

2N�i�ĉi
†ĉi+1+H.c.�+�iĉi

†ĉi. The encod-
ing of the node states is as follows: start with a single qubit,
defining a two-node walk, with the nodes labeled as �↓� and
	↑�. This quantum walk is simply defined by H=−�1�1

x. Now
add an additional qubit, such that each node now has two
labels; without changing the Hamiltonian, we have two, two-
node walks, which we now join together at opposite ends,
such that the order of the nodes is now ↓↓, ↓↑, ↑↑, and ↑↓.
We then continue in this fashion �as shown in Fig. 2� for N
qubits, giving a 2N node walk on the line. Note that the label
of each node differs from it’s nearest neighbors in only one
bit. Given a bit string x̄=xNxN−1¯x2x1 specifying a node, the
position along the line �with ↓↓¯↓ corresponding to the ori-
gin, position 1� is given by the function

F�x̄� = 1 + �
n=1

N

2N−n��
i=0

n−1

xN−i� , �27�

where � denotes addition modulo 2.
This labeling results in the following N-qubit Hamiltonian

for the quantum walk on the line

�
m=1

N

� �
x̄: F�x̄�=2m−1�2n+1�,n=0,1,. . .

�F�x̄��̂m
+ �

n�m

Pn
xn + H.c.�

+ �
x̄

�F�x̄��x̄�	x̄� , �28�

such that each hopping term consists of only one Pauli term,
and the rest projection operators. For the corresponding cir-
cuit simulation, this means that only multiply controlled
single-qubit gates are required. In the case of uniform hop-
ping �i=�0, the sum over the hopping terms simplifies to

Hhop = − 2��̂1
x + �̂2

xP↑
�1� + �̂3

xP↑
�2�P↓

�1� + �̂4
xP↑

�3�P↓
�2�P↓

�1� + ¯

+ �̂N
x P↑

�N−1�P↓
�N−2�

¯ P↓
�1�� . �29�

The corresponding circuit to simulate Uk���=exp�−i��Hk�,
for �= t /N with Hk= �̂k

xP↑
�k−1�P↓

�k−2�
¯P↓

�1�, such that the corre-
sponding unitaries Uk are controlled rotations on the kth qu-
bit, is shown below �for six qubits�,

FIG. 2. Encoding for quantum walk on the line, using one, two, and three qubits.
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where we have used the notation X	�Rx�	�=exp�−i�	�̂x /2�, such that the X
 gate corresponds to the Pauli X �a bit flip�.
To write the circuit above in terms of one- and two-qubit gates we use the construction described above. Explicitly, we

require the multiply controlled gate

with the Toffoli gates realized using single-qubit rotations and �C�NOT gates, as shown below,
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using the following single-qubit gates �where Ra�	�
=exp�−i	�a /2��:

A = Rz�− 


2
�Ry�


4
�, B = Ry�− 


4
�, C = Ry�


2
� ,

A� = Rz�− 


2
�Ry�− 


4
�, �̂ = 1 0

0 e−i
/4�,

− �̂ = 1 0

0 ei
/4� .

Finally, we need to be able to apply a �C�Rx�2��, which is
simply

where

D = Rz�− 


2
�Ry� �

2
�, E = Ry�− �

2
�, F = Rz�


2
� .

This can be simply modified to the quantum walk on the
circle, by changing the last term in the Hamiltonian to
�̂N

x P↓
�N−2�

¯P↓
�0�, and in turn altering the corresponding gate.

Having the hopping amplitudes between nodes equal greatly
simplifies the quantum circuit simulation—the number of
gates requires scales approximately as O�N2� for each incre-
mental time step.

The construction of the qubit quantum circuit for simulat-
ing the quantum walk in the line can be easily generalized to
simulate a quantum walk on an arbitrary D-dimensional hy-
perlattice, with 2ND nodes. Each node on the hyperlattice is
specified by D bit strings of length N, each of which denote
the location of the node in a given direction—each node is
represented by an ND qubit state, x̄1 ; x̄2 ; . . . ; x̄D, where x̄k
is an N-bit string �Fig. 3�.

Using this encoding, the quantum walk on the hyperlattice
simply corresponds to D individual quantum walks on the
line, where D is the dimension of the lattice—there is no
interaction between qubits specifying different directions.
Thus, we use the above construction on D different sets of M
qubits to define the quantum walk on the D-dimensional hy-
perlattice as follows:

H = �
d=1

D �
m=1

N

� �
x̄d: F�x̄d�=2m−1�2n+1�,n=0,1,. . .

�F�x̄d��̂md

+ �
nd�md

Pn
xnd

+ H.c.� + �
x̄d

�F�x̄d��x̄d�	x̄d�� . �30�

We have discussed the construction of qubit Hamiltonians
for a given walk when the graph structure is completely
known. Another scenario is where we are given access to a
“black box” or oracle, which contains information about the
graph structure, e.g., the adjacency matrix. In the standard
setup, we may query the oracle with two nodes to determine

if there is such a connection. This is the situation in the
Childs et al. algorithm �8�, and was considered more gener-
ally by Kendon �26�.

IV. FROM QUBIT HAMILTONIANS TO QUANTUM
WALKS

The other direction to approach these mappings from is to
start with a multiqubit Hamiltonian, and determine a corre-
sponding quantum walk. We begin with a simple one-
dimensional spin chain.

A. Spin chains to quantum walks

The XY model in one dimension corresponds to a chain of
N qubits �spin-1

2 particles� with nearest-neighbor couplings,
described by the Hamiltonian

ĤXY = �
i=1

N

−
J

2
��̂i

x�̂i+1
x + �̂i

y�̂i+1
y � +

h

2
�̂i

z, �31�

which assumes homogenous coupling strengths J. This
model is exactly solvable using the Jordan-Wigner transfor-
mation, mapping the model to a system of spinless fermions.
In this representation, the Hamiltonian has a natural quantum
walk interpretation, as fermions hopping between sites. The
Jordan-Wigner transformation defines the fermionic opera-
tors

ĉi = ��
j�i

�̂ j
z��̂i

+, ĉi
† = ��

j�i

�̂ j
z��̂i

−, �32�

which respect the fermionic canonical commutation relations

ĉi , ĉj

†�=�ij and 
ĉi , ĉj�= 
ĉi
† , ĉj

†�=0. The spin operators are
expressed as

FIG. 3. Encoding for quantum walk on the two-dimensional
lattice. Each node is encoded via two bit strings, of length 3 in this
case.
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�̂i
z = Î − 2ĉi

†ĉi, �33�

�̂i
+ = �

j�i

�Î − 2ĉj
†ĉj�ĉi, �34�

�̂i
− = �

j�i

�Î − 2ĉj
†ĉj�ĉi

†. �35�

The XY Hamiltonian then becomes

ĤXY =
h

2
+ �

i=1

N

− J�ĉi+1
† ĉi + ĉi

†ĉi+1� − hĉi
†ĉi, �36�

describing free, spinless fermions, hopping along a one-
dimensional lattice, since the total fermion number n̂
=�i=1

N ĉi
†ĉi is conserved.

It is interesting to consider the same system with a higher
number of excitations. In this case, the dynamics is restricted
to a subspace with dimension D= � N

n
�= N!

n!�N−n�! , where n is the

number of fermions or excitations. Now consider each state
as encoding a node of a graph, reverting to the binary encod-
ing. The symmetry in the system results in interesting graphs
for the corresponding quantum walk. For example, the N
=6, n=3 case, where nodes are encoded by states of the form
�↑↑↑↓↓↓� with three spins up, and three down, is shown in
Fig. 4, where the two end states correspond to �↑↑↑↓↓↓� and
�↓↓↓↑↑↑�. We see that this graph has a treelike structure,
leading into a cube in the middle. The continuous quantum
walk on this graph is exactly solvable.

It is possible to “collapse” such a quantum walk to a
biased walk along a line �8�. This corresponds to the XY
model with nonhomogenous coupling strengths. This is done
by defining column subspaces, such that states in column
space k are only connected to states in column spaces k−1
and k+1, in terms of the corresponding graph for the quan-
tum walk. Site k on the line then corresponds to an equal
superposition of states in the corresponding column sub-
space. The strength of the coupling between the nodes is then
determined from the Hamiltonian. Figure 5 shows the linear
chain corresponding to the XY Hamiltonian with six sites, in
the three-excitation subspace. The two end nodes correspond
to the states �↑↑↑↓↓↓� and �↓↓↓↑↑↑�.

B. Static qubit Hamiltonians to quantum walks

Now let us look at more general spin systems. A system of
considerable interest, both methodological and practical, is
the general N-qubit Hamiltonian with time-independent cou-
plings. As an example consider the following form:

Ĥ = �
n=1

N

��n�̂n
z + �n�̂n

x� − �
i,j

�ij�̂i
z�̂ j

x + �
i�j

Vij
��̂i

x�̂ j
x + Vij

�
�̂i

z�̂ j
z.

�37�

We have not included all possible interaction terms Vij
���̂i

��̂ j
�

here, because the algebra then becomes rather messy, but
instead just all the terms representing different kinds of in-
teraction: the longitudinal and transverse diagonal couplings
Vij

� and Vij
�, and a representative nondiagonal �ij.

It is intuitively useful, before giving the general results, to
first consider just three qubits. Using the binary expansion
encoding, where the state �k� represents the kth node on some
graph, we have

Ĥ = ���21 + �31 + �1��0�	4� + ��21 − �31 + �1��1�	5� + ��31 − �21 + �1��2�	6� + ��1 − �21 − �31��3�	7� + ��12 + �32 + �2��0�	2�

+ ��12 − �32 + �2��1�	3� + ��32 − �12 + �2��4�	6� + ��2 − �32 − �12��5�	7� + ��13 + �23 + �3��0�	1� + ��13 − �23 + �3��2�	3�

+ ��23 − �13 + �3��4�	5� + ��3 − �23 − �13��6�	7� + H.c.� + �V12
� ��0�	6� + �1�	7� + �2�	4� + �3�	5�� + V23

� ��0�	3� + �1�	2� + �4�	7�

+ �5�	6�� + V13
� ��0�	5� + �1�	4� + �2�	7� + �3�	6�� + H.c.� + ���1 + �2 + �3 + V12

� + V13
� + V23

� ��0�	0� + �V12
� + V13

� + V23
� − �1 − �2

− �3��7�	7� + ��1 + �2 − �3 + V12
� − V13

� − V23
� ��1�	1� + �V12

� − V13
� − V23

� − �1 − �2 + �3��6�	6�

+ ��1 − �2 + �3 − V12
� + V13

� − V23
� ��2�	2� + �− �1 + �2 − �3 − V12

� + V13
� − V23

� ��5�	5�

+ ��1 − �2 − �3 − V12
� − V13

� + V23
� ��3�	3� + �− �1 + �2 + �3 − V12

� − V13
� + V23

� ��4�	4�� ,

�

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �
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� � � � � �
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�

�

�
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� � � � � �
� � � � � �
� � � � � �
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� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
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� � � � � �
� � � � � �

FIG. 4. Graph for the quantum walk given by the Hamiltonian

ĤXY with six sites, and three excitations.

1JJ23
JJ4J5J43

JJ21J

FIG. 5. Graph for the quantum walk given by the Hamiltonian

ĤXY with six sites, and three excitations, reduced to a linear chain.
The couplings are J1=1, J2=�2, J3=4/�6, J4=5/3, and J5=2.
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which is a quantum walk over a cubic lattice, with the addi-
tion of the diagonal connections on the faces, as well as
on-site potentials, as shown in Fig. 6. If we generalize now
to an N-qubit Hamiltonian of the form above, we have a
quantum walk on a hypercube, with the addition of next-
nearest-neighbor connections, where the nodes are encoded
as described earlier for the hypercube. We can reexpress the
Hamiltonian in the general quantum walk form as

Ĥ = − �
	ij�

�ij�ĉi
†ĉj + ĉiĉ j

†� + �
j=0

2N

� jĉ j
†ĉj , �38�

where the coefficients are defined as follows. Consider the
binary representation of each of the nodes, i.e., i� i1i2¯ iN,
j= j1j2¯ jN, where ia , jb=0,1 corresponding to spin up and
spin down in the qubit representation. Then, for 1�a ,b
�N,

�ij = ��a + �
c

�− 1� jc�ca if ia � ja and ib = jb ∀ b � a

Vab
� if ia � ja and ib � jb and jc = ic ∀ c � a,b

0 otherwise,
� �39�

and

� j = �
a=1

N

�− 1� ja�a + �
a,b

�− 1� ja+jbVab
� . �40�

The only aspect of these expressions that is not immediately
obvious is the signs.

C. Dynamic qubit systems mapped to quantum walks

We now consider a universal gate set in which we allow
time dependence in all the couplings. Again we do not con-
sider the most general case because the results are too messy,
but instead take a special case in which the qubit Hamil-
tonian has the form

Ĥ = �
j=1

N

�� j�t��̂ j
z − � j�t��̂ j

x� − �
i,j

Vij
��t��̂i

x�̂ j
x, �41�

where we have complete control over all parameters in the
Hamiltonian, which are time dependent. This is a rather ide-
alized case, but will suffice for our demonstration. If every
qubit is “connected,” such that there are sufficient coupling
terms between qubits allowing entanglement between all,
then the Hamiltonian is universal for quantum computation.
The two single-qubit terms allow any single-qubit unitary to
be implemented, then all that is needed is a two-qubit entan-
gling operation �28�, as provided by the XX coupling.

From this Hamiltonian, a quantum circuit will correspond
to a pulse sequence, describing applications of different

terms in the Hamiltonian. The fundamental gate set consists
first of arbitrary x and z rotations �on the Bloch sphere� for
each qubit, denoted

Rx��� = exp�− i��̂x/2�, Rz�	� = exp�− i	�̂z/2� , �42�

which can be combined to describe any single-qubit unitary

operation Û, via

Û = ei�Rz�	�Rx���Rz��� , �43�

for some global phase �. As well we have the two-qubit
unitaries described by

Vij
���� = exp�i��̂i

x�̂ j
x� , �44�

between qubits i , j. We will construct circuits in terms of
these fundamental gates, then convert the relevant pulse se-
quence into a quantum walk.

The canonical universal gate set consists of single-qubit
unitaries and the �C�NOT operation. Using a method from Ref.
�29�, we show below a circuit, which is equivalent to �C�NOT

made up gates from our fundamental set as follows:

FIG. 6. Graph for the quantum walk given by the Hamiltonian
�37�. The nodes are labeled as in Fig. 1. The diagonal edges corre-
spond to the two-qubit terms in the Hamiltonian. The �̂i

z terms add
on-site potential terms.
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For compactness of notation, we set Rx�	��X	 and Rz���
�Z�, and W=V��
 /4�. The circuit in terms of the funda-
mental gates easily becomes a pulse sequence by interpreting
the angles as times of application for corresponding terms in
the Hamiltonian. Applying Rx��� on the second qubit corre-
sponds to switching on �2 for a time T such that T=
−� /2�2. When � is positive, we simply replace this with the
angle ��=�−2
, which gives an equivalent rotation. Simi-
larly, for Rz�	� on the third qubit, T=	 /2�2, and for V���� on
the third and fourth qubits, we switch V34

� on for a time T
=� /V34

� .
We can interpret each fundamental gate in terms of a

quantum walk on graph whose nodes are arranged on the
hypercube with the specific gate determining the edges �see
Fig. 7�.

Imagine the 2N nodes of a quantum walk arranged on a
hypercube. An Rx

�k���� pulse switches on connections along
edges—Fig. 7�a�—in a direction given by the qubit acted
upon. We then have a quantum walk on this restricted hyper-
cube, for a time corresponding to the angle �.

Similarly, a Vjk
���� pulse “switches on” connections along

the diagonals of faces determined by the qubits acted upon,
resulting in a different restricted quantum walk, for a time
corresponding to � �Fig. 7�b��.

On the other hand, a Rz
�j��	� pulse does not connect any

nodes, but rather applies a relative phase to half of the nodes,
i.e.,

Rz�	��a�0� + b�1�� = e−i	�a�0� + bei2	�1�� . �45�

This relative phase is applied to the nodes on a “face” of the
hypercube, dependent upon the qubit acted upon �see Figure
7�c��. A quantum computation will correspond to a series of
these pulses, of varying time—the analogous quantum walk
will be over a hypercube with time-dependent edges, poten-
tially connecting both nearest and next-nearest-neighbor
nodes. As an example, we consider the quantum Fourier
transform �QFT�, the essential element of Shor’s factoring
algorithm.

The QFT on an orthonormal basis �0�,�1� , . . . , �N−1� is
defined by the linear operator

�j� →
1

�N
�
k=0

N−1

ei2
jk/N�N − 1� , �46�

which on an arbitrary state acts as

�
j=0

N−1

xj�j� → �
k=0

N−1

yk�k� , �47�

where

yk =
1

�N
�
j=0

N−1

xje
i2
jk/N�N − 1� , �48�

is the �classical� discrete Fourier transform of the amplitudes
xj. This transformation is unitary, so it can be implemented
on a quantum computer.

Following the prescription from �27�, to perform the QFT
on a qubit quantum computer we let N=2n, and the basis
�0� , . . . , �N−1� be the computation basis for n qubits. Each j
is expressed in terms of it’s binary representation, j
� j1j2¯ jn—explicitly j= j12n−1+ j22n−2+ ¯ + jn20. We use
the notation 0jkjk+1¯ jl to represent the binary fraction
jk /2+ jk+1 /4+ ¯ + jl /2l−k+1. This allows us two write the ac-

(a)

(b)

(c)

FIG. 7. �Color online� Fundamental gates as variants of a quan-
tum walk on the hypercube.
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tion of the QFT in a useful product representation �27�,

�j1 ¯ jn� →
1

2n/2 ��0� + ei2
0jn�1����0� + ei2
0jn−1jn�1�� ¯ ��0�

+ ei2
0j1¯jn�1�� . �49�

Based on this representation, an efficient circuit, shown in
Fig. 8, for the QFT is constructed �27�. This circuit utilizes
the Hadamard gate H, SWAP gates, and �C�Rk gates, where

Tk = 1 0

0 ei2
/2k� . �50�

We can rewrite this circuit in terms of our fundamental
gate set, to derive a corresponding pulse sequence. A �C�Tk

gate is given in Fig. 9, while the SWAP gate is shown in Fig.
10.

By combining these circuits we construct the QFT circuit
in terms of our fundamental gates set. This circuit can be
interpreted as a pulse sequence, the duration of the pulses
corresponding to the angles characterizing the different
gates.

For the above example we have assumed complete control
over all parameters in the Hamiltonian, with the ability to
switch all on or off. In physical systems, this is almost surely
not the case. For example, interactions may be constant, with
the single-qubit terms controllable. Quantum computation is
still possible in this case, though pulse sequences will be
more complicated. An interesting problem is how circuit
complexity varies as further restrictions are placed on pos-
sible controls. The problem of constructing efficient circuits
in general is a very open and active area of research �30�;
when decoherence is included in the operation of the gates,
this becomes even more interesting—circuits would be de-
signed to minimize decoherence, as opposed to complexity.
Naively, one would expect less gates to mean shorter running
time, lessening the effects of decoherence. A detailed study
may demonstrate that this is not the case.

V. CONCLUDING REMARKS

In this paper we have formulated quantum walks in a
Hamiltonian framework, and explored the mappings that ex-
ist between various quantum walk systems and systems of
gates and qubits. The Hamiltonian formulation possesses
considerable advantages. We have seen that it allows a uni-
fied treatment of continuous time and discrete time walks,
for both simple and composite quantum walk systems. It is
also necessary if one wishes to make the link to experimental
systems. This latter point becomes particularly clear when
one tries to understand decoherence for quantum walkers, for
which it is essential to set up a Hamiltonian or a Lagrangian
description.

In the paper we have concentrated on walks on hyper-
cubes and hyperlattices. Walks on hypercubes are naturally
mapped to systems of gates or qubits, and we have explored
mappings in either direction. Walks on hyperlattices, on the
other hand, can be mapped to qubit or gate systems, but the
mappings are not so obvious—we have exhibited them, and
thereby shown how one could construct an experimental
d-dimensional hyperlattice from a gate system. In the case of
both hypercubes and hyperlattices we have exhibited the
general methods for finding these mappings and their in-
verses in sufficient detail that it should now be clear how to
make such mappings for quantum walks on more general
graphs.

The practical use of our methods and results does not
become completely clear until we incorporate the environ-
ment into our Hamiltonian description. As indicated in the
Introduction, this can be done in a fairly comprehensive way,
by using a general description of environments in terms of
oscillator and or spin baths. The rather lengthy results once
this is done appear in a companion paper to this one �23�.
Once this is done it becomes possible to solve rigorously for
the dynamics of quantum walk systems, without using ad
hoc models with external noise sources. The results can be
pretty surprising, as shown by the results in Ref. �24� for one
particular example.

Z−π
2

Xπ
2

Z π
2

V
`

π

2k+1

´

Z−π
2

X−π
2

Z π(2k−1+1)

2k

≡

Rk
Z−π

2
Xπ

2
Z π

2
Z−π

2
X−π

2

Z π(2k−1+1)

2k

•

FIG. 9. The �C�Rk gate in terms of the fundamental gate set. The
pulse sequence can be read directly from the circuit.

× Z−π
2

Xπ
2

Z π
2

V
`

π

4

´
Z−π

2
X−π

2

V
`

π

4

´
Z π

2

V
`

π

4

´≡
× Z−π

2
Xπ

2
Z π

2
Z−π

2
X−π

2
Z π

2

FIG. 10. The SWAP gate as a pulse sequence using our funda-
mental gates.

T2
. . . Tn−1 Tn

. . . . . . × . . .
`|0〉 + ei2π0.jn |1〉´

|j2〉 • . . . H . . . Tn−2 Tn−1
. . . × . . .

`|0〉 + ei2π0.jn−1jn |1〉´

...

|jn−1〉 . . . • . . . • . . . H T2 × . . .
`|0〉 + ei2π0.j2 ...jn |1〉´

|jn−1〉 . . . • . . . • . . . • H × . . .
`|0〉 + ei2π0.j1 ...jn |1〉´

|j1〉 H

FIG. 8. Quantum circuit for the quantum Fourier transform. At the end are n /2 SWAP gates, reordering the qubits.
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Ultimately the main reason for the work in the present
paper is that one can bring the work on quantum walks into
contact with experiment, and design experimental systems
able to realize different kinds of quantum walk. In parallel
work we have done this for both a particular ion trap system,
and for a particular architecture of spin qubits �31�. Only in
this way will it be possible to fully realize the potential of-

fered by quantum walk theory in the lab �and to test it ex-
perimentally�.
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