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We propose an entanglement measure for two quNits based on the covariances of a set of generators of the
su�N� algebra. In particular, we represent this measure in terms of the mutually unbiased projectors for N
prime. For pure states this measure quantifies entanglement, we obtain an explicit expression which relates it
to the concurrence hierarchy, specifically the I-concurrence and the three-concurrence. For mixed states we
propose a separability criterion.
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I. INTRODUCTION

Entanglement plays a key role in quantum information
and quantum communications processes. During the last
years a wealth of entanglement measures have been proposed
and studied �1�. In particular, the two-qubit case has been
extensively studied, and entanglement of formation �2� and
concurrence �3� are now widely accepted as entanglement
measures. These measures require a complete knowledge of
the density matrix, which, in turn, require state tomography,
an experimentally and computationally labor intensive pro-
cess.

Higher dimensional cases are more complicated. An ac-
cepted separability criterion is the so-called positive partial
transpose �PPT� criterion �4�, which is necessary and suffi-
cient for composite systems with dimensions 2�2 and 2
�3 �5�, otherwise it is only necessary and it does not give
information about the amount of entanglement. Motivated by
the positive, but not completely positive maps, which are
always positive for separable states �5�, another important
criterion has been introduced �6�. A separability criteria
which identifies the entanglement in some states that PPT
does not �so-called bound states�, is the realignment method
�7�. The method has the advantage that it gives a rough quan-
titative estimate of the degree of entanglement.

However, even for two qutrits there is no consensus on
how to quantify entanglement. Ulhmann introduced one
measure that is based on the fact that antilinear operators are
nonlocal �8�. Unfortunately, this generalization is not invari-
ant under local unitary transformations, an important prop-
erty that an entanglement measure requires. Rungta et al.
introduced another generalization of concurrence �9�, namely
the I-concurrence, based on a generalization of the spin-flip
operation called universal inverter. The measure possesses
the requirements for a good entanglement measure �10�, and
theoretically is very nice, nevertheless the universal inverter
is not a complete positive operation, so it is not directly
experimentally realizable. However, for bipartite systems
with no more than two eigenvalues different from zero there
is an explicit formula for the I-tangle, that is the square of the
I-concurrence �11�. At roughly the same time, this concur-
rence was also introduced in �12� in terms of invariants under
local unitary transformations.

For mixed states, the situation is further complicated. For
example, the I-concurrence �9� requires a global minimiza-

tion over all bases which makes it cumbersome to calculate
for mixed states. Mintert, Kuś, and Buchleitner �13� found a
lower bound on I-concurrence which is simpler to estimate
than the I-concurrence itself, and a short time later Chen,
Albeverio, and Fei found an analytical lower bound �14�
connecting the I-concurrence with the PPT criterion �4� and
the realignment criterion �7�. Another attempt of generalizing
the concurrence �3� for mixed states in higher dimensions
was made by Badziag et al. in �15�. They introduced the
so-called preconcurrence, which, unfortunately, is difficult to
analyze for states with a rank �2. Moreover, there is no
guarantee that the ensuing concurrence matrix can be diago-
nalized. Then, they introduce the biconcurrence, which im-
plies a separability criteria, but it too requires a minimization
procedure. Yet another proposal to deal with mixed states in
higher dimensions is presented in �16�, where the concept of
negativity is extended �17� for mixed states by means of a
convex-roof, which gives a necessary and sufficient separa-
bility criteria. For two qubits it coincides with the concur-
rence �3�. Unfortunately, all these measures are difficult to
implement experimentally and they require substantial ef-
forts to estimate.

An easier way to detect entanglement is using entangle-
ment witnesses �18�. Recently it was shown that with non-
linear expressions, that often can be implemented experi-
mentally without extra effort, any witness can be improved
�19�. In fact, in �20�, using the universal inverter �3,5�, a
positive map that leads an optimal entanglement witness, in
the sense that it can recognize more entanglement states with
positive partial transpose than any other, is constructed.
However, entanglement witness needs to be tailor-made for
each quantum state. Hence a priori knowledge of the state is
needed.

Several years ago Schlienz and Mahler proposed a general
description of entanglement using the density matrix formal-
ism �21�. For the bipartite case they introduce an entangle-
ment tensor who’s components are the covariances between
a pair of generators of the respective algebra for each par-
ticle. They show that this tensor is the difference between the
composite density matrix and the tensor product of the re-
duced density matrices for each subsystem. By taking the
square form of this tensor one obtains a distance which is
vanishing for any product state and is positive otherwise.
This distance is maximal for maximally entangled states, and
it is invariant under local unitary transformations. The work
in �21� focuses on the entanglement of pure states, but they
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suggest that it should be possible to extend this result for
mixed states. However, Schlienz and Mahler were ahead of
their time because concurrence had not yet been proposed in
1995, so how to distinguish between entangled states and a
statistical mixture of separable states is not discussed in �21�.

The use of uncertainty relations in the study of entangle-
ment is well-known for continuous variables �22�. In �23�
Hofmann and Takeuchi proposed a generalization of the un-
certainty principle to uncertainty sums of local observables
for finite dimensional systems. They derived a local uncer-
tainty criterion valid for every bipartite separable state. This
criterion was later extended to multiqubit systems and refor-
mulated in a way that it can be connected with continuous
variables thorough the covariance matrix �24�. Nevertheless,
the local uncertainty sums depends on the sign of the cova-
riances of the local observables, causing an unnatural asym-
metry, and the range of nonseparable states that this local
uncertainty relation is able to detect is small �23,25�. The
criterion was improved in �26�, where with a slight modifi-
cation, the uncertainty relations can detect a larger class of
nonseparable states with the same measurement data as in
�23�.

Recently, it was discovered that Schlienz and Mahler’s
measure �21� and local uncertainty relations are really just
two sides of the same coin �27�. Schlienz and Mahler’s mea-
sure can be stated as a criterion �a limit� to ensure the en-
tanglement. For pure states the measure can be expressed in
terms of the standard concurrence �3�. For a highly entangled
state this measure can even quantify entanglement to some
degree. Recently the measure was tested experimentally �28�.
In Sec. II we extend the work of Schlienz and Mahler and
Kothe and Björk on the separability limit and on the relation
between the measure and entanglement invariants.

When trying to detect or quantify entanglement experi-
mentally one needs to consider that quantum mechanics is
based on probabilities. Hence in order to obtain as much
information as possible when measuring a quantum state not
only a complete set of linearly independent measures are
needed, but they should also optimize the process. Wootters
and Fields �29� showed that measurements in mutually unbi-
ased basis �MUB� provide a minimal and optimal way for a
complete determination of a quantum state. The concept of
mutual unbiasedness was introduced by Ivanović �30� who
proved that for prime dimension such basis exist, by an ex-
plicit construction. Some time after this concept was ex-
tended for a power of prime dimensional spaces �31�. In Sec.
III we combine the ideas introduced in �21� and in �27� with
the idea of optimal experimental estimation of a state, or, in
this case, specifically estimation of its entanglement.

II. CORRELATION MEASURE FOR ARBITRARY
DIMENSIONAL BIPARTITE SYSTEMS

In this section we extend the work on the correlation mea-
sure for two systems, made in �21,27�. Specifically, we take
the entanglement measure proposed in �21� and use it to
prove a criterion for nonseparability and relate it to two en-
tanglement invariants. An advantage with the criterion is that
it is experimentally measurable, and it only involves corre-
lations between local measurements.

Consider two systems A and B of dimensions NA and NB,
respectively, where we, without loss of generality, can as-
sume that NA�NB. The generalization of the bipartite equa-
tion is straightforward �21�,

G = �
k=1

NA
2−1

�
l=1

NB
2−1

�C��̂k
A,�̂l

B��2, �1�

where

C��̂k
A,�̂l

B� = ��̂k
A

� �̂l
B� − ��̂k

A
� 1̂B��1̂A

� �̂l
B�

is the covariance between �̂k
A and �̂l

B and where �̂k�l�
A�B�, k , l

=1, . . . ,NA�B�
2 −1 are the generators of the su�NA�B�� algebra.

They fulfill the relations

Tr��̂k� = 0, Tr��̂k�̂l� = �kl. �2�

In two and three dimensions representations of these opera-
tors are the Pauli and the Gell-Mann matrices, respectively,
that are listed in, e.g., �32�. For higher dimensions an explicit
construction algorithm can be found in �33�. Note, however,
that from an experimental point of view, some representa-
tions of su�N� groups are preferable over others. We will
return to this point in Sec. III.

As was pointed out in �21�, and later in �34� for the qubit
case, the measure G is proportional to the square of the
Hilbert-Schmidt distance between the composite density ma-
trix and the tensor product of the reduced density matrices,

G = Tr	��̂ − �̂A
� �̂B�2
 , �3�

where �̂A�B� is the reduced density matrix for the subsystem
A�B�, and �̂ is that of the composite system. The density
matrices for each subsystem can be written in terms of any
set of su�N� generators �see, for example, �33��, that is,

�̂A = �
j=0

NA
2−1

aj�̂ j
A, �̂B = �

j=0

NB
2−1

bj�̂ j
B, �4�

where here and below, we have taken �0
A�B�= 1̂ and therefore

a0=NA
−1 and b0=NB

−1. Since the direct product of the basis
states of the single particles serves as a basis in the compos-
ite system, the density matrix for the total system can be
written as

�̂ = �
k=0

NA
2−1

�
l=0

NB
2−1

lkl�̂k
A

� �̂l
B. �5�

Note that for k= l=0, i.e., the first term, we have l00
= �NANB�−1 irrespective of �̂.

The key to probe �3� is that tracing over one of the sub-
systems simply corresponds to choosing the zero component
for the corresponding index �34�, in our notation,

ak = Tr��̂A�̂k
A� = NBlk0,

bl = Tr��̂B�̂l
B� = NAl0l.
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The measure given by Eq. �1�, or equivalently Eq. �3� has
some desirable features. One is that in the Hilbert-Schmidt
distance form �3� is easy to manipulate theoretically. It is
straightforward to see some important properties such that it
is invariant under local unitary transformations. It is also
quite obviously zero for pure, separable states. For the maxi-
mally entangled states, i.e.,

��� =
1

�NA
�
j=1

NA

�j j� , �6�

G obtains its maximum, �NA
2 −1� /NA

2 .
In order to analyze the properties of the proposed mea-

sure, we will take it in the form �3�. Consider any pure state
in the Schmidt decomposition:

��� = �
j=1

NA

ei�j�aj�� j
A� � �� j

B� ,

where aj, j=1, . . . ,NA are real and non-negative, a1+ ¯

+aNA
=1, and ��i

A �� j
A�= ��i

B �� j
B�=�ij. Inserting this state into

Eq. �3� one obtains

G = �
i=1

NA

ai
4 + 2 �

i,j=1

i	j

NA

ai
2aj

2 − 2�
i=1

NA

ai
3 + �

i=1

NA

ai
2 + 2 �

i,j=1

i	j

NA

aiaj . �7�

Now consider the generalization of the concurrence for
bipartite systems in higher dimensions �9�, the so-called
I-concurrence CI, given by

CI
2 = 1 − Tr	��̂A�2
 . �8�

I-concurrence is an entanglement monotone, that is, it does
not increase on average under local operations and classical
communication. In the NANB dimensional case, the square of
the I-concurrence �8� reads �9�

CI
2 = 1 − �

i=1

NA

ai
2 = 2 �

i,j=1

i	j

NA

aiaj . �9�

I-concurrence, being only one number, cannot make a dis-
tinction between some different kinds of entangled states
�15,35�. That is, states may have the same I-concurrence al-
though they cannot be transformed one into the other using
local operations and classical communication �LOCC�.
Nielsen �36� gives necessary and sufficient conditions for
state transformation processes and in �35� a concurrence hi-
erarchy is defined. We know from that work that one needs
NA−1 independent invariants under local unitary transforma-
tions in a NA-level quantum system for a complete character-
ization of entanglement. In our case, complementing the con-
currence �8�, we will consider the three-concurrence C3,
another invariant under local unitary transformations that is
related with the entanglement between the superposition-
state triads, and which does not increase under LOCC �35�,

C3 = �
i,j,k=1

i	j	k

N

aiajak. �10�

Using Eqs. �8� and �10�, we can, after some algebra, obtain a
relation between G, CI, and C3 for pure states:

G = CI
4 + CI

2 − 6C3. �11�

As we can see, the measure G is a function of two of the
invariants of the NA−1 necessary for a complete character-
ization of the entanglement �15,35,36�.

Now, we will propose a separability criterion for
NANB-dimensional systems. The limit to ensure entanglement
for two qubits is G�1/4. Note that in Ref. �27� the derived
limit is a factor of 4 higher because of a different definition
�by a factor of 2� of the group generators �2�. We shall show
that this limit is independent of the bipartite system dimen-
sionality.

A maximally correlated separable state has the form

�̂ = �
j=1

NA

pj�� j
A��� j

A� � �� j
B��� j

B� , �12�

where ��i
A �� j

A�= ��i
B �� j

B�=�ij. The reason the maximally cor-
related state must have this form is that only this form al-
lows, by a proper local unitary transform, or equivalently, by
a properly chosen measurement basis, one to get distinctly
correlated measurement outcomes. If detector jA “clicks,” in-
dicating that state �� j

A� was detected, this form guarantees
that detector jB will also click. Hence the local measurement
outcomes are completely correlated. Using the method of
Lagrange multipliers, it is not hard to find that the maximal
value of G for such state, with the restraint that all pj are
real, non-negative, and � j=1

NA pj =1, is 1 /4. The state achieving
this maximum has the form

�̂ =
1

2
��00��00� + �11��11�� , �13�

for any NA and NB, and it is clear that any local transforma-
tions will keep the state as an equal statistical mixture of two
tensor products of locally orthogonal states. Hence the crite-
rion

G � 1/4 �14�

ensures that the state is nonseparable.
Corresponding to the bipartite qubit case, it is possible to

derive a lower limit of G as a function of the state’s
I-concurrence and three-concurrence, and this limit is given
by Eq. �11�. This expression provides the lower limit because
a pure state has all its correlations in the entanglement,
whereas mixed states can also have statistical correlations, as
shown by the example with an unentangled state in Eq. �13�.

However, in contrast to the bipartite qubit case it is diffi-
cult to derive an upper limit to G as a function of CI and C3
as the latter is undefined for mixed states. We also lack a
systematic way of parametrizing general bipartite states with
a given I-concurrence, and therefore we cannot derive the
function’s maximum for a given CI, except that we know that
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G’s global maximum is 1−NA
−2 for the state given in Eq. �6�.

What is clear from numerical simulations, and which was
shown to hold for the bipartite qubit case, is that when G is
close to its maximal value, the range over which CI and C3
can vary while preserving the value of G is very small.
Hence for highly entangled states G will pinpoint both CI and
C3 through Eq. �11� relatively well.

The criterion �14� is sufficient but not necessary. A simple
example of the latter is the isotropic, two qutrit state

�̂ =
1 − �

9
1̂ +

�

3 �
m,n=1

3

�mm��nn�, −
1

8
� � � 1. �15�

For this state we obtain G=8�2 /9, which implies that for
�	3/4�2�0.53 our measure �14� cannot say anything
about separability, but it is known that for ��1/4 the state
�15� is entangled �37�.

III. OPTIMAL MEASUREMENT ESTIMATES
OF ENTANGLEMENT

The measure �11� yields the same value irrespective of the
set of su�N� generators one uses, provided that they fulfill
Eq. �2�. However, from an experimental point of view it is
desirable that the generators are unbiased. That is, the gen-
erators should be as “different” from each other as possible.
In the two-qubit case it is natural to take the su�2� generators
to be the Pauli matrices. These generators are all mutually
unbiased in that the absolute value of the scalar product be-
tween any eigenvector of one generator and any eigenvector
of any other generator equals 2−1/2. This is not true for the
Gell-Mann matrices where the corresponding eigenstate
overlap spans between 0 and 1.

Since, starting from a finite ensemble of identically pre-
pared states, we are interested in measuring local correlations
as well as possible, we want to minimize the estimation error
due to the probabilistic nature of quantum measurements.
This can be done if we can construct a set of su�N� operators
that simultaneously constitute a mutually unbiased basis set
�MUB� �29�. Unfortunately the constructions of such sets
depend on the dimensionality of the space. The qubit space
has already been discussed, and for odd prime and integer
powers of odd and even prime dimensions, it is possible to
find one more MUB than the space dimension, which is what
we need.

Let us start with the qutrit case, and generalize this later.
For each qutrit �30,38�, there exist four MUBs, with three
projectors each, �
i,k��
i,k�, where the subindex k=1, . . . ,4
denotes the basis and the subindex i=1, . . . ,3 denotes the
element of the basis.

A common way to construct the MUB is finding four
unitary matrices �one of them is the identity�, and then trans-
forming the standard basis �projectors� with them in order to
obtain the four projectors of the MUB �see, for example,
�30,32,38��.

In �32� one can find the eight generators of su�3�, which
as functions of the MUB projectors �̂i,k= �
i,k��
i,k� are given
by

Lk =�1

6
�2�1,k − �2,k − �3,k� �16�

and

L̃k =�1

2
��3,k − �2,k� . �17�

For convenience we label the operators �16� and �17�

L1 = �̂1, L̃1 = �̂2, . . . ,L̃4 = �̂8,

Is easy to check that these operators are generators of the
su�3� algebra, in other words they fulfill Eq. �2�.

In the form �16� and �17� we have eight generators in
terms of 12 projectors, so if we insert this formula in Eq. �1�,
it seems like one should need 144 correlations. This is a
chimera since for each basis

�
i=1

3

�i,k = 1̂, ∀ k = 1, . . . ,4, �18�

and substituting in Eq. �16� and then in Eq. �1�, we obtain
our measure in terms of the MUB projectors’ covariances:

G = �
k,l=1

4


4��
i,j=2

3

C��ik
A ,� j,l

B ��2

− �
i=2

3

�
i�,j�=2

k��l�

3

C��i,k
A ,� j,k

B �C��i,k�
A ,� j,le

B �

− 3 �
i,i�=2

3

C��ik
A ,� j2

B �C��ik�
A ,� j3

B �

− 3 �
i,i�=2

3

C��i2
A ,� jk

B �C��i3
A ,� jk�

B �� . �19�

As before, this leaves us with 64 correlations to measure for
two qutrits.

Now let us generalize the result above to dimension N,
where N=2n+1 is an odd prime. Using the notation intro-
duced in �32� the kth group of operators is given by

Ll,k =
1

�2�2n + 1�
�Ok

l + Ok
2n−l+1�, l = 1, . . . ,n ,

L̃l,k =
i

�2�2n + 1�
�Ok

2n−l+1 − Ok
l �, l = 1, . . . ,n ,

for k=0, . . . ,2n+1, where Ok= �ADk� for k=0, . . . ,2n, and
O2n+1=D. A is the cyclic permutation matrix and D is the
diagonal matrix whose elements are the powers of the Nth
root of unity, �=e2�i/N, that is D=diag	1,� ,�2 , . . . ,�2N
.

We can use the spectral decomposition to obtain these
operators in terms of the MUB projectors,
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Ll,k =� 2

2n + 1�
j=0

2n

cos�2�lj/�2n + 1��� j,k, �20�

L̃l,k =� 2

2n + 1�
j=0

2n

sin�2�lj/�2n + 1��� j,k, �21�

where � j,k is the jth eigenprojector of the kth MUB, with
eigenvalue � j.

Following the procedure made for two qutrits, the results
�1�, �20�, and �21�, and the fact that the projector set is over-
complete, one can construct an entanglement measure simi-
lar to Eq. �19�.

For the case when, e.g., NA= pk is a power of a prime
number, one can construct the generators of the su�NA� alge-
bra in a similar way, with the unitary matrices given, for
example, in �29,31�. On the other hand, when NA is a com-
posite number of at least two different prime numbers, the
corresponding set of mutually unbiased bases are unknown.
It is even not known if one can find NA+1 mutually unbiased
bases. The evidence at hand is negative, so for such systems
the estimation process is likely to be less efficient.

IV. CONCLUSIONS

In this paper we have extend the work made by Schlienz
and Mahler �21� and Kothe and Björk �27�, taking the en-
tanglement measure proposed in �21�, to bipartite states of
any dimension. For pure states, it can quantify entanglement
in a certain way, and we derived a relation between this
measure, the I-concurrence and the three-concurrence �two
entanglement monotones�. For mixed states, we established a
limit sufficient, but not necessary, to ensure nonseparability
�14�.

Taking into account that one can determine in an optimal
way all properties of a state measuring all combinations of
local MUB eigenstate projections and the identity, we have
also given the measure in terms of MUB eigenprojectors.
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