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We work out a theory of approximate quantum error correction that allows us to derive a general lower
bound for the entanglement fidelity of a quantum code. The lower bound is given in terms of Kraus operators
of the quantum noise. This result is then used to analyze the average error correcting performance of codes that
are randomly drawn from unitarily invariant code ensembles. Our results confirm that random codes of suffi-
ciently large block size are highly suitable for quantum error correction. Moreover, employing a lemma of
Bennett, Shor, Smolin, and Thapliyal, we prove that random coding attains information rates of the regularized
coherent information.

DOI: 10.1103/PhysRevA.75.062315 PACS number�s�: 03.67.Hk, 03.67.Pp

I. INTRODUCTION

Physical processing, transmission, and storage of quantum
information unavoidably suffers from decohering interac-
tions with the environment. The insight that the resulting
errors can, in principle, be corrected has been a major break-
through in the field of quantum information theory �1,2�. A
theory of quantum error correction �QEC� rapidly evolved
�3–5� and eventually led to the concept of quantum fault
tolerance �6�, which, in fact, put large-scale quantum com-
putation back in the realms of possibility. Quantum error
correction stands in close relation to the information capacity
of a noisy quantum channel and the quantum coding theorem
�7–9�.

In this paper we elaborate a theory of approximate QEC.
We obtain a general and easily computable lower bound for
the entanglement fidelity of a noisy channel N that is attain-
able when the information is encoded in a given error cor-
recting code. The bound is expressed in terms of Kraus op-
erators of N, and the projection on the code space �Sec. III�.

We employ this theory to analyze the average error cor-
recting performance of codes that are chosen at random from
certain code ensembles. For the unitarily invariant ensemble
of all K-dimensional code spaces we find a surprisingly
simple lower bound for the averaged code entanglement fi-
delity. Its deviation from unity is determined by
�KN�N��Q��F, where N is the number of Kraus operators in
an operator-sum representation of the noise N under consid-
eration, �Q is the homogeneously distributed state of the
system Q on which N is operating, and �A�F denotes the
Frobenius norm �trA†A of an operator A. We derive this
result by reverting to random matrix theory. For the special
case of unital noise the lower bound immediately reveals that
randomly chosen codes attain with high probability the quan-
tum Hamming bound �3� �Sec. IV�.

Our next issue is the extension of the foregoing consider-
ations to the case of noise operations that do not conserve the
trace. We find it useful to understand them as the result of a
selective process and therefore define fidelities and coherent
information in this situation slightly different from the stan-
dard definitions in literature �see, e.g., �10�� �Sec. V�.

One motivation why we extend our theory to trace-
decreasing operations becomes apparent in the last section.
Here we show that with the aid of a recent lemma of Bennett,
Shor, Smolin, and Thapliyal �BSST� �11,12� our results allow
a relatively simple proof of the direct coding theorem. Our
proof follows ideas of Shor �13� and Lloyd �7� by showing
that QEC based on random code spaces attains rates of the
regularized coherent information. The proof is therefore
quite different from Devetak’s one �14�, which is based on a
correspondence of classical private information and quantum
information �Sec. VI�.

After having clarified some conventions and notations, we
will start in Sec. II with a brief introduction to QEC and
quantum channel capacity. The remaining sections are orga-
nized as laid out above.

A. Conventions and notations

We denote a general mixed state by �, a general pure state
by �, and add subscripts to indicate the system. For instance,
�QR means a pure state of the joint system of Q and R.

We will use the trace norm �A�tr= tr�A†A, and the Frobe-
nius �Hilbert-Schmidt� norm �A�F=�trA†A for a linear opera-
tor A. The two-state fidelity is here defined as F��1 ,�2�
= ���1

��2�tr
2.

II. QUANTUM ERROR CORRECTION
AND QUANTUM CAPACITY

Throughout the paper, we consider a quantum system Q
that is supposed to store or transmit quantum information.
We denote the Hilbert space of Q by HQ and its finite dimen-
sion by M. In addition to a possible internal unitary dynam-
ics, Q is subjected to external noise during storage or trans-
mission. Let the effect of both be described by a completely
positive, trace-preserving mapping N that maps an initial
density operator � to a final density operator ��=N���
�15,16�. We call N either a noise operation or, synony-
mously, a noisy channel. N can be always represented in an
operator sum

N��� = �
i=1

N

Ai�Ai
†,

where the �nonunique� Kraus operators A1 , . . . ,AN are linear
operators on HQ. They satisfy the completeness relation
�iAi
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A. Quantum error correction

In general, a QEC scheme for the noise N on Q is based
on a quantum error correcting code C, which, by definition,
is a certain linear subspace C of HQ. Let K be the dimension
of C, and let P be the projection on C. We call a state � a
state in C or a code state �of C� if the support of � is a subset
of C. If the code C is suitably chosen, one may find a recov-
ery operation R that exactly recovers all code state from
corruption by N, i.e., for all code states � of C, R �N���
=�.

Finding an optimal code C for the correction of some
given noise N is a difficult task. The code C should be of
course as large as possible, but at the same time the encoding
in C must also be sufficiently redundant such that errors
caused by N can still be identified and corrected. In practice,
the code may also satisfy additional technical constraints.
Somewhat simpler than this problem but nevertheless in-
structive is the following related one: Given the noise opera-
tion N, what can be gained by the use of a certain quantum
code C? Here, theory does provide definite answers in the
form of necessary and sufficient conditions for the feasibility
of quantum error correction.

First, there are quite elementary necessary and sufficient
conditions for exact QEC �3–5,16�.

Exact recovery of all code states is possible if and only if
for all i, j the operators PAj

†AiP are proportional to P,

PAj
†AiP =

1

K
�trPAj

†AiP�P . �1�

For explicitly given Kraus operators Ai it is usually no
problem to check these conditions. If they are satisfied, it is
also possible to explicitly construct the Kraus operators for
the recovery operation R. Things become more complicated
when the conditions are violated. In this case, it can become
quite difficult to foresee whether the violation is serious, and
therefore error correction virtually impossible, or whether the
violation is harmless and code states are still essentially cor-
rectable up to some small deviations. An early approach to
this problem has been given in �17�.

An alternative condition for QEC can be formulated in
terms of coherent information �7,18�. The coherent informa-
tion I�� ,N� of a state � with respect to the noise N is defined
by

I��,N� = S„N���… − S„IR � N��RQ�… ,

where S���=−tr� log2 � is the von Neumann entropy, �RQ is
a purification of �, and IR is the identity operation on the
ancilla system R. The last term, S(IR � N��RQ�), is the en-
tropy exchange Se�� ,N� of � with respect to N �19�. The
coherent information obeys an important inequality �18�: For
any two operations E1 and E2

S��� � I��,E1� � I��,E2 � E1� . �2�

Moreover, equality in the first inequality holds if and only if
the action of E1 on � can be completely reversed, meaning
that there exists an R such that IR � �R �E1���RQ�=�RQ, for
any purification �RQ of �. This leads to the following neces-
sary and sufficient condition for error correction �18�.

Exact recovery of all code states is possible if and only if
for a state �C with supp��C�=C

S��C� = I��C,N� . �3�

Schumacher and Westmoreland �20� have shown that this
condition is robust against small perturbations, i.e., if it is
only approximately satisfied, then errors can still be approxi-
mately corrected. Their central result is a lower bound for the
entanglement fidelity �19� of an arbitrary state � under the
noise N and a subsequent recovery operation R. It is proven
that for given � and N there exists an R such that

Fe��,R � N� � 1 − 2�S��� − I��,N� . �4�

To elaborate on this, let us discuss entanglement fidelity and
its relevance for our purposes.

B. Entanglement fidelity

The entanglement fidelity Fe�� ,E� of a state � under an
operation E on Q is defined by

Fe��,E� ª ��RQ	IR � E��RQ�	�RQ
 ,

where �RQ is any purification of �. That this is independent
of the chosen purification can be seen from the representa-
tion in terms of Kraus operators of N, Fe�� ,E�=�i=1

N 	tr�Ai	2
�19�. Especially interesting is the entanglement fidelity of the
homogeneously distributed code state �C= P /K. The reason
is that Fe��C ,E� is a lower bound of the code-averaged chan-
nel fidelity Fav�C ,E� �Appendix A 1; cf. �21,22��. Moreover,
it can be shown that when Fe��C ,E� is close to unity, C must

have a large subcode C̃�C with a similar high minimum

fidelity Fmin�C̃ ,E� �Appendix A 2�. The entanglement fidelity
Fe��C ,E� is therefore a convenient figure of merit that char-
acterizes the distortion of states in C under the operation E.

In order to capture the suitability of a code C for QEC
without referring to a certain recovery operation we intro-
duce

Fe�C,N� ª max
R

Fe��C,R � N� , �5�

the entanglement fidelity of the code C under noise N. By
relation �4� it is then clear that

Fe�C,N� � 1 − 2�S��C� − I��C,N� . �6�

This shows that for small S��C�− I��C ,N��1 the code en-
tanglement fidelity is close to unity and thus approximate
QEC is possible.

Building on ideas of Schumacher and Westmoreland’s
proof of relation �4�, here we will derive an alternative lower
bound for the code entanglement fidelity Fe�C ,N� that is
explicitly given in terms of the Kraus operators of N �cf.
relation �9� in Sec. III�. However, before we start, let us
briefly point out that the code entanglement fidelity �5� can
also be used to conveniently define quantum capacity of a
noisy channel.

C. Quantum capacity of a noisy channel

We consider the following scheme of information trans-
mission from Alice �sender� to Bob �receiver� by means of
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the channel N �8�: Alice is allowed to encode quantum in-
formation in blocks of n identical copies of Q, with the block
size n and the encoding operation En at her disposal. Sending
the block to Bob, each individual system Q is independently
disturbed by the noise operation N, i.e., the whole block Qn

is subjected to N�n. Bob is allowed to perform any decoding
operation Rn in order to restore the message which Alice
originally sent. The maximum amount of quantum informa-
tion, measured in units of qubits, that can be reliably trans-
mitted per channel use in such a scheme defines the quantum
capacity Q�N� of the noisy channel N �8�.

Precise mathematical definitions of the quantum capacity
can be given in many ways �23�. Here we use one that fits in
the present context of approximate QEC and the code en-
tanglement fidelity.

It has been shown that restricting the encoding operation
En to isometric embeddings into HQ

�n has no effect on the
capacity �9�. En is thus sufficiently described by the subspace
Cn of HQ

�n whose code states represent the encoded informa-
tion. Viewing Cn as an error correcting code, Bob is able to
reconstruct Alice’s message within a precision that is given
by the code entanglement fidelity Fe�Cn ,N�n�. We follow
the standard definitions and call R an achievable rate of N if
there is a sequence of code spaces Cn�HQ

�n, n=1,2 , . . .,
such that

lim
n→�

sup
log2 dimCn

n
= R, and lim

n→�
Fe�Cn,N�n� = 1.

�7�

The quantum capacity Q�N� is the supremum of all achiev-
able rates R of N.

The quantum coding theorem for noisy channels �7–9�
states that the quantum capacity Q�N� of a channel N equals
the regularized coherent information

Ir�N� = lim
n→�

1

n
max

�
I��,N�n� . �8�

Ir�N� has long been known an upper bound for Q�N�, which
is the content of the converse coding theorem �8,9�. The
direct coding theorem, stating that Ir�N� is actually attain-
able, has been strictly proven only recently by Devetak �14�.
His proof utilizes the correspondence of private classical in-
formation and quantum information. More direct proofs in
the spirit of Shannon’s ideas on random coding �24� have
been earlier outlined by Shor �13� and Lloyd �7�. In the last
section, we will employ our theory to provide a strict proof
along these lines.

III. LOWER BOUND FOR THE CODE
ENTANGLEMENT FIDELITY

In this section we derive a lower bound for the code en-
tanglement fidelity Fe�C ,N� in terms of Kraus operators
A1 , . . . ,AN of N and the projection P on the K-dimensional
code C. We will show that

Fe�C,N� � 1 − �D�tr, �9�

where

D =
1

K
�
ij=1

N �PAi
†AjP −

1

K
�trPAi

†AjP�P� � 	i
�j	 , �10�

is an operator on C � HE, with HE being an ancilla Hilbert-
space spanned by orthonormal vectors 	1
 , . . . , 	N
.

The coefficients of D precisely correspond to the condi-
tions �1� for exact error correction. If these are fulfilled the
operator D vanishes and inequality �9� also predicts perfect
error correction. In this sense, the lower bound �9� can be
considered as a generalization of the elementary conditions
�1� to the case of approximate QEC. It is worth mentioning
that the lower bound does not depend on the chosen set of
Kraus operators A1 , . . . ,AN for N. Equivalent sets are related
by a unitary transformation �16� which in Eq. �10� amounts
merely to a unitary basis change, and therefore leaves �D�tr
invariant.

To prove relation �9� we describe N as a unitary UQE on
Q and an environment E, followed by a partial trace over E
�15,16�. That is, for a general state �Q

N��Q� = trEUQE�Q � �EUQE
†,

where �E is some fixed initial state of E. Further, let �RQ be
a purification of �Q, let �R=trQ�RQ, and let a pure state �RQE�
on RQE be defined by

�RQE� = �1R � UQE��RQ � �E�1R � UQE
†� .

�RQE� purifies its partial states

�Q� = trRE�RQE� , �E� = trRQ�RQE� ,

�RE� = trQ�RQE� , �RQ� = trE�RQE� . �11�

Following ideas that has been utilized in �20,25� we show
that there exists a recovery operation R on Q such that

Fe��Q,R � N� � 1 − ��RE� − �R � �E��tr. �12�

The idea is to find in the vicinity of the actual final state

�RQE� �or an extension �� of it� a state �̃ from which �RQ can
be perfectly recovered by an operation R on Q. The distance

between �� and �̃ will then determine a lower bound for the
entanglement fidelity Fe��Q ,R �N�.

To this end, we consider the product state �R � �E� with its
obvious purification

�̃ ª �RQ � �RQE�

on the joint system RQSE, where S denotes a copy of RQ.
We extend �RQE� to a pure state �� on RQSE by some pure
state �S of S �i.e., tracing out S or RQE yields �RQE� or �S,
respectively�. According to Uhlmann’s theorem �29,30,16�
there is a unitary UQS on QS such that

	��̃	UQS��
	2 = F��R � �E� ,�RE� � . �13�

Then, for a recovery operation R on Q defined by

R��Q� ª trSUQS�Q � �SUQS
†

we find

APPROXIMATE QUANTUM ERROR CORRECTION, RANDOM … PHYSICAL REVIEW A 75, 062315 �2007�

062315-3



IR � R��RQ� � = trSEUQS��UQS
†,

which by the monotonicity of the fidelity under partial trace

�16� and �RQ=trSE�̃ yields

Fe��Q,R � N�  F„�RQ,IR � R��RQ� �… � 	��̃	UQS��
	2.

With Eq. �13� and the general relation F�� ,���1− ��−��tr

�16� this proves relation �12�.
Now, we become more specific and chose for given Kraus

operators A1 , . . . ,AN of N its representing unitary UQE such
that

UQE	�Q
	1
 = �
i=1

N

Ai	�Q
	i
 , �14�

where 	1
	�E
 , 	2
 , . . . , 	N
 are orthonormal vectors in HE.
Further, let �Q=�C P /K with purification

	�RQ
 =
1

�K
�
l=1

K

	cl
R
	cl

Q
 , �15�

where the orthonormal vectors 	c1
R
 , . . . 	cK

R
 and 	c1
Q
 , . . . 	cK

Q

span HR and C, respectively. For this setting, we obtain

�RE� =
1

K
�
ij=1

N

�
l,m=1

K

trQ�Ai	cl
Q
�cm

Q	Aj
†�	cl

R
�cm
R 	 � 	i
�j	 ,

�16�

�R � �E� = �
ij=1

N

trQ�Ai�CAj
†��R � 	i
�j	 . �17�

Things become more convenient if we isometrically map
both states with an isometry defined by

I: �
ij,lm

�ij,lm	cl
R
�cm

R 	 � 	i
�j	 � �
ij,lm

�ij,lm
* 	cl

Q
�cm
Q	 � 	i
�j	

to

X ª I��RE� � =
1

K
�
ij=1

N

PAi
†AjP � 	i
�j	 ,

Y ª I��R � �E�� =
1

K
�
ij=1

N
1

K
tr�PAi

†AjP�P � 	i
�j	 .

Hence, ��RE� −�R � �E��tr= �X−Y�tr, which with relation �12�
leads us to

Fe��C,R � N� � 1 − �X − Y�tr.

Since the left-hand side is a lower bound of the code en-
tanglement fidelity Fe�C ,N�, and X−Y =D, this finally
proves relation �9�.

IV. RANDOM QUANTUM CODES

Random codes play an important role in classical as well
as in quantum information theory. In this section we will

analyze the average error correcting performance of random
codes by means of the lower bound �9� for the entanglement
fidelity of the codes. We consider the same setting as before:
a quantum information storing system Q with
M-dimensional Hilbert space HQ that is exposed to noise N
with a set of Kraus operators A1 , . . .AN.

A. Ensemble averaged code fidelity

Let EK be an ensemble of K-dimensional codes in HQ
with an ensemble average �A� defined for code dependent
variables A=A�C�. We are interested in the ensemble aver-
aged code entanglement fidelity �Fe�C ,N��. By inequality
�9�,

�Fe�C,N�� � 1 − ��D�tr� , �18�

where D is the code dependent operator Eq. �10�.
In many cases, averaging the trace norm of D would be

quite a difficult undertaking. We therefore prefer to estimate
��D�tr� by the more convenient average of the squared Frobe-
nius norm, ��D�F

2�= �trD†D�: Trace norm and Frobenius norm
of D with domain C � HE of dimension d=KN satisfy

�D�tr 	 �d�D�F.

We remark that this inequality is a good estimate only if the
eigenvalues of D are of similar magnitude. Using this esti-
mate and employing Jensen’s inequality �26� we obtain

��D�tr� 	 �d��D�F� = �d���D�F
2� 	 �d��D�F

2� , �19�

and so

�Fe�C,N�� � 1 − �KN��D�F
2� . �20�

In the next subsection we will evaluate this lower bound for
unitarily invariant code ensembles.

B. Unitarily invariant code ensembles

Let UK be the unitarily invariant code ensemble that con-
sists of all K-dimensional codes in HQ, furnished with the
unitarily invariant ensemble average

�A�C��UK
ª �

U�HQ�
d
�U�A�UC0� ,

where C0�HQ is some fixed code space of dimension K, and

 is the �normalized� Haar measure on U�HQ�, the group of
all unitaries on HQ. Later on we will also consider an analo-
gously defined ensemble UK�V� that consists of
K-dimensional codes in some subspace V of HQ.

Our task is to calculate ��D�F
2�UK

. By the explicit represen-
tation Eq. �10� of operator D we immediately find

�D�F
2 = trD†D =

1

K2 �
ij=1

N

tr�PWij
†PWij� −

1

K
	trPWij	2,

where the operators Wij are

Wij = Ai
†Aj .

The ensemble average of �D�F
2 can be conveniently calcu-

lated if we introduce a Hermitian form
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b�V,W� ª �tr�PV†PW� −
1

K
tr�PV†�tr�PW��

UK

, �21�

such that

��D�F
2�UK

=
1

K2�
ij

b�Wij,Wij� . �22�

We recall that P is the projection on the K-dimensional code
space that is chosen with unitarily invariant probability from
the ensemble UK. By Eq. �21� it is therefore clear that
b�V ,W� is a unitarian invariant on HQ, i.e., for any U
�U�HQ�

b�UVU†,UWU†� = b�V,W� .

This places us in a position to utilize the general theory of
group invariants by Weyl �27,28�: In the present situation it
means that b�V ,W� must be a linear combination of the two
fundamental unitarily invariant Hermitian forms trV†W and
trV†trW,

b�V,W� = �trV†W + �trV†trW . �23�

To determine the coefficients � and � we derive two linear
independent equations by equating Eqs. �21� and �23� for
two special choices of the operators V and W. For V=W
=1HQ

we obtain as a first equation,

�M + �M2 = 0. �24�

Next, we set V=W= P1, where P1 is the projection on a one-
dimensional space spanned by some unit vector 	�
�HQ.
From Eq. �21� we immediately find

b�P1,P1� = �1 −
1

K
��	��	P	�
	2�UK

.

Reverting to results from random matrix theory, we obtain in
Appendix B �	��	P	�
	2�UK

= �K2+K� / �M2+M� �which for
large K and M is close to the naive estimate �	��	P	�
	2�UK
����	P	�
�UK

2 =K2 /M2�. Thus,

b�P1,P1� =
K2 − 1

M2 + M
.

With b�P1 , P1�=�+� from Eq. �23� this yields the second
equation,

� + � =
K2 − 1

M2 + M
. �25�

Solving Eqs. �24� and �25� for � and �, and inserting the
solution into Eq. �23� produces

b�V,W� =
K2 − 1

M2 − 1
�trV†W −

1

M
trV†trW� ,

and, by Eq. �22�,

��D�F
2�UK

=
1 − 1/K2

M2 − 1 �
ij
�trWij

†Wij −
1

M
	trWij	2� . �26�

In general, not much is given away if instead of this exact
result we use an upper bound for ��D�F

2�UK
that we obtain by

using �1−1/K2� / �M2−1�	1/M2 and by omitting the nega-
tive terms −	trWij	2 /M in the sum. Then

��D�F
2�UK

	
1

M2�
ij

trWij
†Wij = tr��

j

Aj
1

M
Aj

†�
i

Ai
1

M
Ai

†� ,

where we cyclically permuted operators under the trace to
obtain the last equality. We realize that the argument of the
trace is simply N��Q�2, with �Q=1Q /M being the homoge-
neously distributed density operator on HQ. This yields the
rather simple upper bound

��D�F
2�UK

	 �N��Q��F
2 . �27�

By relation �20� this means

�Fe�C,N��UK
� 1 − �KN�N��Q��F. �28�

Before discussing this result let us generalize it to the
unitarily invariant ensemble UK�V� of K-dimensional codes
in a subspace V�HQ �dimV�K�. Here the average is given
by

�A�C��UK�V� ª �
U�V�

d
V�U�A�UC0� ,

where 
V is the normalized Haar measure on the group U�V�
of unitaries on the subspace V. Up to the fact that now the
role of HQ is taken over by the linear space V nothing has
changed compared to the situation before. Hence, the deriva-
tion given above for the ensemble UK applies to the en-
semble UK�V� as well, showing that

��D�F
2�UK�V� 	 �N��V��F

2 , �29�

and consequently,

�Fe�C,N��UK�V� � 1 − �KN�N��V��F, �30�

where �V=�V /dimV.

C. Discussion

It is instructive to discuss the just obtained lower bounds
for the case of unital noise, which by definition leaves the
homogeneously distributed state �Q invariant, N��Q�=�Q. A
unital operation is, for instance, the process where arbitrary
unitary operations U1 , . . . ,UN are applied to the system Q
with probabilities p1 , . . . , pN. For unital noise �N��Q��F

2

= ��Q�F
2 =tr��Q

2 �=1/M. Hence, by the lower bound �28�,

�Fe�C,N��UK
� 1 −�KN

M
.

This means that on almost all codes C of the ensemble UK
the unital noise N can be almost perfectly corrected, pro-
vided that

KN � M .

Recalling that K is the code dimension, N is the number of
Kraus operators in an operator-sum representation of N, and
M is the dimension of HQ, we recover that randomly chosen
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codes attain the quantum Hamming bound �3�.
The requirement K�M /N suggests that log2 M −log2 N is

a lower bound of the capacity Q�N�, what we will now for-
mally derive. To this end, we consider the n-fold replicated
noise N�n, and study the averaged entanglement fidelity of
the code ensemble UKn

, where we chose the code dimension
to be Kn= �2nR� for some positive R. N�n operates on states in
HQ

�n and has Nn operation elements. With N also N�n is
unital, thus �N�n��Qn

��F
2 =M−n, and by Eq. �28�

�Fe�C,N�n��UKn
� 1 − �2RN

M
�n/2

.

In the limit n→� the right-hand side converges to unity if
R log2 M −log2 N. Since limn→��1/n�log2 Kn=R this im-
plies that all rates below log2 M −log2 N are achievable and
so, by the definition of quantum capacity in Sec. II C,

Q�N� � log2M − log2N .

We note that since N is unital log2 M =S��Q�=S(N��Q�).
Now, if we could identify the second term, log2 N, with the
entropy exchange Se��Q ,N� we would obtain that the lower
bound log2 M −log2 N is just the coherent information
I��Q ,N�, in accordance to the capacity formula. However,
this is the case only for a special kind of unital operation. N
must have a Kraus representation with operation elements
A1 , . . . ,AN such that trAj

†Ai=0 for i� j, and �1/M�trAi
†Ai

=const=1/N. Then by Schumacher’s relation indeed

Se��Q,N� = S��trAi�QAj
†�i,j=1,. . .N� = S�1N/N� = log2N .

The first condition is actually no restriction, since a nondi-
agonal representation B1 , . . . ,BN with trBi

†Bj�0 can always
be unitarily transformed to a diagonal one �cf. footnote 1�.
The second condition demands that, roughly speaking, dif-
ferent kinds of errors appear with equal probability. In the
end, this ensures that by the estimation �D�tr	�KN�D�F not
much is lost and therefore the lower bound �28� is good.

To recapitulate, for unital noise N the lower bounds for
the ensemble averaged code fidelities immediately make evi-
dent that the quantum Hamming bound is attainable by ran-
dom codes. Moreover, if the noise N satisfies the condition
of equally probable errors as specified above we can estab-
lish

QN � I��Q,N� . �31�

V. ERROR CORRECTION IN SELECTIVE NOISE

The hitherto presented analysis is restricted to trace-
preserving noise operations. Here we will extend the consid-
erations of the preceding sections to the case of trace-
decreasing noise, which we find to be convenient in later use.
First, we define channel fidelity and entanglement fidelity for
a trace-decreasing channel. Within this definitions we will
then generalize the lower bound �9� and the result �30� on the
ensemble averaged code fidelity.

A. Fidelities for trace-decreasing channels

For a �possibly� trace-decreasing operation N on a system
Q we define the channel fidelity with respect to a state �Q as

Fch��Q,N� ª trN��Q�F��Q,
N��Q�

trN��Q�� , �32�

where F�� ,�� is the usual two-state fidelity. The definition
deviates from the standard one by a factor trN��Q�. This
makes sense, when one interprets a trace-decreasing N as a
selective operation that selects individual elements of the
initial ensemble �Q with probability trN��Q� �15�. Conse-
quently, in order that Fch��Q ,N� is close to unity not only the
selected final state N��Q� / trN��Q� must be close to �Q, but
also the selection probability must be close to unity.

We define the entanglement fidelity of N with respect to
�Q as

Fe��Q,N� ª Fch��RQ,IR � N� = ��RQ	�IR � N���RQ�	�RQ
 ,

�33�

where �RQ purifies �Q. Note that if N is trace-decreasing also
its extension IR � N is trace-decreasing, in which case Fch
means the just defined fidelity �32�. Repeating the arguments
of Schumacher �19�, it is not difficult to see that also the
entanglement fidelity of a trace-decreasing N can be ex-
pressed by its Kraus operators A1 , . . . ,AN of N by the usual
formula

Fe��Q,N� = �
i=1

N

	tr�QAi	2. �34�

A simple but important consequence of this relation is the

following: Let for a subset Ñ� �1, . . . ,N� a quantum opera-

tion Ñ be defined by

Ñ��Q� ª �
i�Ñ

Ai�QAi
†,

which we will call a reduction of the operation N. Then by
Eq. �34�,

Fe��,N� � Fe��,Ñ� .

Further, since for any operation R on Q clearly R �Ñ is a
reduction of R �N, we conclude that for any code C

Fe�C,N� � Fe�C,Ñ� , �35�

where the code entanglement fidelity for a trace-decreasing
N is defined as for trace-preserving noise by Fe�C ,N�
ªmaxRFe��C ,R �N�.

B. Lower bound for code entanglement fidelity

Let N be a noise operation on Q that can be represented
by Kraus operators A1 , . . . ,AN. The entanglement fidelity of a
K-dimensional code C satisfies

Fe�C,N� � trN��C� − �D�tr, �36�

where �C= P /K is the homogeneously distributed code state,
and the operator D is defined exactly as in Eq. �10�.
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This relation generalizes the lower bound �9� to the case
of a trace-decreasing operation N. Its proof given in Appen-
dix C is almost identical to the one of Eq. �9� in Sec. III.

C. Unitarily invariant code ensembles

We consider the ensemble UK�V� of all K-dimensional
codes in a subspace V of HQ which we introduced in Sec.
IV B. According to the lower bound �36�, the averaged code
entanglement fidelity under a �possibly trace-decreasing�
noise N with Kraus operators A1 , . . . ,AN satisfies

�Fe�C,N��UK�V� � �trN��C��UK�V� − ��D�tr�UK�V�,

where D is given by Eq. �10�. As shown in Sec. IV,

��D�tr�UK�V� 	 �KN��D�F
2�UK�V� 	 �KN�N��V��F,

where �V=�V /dimV �cf. Eqs. �19� and �29��. Furthermore,
we will show below that

�trN��C��UK�V� = trN��V� , �37�

and thus obtain

�Fe�C,N��UK�V� � trN��V� − �KN�N��V��F. �38�

We show Eq. �37� by again referring to unitarian invari-
ants: Let a linear form a on the set of all linear operators on
HQ be defined by

W � a�W� ª
1

K
�trPWP�UK�V�,

where, as always, P=�C. Since the codes C are subspaces of
V it is clear that a�W�=a��VW�V�. Further, the unitarian
invariance of the code ensemble entails a�W�=a�UWU†� for
all unitary transformations U on HQ with U�V�=V. It follows
that a must be proportional to the fundamental invariant lin-
ear form on V, W� tr��VW�. From a��V�=1 we can then
deduce that a�W�=tr��VW�. To conclude the proof of Eq.
�37� note that

�trN��C��UK�V� = �
i=1

N
1

K
�trAiPAi

†�UK�V�

= �
i=1

N

a�Ai
†Ai� = tr�

i=1

N

Ai�VAi
† = trN��V� .

VI. LOWER BOUNDS FOR
THE QUANTUM CAPACITY

In this section we will prove that the quantum capacity
Q�N� of a general trace-preserving channel N satisfies

Q�N� � I��V,N� , �39�

where �V is the homogeneously distributed density on an
arbitrary subspace V of the system’s Hilbert space HQ. We
will then use the lemma of BSST in order to establish the
regularized coherent information Ir�N� �cf. Eq. �8�� as a
lower bound of Q�N�.

We first prove inequality �39� for the case V=HQ or �V
=�Q. A strategy of proof becomes evident when we look
back at Sec. IV C, where we showed Q�N�� I��Q ,N� under
the conditions of �i� equally probable errors and �ii� unitality:
N��Q�=�Q.

For general noise N these two requirements are certainly
not fulfilled, not even approximately. However, since our
concern is the channel capacity of N we are free to consider
the n-times replicated channel N�n. For large n it is possible
to arrange for the conditions �i� and �ii� in an approximate
sense by, as it will turn out, only minor modifications of the
operation N�n. Following Shor �13�, we �a� reduce the op-
eration N�n to an operation Nn that consists only of the
typical Kraus operators of Nn �cf. Sec. VI A 2�. Thereafter
we �b� project on the typical subspace Tn of N��Q� in HQ

�n

�cf. Sec. VI A 3�. The purpose of reduction �a� is to approxi-
mately establishes a situation of equally probable errors �i�.
The second step allows to restrict the output Hilbert space of
Nn to the typical subspace Tn, on which the density Nn��Qn

�
is approximately homogeneously distributed. This estab-
lishes a situation similar to �ii�. After having proven Eq. �39�
for V=HQ in Sec. VI B 1, we will argue in Sec. VI B 2 that
its generalization is trivially obtained by restricting the origi-
nal input Hilbert space HQ of N to a subspace V�HQ. Fi-
nally, in Sec. VI B 3 we use the lemma of BSST in order to
show that Q�N�� Ir�N�.

A. Reduction of the noise N‹n

Both, typical Kraus operators and typical subspaces are
defined on the basis of typical sequences �see, e.g. �16��. We
briefly recall their definition and state two basic facts that are
important for our purposes.

1. Typical sequences

Let X1 ,X2 , . . . ,Xn be a sequence of independent random
variables that assume values A1 , . . . ,AN with probabilities
p1 , p2 , . . . , pN. We denote the probability distribution by A.
Its Shannon entropy is H�A�=−�i=1

N pi log2 pi. Let � be some
positive number. A sequence A=Aj1

,Aj2
, . . . ,Ajn

is defined to
be � typical if its probability of appearance pA= pj1

pj2
. . . pjn

satisfies

2−n�H�A�+�� 	 pA 	 2−n�H�A�−��.

Below we will make use of the following two facts: �1� The
number of all � typical sequences N�,n is less than 2n�H�A�+��

and �2� the probability P�,n that a random sequence of length
n is � typical satisfies 1− P�,n	2e−n����, where ���� is a
positive number independent of n. Proofs can be found in
Appendix D.

2. Restriction to typical Kraus operators

Let a trace-preserving noise N on Q be represented by
Kraus operators A1 , . . . ,AN. Without loss of generality we
can assume that the Ai are diagonal in the sense that
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trAj
†Ai=0 for i� j.1 We define the probability pi of the Kraus

operator Ai as

pi ª
1

M
trAi

†Ai, �40�

and we denote the corresponding probability distribution by
AN. The definition makes sense, because the pi are positive
and, as a consequence of the trace preservation of N, sum up
to unity.

The n-times replicated noise N�n can be represented by
Nn Kraus operators

Aj1
� Aj2

� . . . � Ajn
 Aj,

where j�=1, . . . ,N and j= �j1 , j2 , . . . , jn�. By the diagonality
of the operators Ai of N also the operators Aj of N�n are
diagonal, and the probability pj of the element Aj appears to
be the product of the probabilities pj�

of its constituent ele-
ments Aj�

,

pj =
1

Mn trAj
†Aj =

1

Mn tr�Aj1
†Aj1

� . . . tr�Ajn
†Ajn

� = pj1
. . . pjn

.

In other words, the Kraus operators Aj of N�n are sequences
of length n in which symbols Ai of an alphabet A1 , . . . ,AN
appear according to the distribution AN. Hence we are in the
domain of classical random sequences and can employ the
notions of Sec. VI A 1 to define the �-typical operation N�,n
of N�n by

� � N�,n��� ª �
Aj�-typical

Aj�Aj
†,

i.e., N�,n consists only of the �-typical Kraus operators of N.
In general, this strongly reduces the number of Kraus opera-
tors from Nn to

N�,n 	 2n�H�AN�+��

�cf. Sec. VI A 1, property �1��. It is time to remark that
H�AN� is nothing other than the entropy exchange
Se��Q ,N�, such that the last relation becomes

N�,n 	 2n�Se��Q,N�+��. �41�

To see this, we notice that H�AN� equals the von Neumann
entropy of an N-dimensional diagonal density matrix W with
elements Wii= �1/M�trAi

†Ai. Since we are working in a diag-
onal operator-sum representation, this actually means that
Wij = �1/M�trAj

†Ai=trAi�QAj
†, where �Q=1Q /M. By Schu-

macher’s representation of the entropy exchange we thus re-
alize that H�AN�=Se��Q ,N�.

Despite its strongly reduced number of Kraus operators,
in average the operation N�,n does not much reduce the trace
when n becomes large. This can be seen by the selection

probability trN�,n��Qn
� of the homogeneously distributed

state �Qn
=1Qn

/Mn. A lower bound can be derived by observ-
ing that

trN�,n��Qn
� =

1

Mn �
Aj �-typical

trAjAj
† = �

Aj �-typical
pj

is the probability that an operation element Aj of N�n is
�-typical. Thus, by Sec. VI A 1, property �2�,

trN�,n��Qn
� � 1 − 2e−n�1���, �42�

where �1��� is a positive number independent of n.

3. Projection on typical subspace

We will further reduce the operation N�n by letting N�,n
follow a projection on the �-typical subspace T�,n�HQ

�n of
the density N��Q�. The benefit of this procedure is that the

so obtained operation Ñ�,n maps �Qn
to an almost homoge-

neously distributed state on T�,n, and thus establishes a situ-
ation similar to �ii� in Sec. V.

The �-typical subspace T�,n�HQ
�n of �N��Q� is

spanned by the �-typical eigenvectors of ��n �16�. These are
precisely the eigenvectors vl with eigenvalues pl satisfying

2−n�S„N��Q�…+�� 	 pl 	 2−n�S„N��Q�…−��.

The dimension of T�,n obeys

dimT�,n 	 2n�S„N��Q�…+��. �43�

If n is large, almost the entire weight of ��n lies in the
�-typical subspace: Let ��,n be the projection on T�,n, then

tr��,n��n = �
l:	vl
 �-typical

pl,

which in the notions of Sec. VI A 1 is the probability that an
eigenvalue 	vl
= 	vl1


	vl2

 . . . 	vlM


 is �-typical. Thus, by the
second property in Sec. VI A 1,

tr��,n��n � 1 − 2e−n�2���, �44�

where �2��� is a positive number independent of n.
We define the �-reduced operation of N�n by

Ñ�,n ª P�,n � N�,n,

where the operation P�,n describes the projective measure-
ment on T�,n,

P�,n:� � ��,n���,n,

and N�,n is the �-typical operation of N�n as defined in the
previous subsection.

4. Properties of the �-reduced operation Ñ�,n

The �-reduced operation Ñ�,n can be represented by
Kraus operators of the form ��,nAj, where Aj is an �-typical

operation element of N�n. Their total number Ñ�,n is there-
fore bounded by

1For arbitrary operation elements B1 , . . . ,BN of N let an N�N
matrix H be defined by Hijª trBi

†Bj. Since H=H†, there is a unitary
matrix U such that UHU† is diagonal. Because of the unitary free-
dom in the operator-sum representation �16�, the operators Am

ª� jUjm
† Bj equivalently represent N. It is readily verified that

trAl
†Am=0 for l�m.
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Ñ�,n = N�,n 	 2n�Se��Q,N�+��.

Besides the number of Kraus operators, the two other crucial

figures are trÑ�,n��Qn
� and �Ñ�,n��Qn

��F
2 �cf. relation �38��. In

Appendix E we derive the followings bounds:

trÑ�,n��Qn
� � 1 − 4e−n�3���,

�Ñ�,n��Qn
��F

2 	 2−n�S„N��Q�…−3��,

where �3��� is a positive number independent of n. Finally,
we note that for any code C�HQ

�n

Fe�C,N�n� � Fe�C,N�,n� � Fe�C,Ñ�,n� .

The first inequality holds because N�,n is a reduction of N�n

and the second one is explained by the fact that Ñ�,n results
from postprocessing of N�,n by P�,n, which cannot increase
the code entanglement fidelity �cf. Eq. �5��.

B. Lower bounds for Q„N…

Lower bounds of the quantum capacity Q�N� are given by
the achievable rates of N. Finding out whether a rate R is
achievable or not requires to investigate the code entangle-
ment fidelities Fe�Cn ,N�n� for suitable codes Cn�HQ

�n �cf.
Sec. II C�. Our working hypothesis is that no special care has
to be taken in choosing Cn. Rather, we suppose that ran-
domly chosen codes in general do provide high achievable
rates and therefore will study the averaged entanglement fi-
delity of the code ensembles introduced in Sec. IV B.

1. Q„N…ÐI„�Q ,N…

We begin with the average code fidelity �Fe�Cn ,N�n��UK
of the unitarily invariant ensemble UKn

. As in Sec. IV C, we
chose the code dimension to be

Kn = �2nR� ,
meaning that R=limn→��1/n�log2Kn is the asymptotic rate.
By relation �38� and the results of the previous subsection we
immediately find

�Fe�C,N�n��UKn
� �Fe�C,Ñ�,n��UKn

� 1 − �n − �n �45�

with coefficients

�n = 1 − trÑ�,n��Qn
� 	 4e−n�3���,

�n = �KnÑ�,n�Ñ�,n��Qn
��F 	 2�n/2��R+Se��Q,N�−S„N��Q�…+4��.

Clearly, for all ��0, the right-hand side of inequality �45�
converges to unity in the limit n→� if the asymptotic rate R
obeys

R + 4�  S„N��Q�… − Se��Q,N�  I��Q,N� .

That is, all rates R below I��Q ,N� are achievable and there-
fore I��Q ,N� is a lower bound of the capacity Q�N�.

2. Q„N…ÐI„�V ,N…

Let V be an arbitrary linear subspace of the system’s Hil-
bert space HQ, and let �V=�V /dimV. In short, the coherent
information I��V ,N� can be established as a lower bound of
Q�N� in exactly the same way as before I��Q ,N� if we
consider instead of N the operation L that is defined as the
restriction of N to states �V on a reduced input Hilbert space
V�HQ. For the sake of completeness, we briefly repeat the
arguments.

This starts with reducing L�n to an �-typical L�,n as de-
scribed in Sec. VI A 2: The reduced input Hilbert space V of
L entails that now the probability pi of a Kraus operator Ai
has to be defined as

pi =
1

L
tr�VAi

†Ai�V, �46�

where L=dimV, and �V is the projection on V. Here it is
assumed that the operators A1 , . . . ,AN are diagonal with re-
spect to V, i.e., tr�VAi

†Aj�V=0 for i� j. Accordingly, the
probability of a Aj=Aj1

� . . . � Ajn
is

pj =
1

Ln tr�V
�nAj

†Aj�V
�n = pj1

. . . pjn
.

As before, L�,n is defined to consist only of the �-typical Aj.
Its number L�,n is bounded by 2n�H+��, with H being the Sh-
annon entropy of the normalized probability distribution
�46�. Therefore, H coincides with the von Neumann entropy
of a diagonal density matrix W with entries

Wij =
1

L
tr�VAi

†Aj�V = trAj
�V

L
Ai

†.

By Schumacher’s representation of the entropy exchange we
obtain H=Se��V ,N�, where �V=�V /L.

The next step is to further reduce L�,n to an operation L̃�,n
by projecting the output of L�,n on the typical subspace
T�,n�HQ

�n of the density L��V�=N��V�. This follows pre-
cisely Sec. VI A 3 with �=N��Q� replaced by �=N��V�.
The resulting L̃�,n is characterized by �cf. Sec. VI A 4�

L̃�,n 	 2n�Se��V,N�+��,

trL̃�,n � 1 − 4e−n�3���,

�L̃�,n�F
2 	 2−n�S„N��V�…−3��,

Fe�C,L�n� � Fe�C,L̃�,n� ,

where L̃�,n is the number of Kraus operators that is needed to

represent L̃�,n. Thus, by inequality �38�,

�Fe�C,L�n��UKn
�V�n� � 1 − �n − �n,

where the coefficients �n and �n are as in the previous sub-
section, but with �Q replaced by �V. Since further
�Fe�C ,N�n��UKn

�V�n�= �Fe�C ,L�n��UKn
�V�n� we can thus con-

clude that all rates R below

S„N��V�… − Se��V,N�  I��V,N�

are achievable by N, meaning that Q�N�� I��V ,N�.
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3. Q„N…ÐIr„N…

Finally, we will show that with the BSST lemma the result
of the last subsection implies the lower bound

Q�N� �
1

m
I��,N�m� ,

where m is an arbitrary large integer, and � any density on
HQ

�m. Clearly, this suffices to prove the regularized coherent
information Ir�N� �cf. Sec. II C� a lower bound of Q�N�.

The BSST lemma �11� states that for a channel N and an
arbitrary state � on the input space of N

lim
�→0

lim
n→�

1

n
S„N�n���,n�… = S„N���… ,

where ��,n is the homogeneously distributed state on the
frequency-typical subspace T�,n

�f� of �. As a corollary, one ob-
tains an analogous relation for the coherent information,

lim
�→0

lim
n→�

1

n
I���,n,N�n� = I��,N� .

T�,n
�f� is similar to the ordinary typical subspace T�,n which we

have used above. The difference is that for T�,n
�f� typicality of

a sequence is defined via the relative frequency of symbols
in this sequence, whereas for T�,n it is defined by its total
probability. For details, we refer the reader to the work of
Holevo �12�, where an elegant proof of the BSST lemma is
given.

Here, what matters is solely the fact that ��,n is a homo-
geneously distributed subspace density of the kind that we
used in the previous subsection. Thus we can make use of the
bound Q�E�� I��V ,E� with, for instance, E=N�mn, and V
being the frequency-typical subspace T�,n

�f� �HQ
�mn of an arbi-

trary density � on HQ
�m. This means that for any ��0 and

any m ,n

Q�N�mn� � I���,n,N�mn� .

Using the trivial identity Q�N�k�=kQ�N� we can therefore
write

Q�N� =
1

m
lim
n→�

1

n
Q�N�mn�

�
1

m
lim
�→0

lim
n→�

1

n
I„��,n,�N�m��n

…

=
1

m
I��,N�m� ,

where the last equation follows from the corollary.

VII. CONCLUDING REMARKS

We expect that the lower bound �9� for the code entangle-
ment fidelity is also useful for directly evaluating the error
correcting capability of a particular code for a particular
noise operation. In this case, there is no need to estimate the
trace norm of the operator D by its Frobenius norm. The only

reason why we used this in general rather poor estimate here
is that it enabled us to perform the ensemble average.

The above proof of the direct coding theorem shows that
a randomly chosen code of sufficiently large block-size is
typically a good quantum error correcting code. Studying the
properties of unitarily invariant code ensembles might be
therefore always a good thing to do when general aspects of
QEC are of concern.

Note added. We would like to mention the recent eprint of
Hayden et al. �31�, in which a similar proof of the direct
coding theorem has been independently obtained.
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APPENDIX A: FIDELITY RELATIONS

1. Fe„�C ,E…ÏFav„C ,E…

The average fidelity of the code C with respect to noise E
is defined as

Fav�C,E� = �
U�C�

d
C�U�Fch�U�0U†,E� ,

where Fch�� ,E�=F(� ,E���), �0 is an arbitrary pure state in
C, and 
C is the normalized Haar measure on the group
U�C� of unitaries on the code space C. For a complete en-
semble �1 , . . . ,�K of orthogonal pure states in C, K=dimC,
we find

Fav�C,E� = �
U�C�

d
C�U�
1

K
�
i=1

K

Fch�U�iU
†,E�

� �
U�C�

d
C�U�Fe� 1

K
�
i=1

K

U�iU
†,E� = Fe��C,E� .

The inequality follows from the general relation �16�

�
i

piFch��i,E� � Fe��
i

pi�i,E� . �A1�

2. Subcodes with high minimum fidelity

Let C be a code of dimension K with entanglement
fidelity

Fe��C,E� = 1 − � .

We will show that there is a subcode C̃ of C of dimension

K̃= �K /2� with minimum fidelity

Fmin�C̃,E� ª min
	�
�C

Fch��,E� � 1 − 2� .
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To this end, we recursively define a sequence of sub-
spaces C0�C1� . . . �CK−1, and a corresponding sequence
of code vectors 	�0
 , 	�1
 , . . . , 	�K−1
 as follows:

i = 0: C0 ª C

	�0
 is the vector of minimal fidelity in C0,

i � 0: Ci ª Ci−1 � 	�i−1
�

	�i
 is the vector of minimal fidelity in Ci.

By construction, dimCi=K− i, and Fmin�Ci ,E�=F(�i ,E��i�)
Fi. It is also clear that the minimum vectors
	�0
 , 	�1
 , . . . 	�K−1
 form an orthonormal basis of C. Hence
�C= �1/K��i=0

K−1�i, and, by relation �A1�,

1 − � 	
1

K
�
i=0

K

Fi.

For any 0 tK we therefore obtain

1 − � 	
1

K
�
i=0

K−1−t

Fi +
1

K
�

i=K−t

K−1

Fi 	
K − t

K
+

t

K
FK−t,

where the last inequality follows from 1�F0�F1� ¯

�FK−1�0 and

1 − � 	
K − t

K
+

t

K
FK−t

is equivalent to

1 −
K

t
� 	 FK−t,

meaning that subspace CK−t of dimension t has minimum
fidelity larger than 1−�K / t. Setting t= �K /2� completes the
proof.

APPENDIX B: AVERAGE OF �Š��P��‹�2

We show that independent of the normalized vector 	�

�HQ

�	��	P	�
	2�UK
=

K2 + K

M2 + M
�B1�

�notations as in Sec. IV B�. By definition,

�	��	P	�
	2�UK
=� d
�U�	��	UP0U†	�
	2,

where the integral extends over U�HQ� and P0 is the projec-
tion on an arbitrarily chosen linear subspace C0�HQ of di-
mension K. We extend 	�
	�1
 to an orthonormal basis
	�1
 , . . . , 	�M
 of HQ, and chose

C0 ª span�	�1
, . . . , 	�K
� .

Then

�	��	P	�
	2�UK
= �

i,j=1

K � d
�U�	U1i	2	U1j	2,

where Uij = ��i	U	� j
. Making use of the unitary invariance
of 
, this becomes

K� d
�U�	U11	4 + �K2 − K� � d
�U�	U11	2	U12	2.

For the calculation of these integrals we refer to the work of
Pereyra and Mello �34�, in which, amongst others, the joint
probability density for the elements U11, . . . ,U1k of a random
unitary matrix U�UK has been determined to be

p�U11, . . . ,U1k� = c�1 − �
a=1

k

	U1a	2�n−k−1

��1 − �
a=1

k

	U1a	2� ,

where c is a normalization constant, and ��x� denotes the
standard unit step function. By a straightforward calculation,
we obtain from this

� d
�U�	U11	4 =
2

M2 + M
,

� d
�U�	U11	2	U12	2 =
1

M2 + M
,

which immediately leads to Eq. �B1�.

APPENDIX C: LOWER BOUND FOR CODE
ENTANGLEMENT FIDELITY

Without loss of generality we can describe a possibly
trace-decreasing N as a unitary operation UQE on QE which
is followed by a projective measurement on E that may re-
duce the trace. That is, for a general state �Q

N��Q� = trE�1Q � PW�UQE�Q � �EUQE
†,

where �E is a fixed initial pure state of E, and PW projects on
some subspace of HE. Let again �RQ be a purification of �Q,
�R=trQ�RQ, and let a normalized pure state �RQE� on RQE be
defined by its state vector

	�RQE� 
 =
1
�p

�1RQ � PW��1R � UQE�	�RQ
 � 	�E
 ,

where p=trN��Q�. The state �RQE� is purification of its prop-
erly normalized partial states �Q� , �E� , �RQ� , and �RE� . Note that
N��Q�= p�RE� .

Precisely as in Sec. III it follows that there exists a recov-
ery operation R on Q satisfying

F„�RQ,IR � R��RQ� �… � 1 − ��RE� − �R � �E��tr.

By definition �33� of entanglement fidelity for trace-
decreasing operations this immediately leads to

Fe��Q,R � N� � p − �p�RE� − p�R � �E��tr,

which generalizes relation �12�.
Continuing in a similar manner as before in Sec. III, we

consider �Q=�C with the purification �15�, and chose the
unitary UQE with projection PW such that

�1Q � PW�UQE	�Q
	1
 = �
i=1

N

Ai	�Q
	i
 , �C1�

where 	1
	�E
 , 	2
 , . . . , 	N
 are again orthonormal vectors
in HE. Then, it is readily verified that
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p�RE� =
1

K
�
ij=1

N

�
l,m=1

K

trQ�Ai	cl
Q
�cm

Q	Aj
†�	cl

R
�cm
R 	 � 	i
�j	 ,

p�R � �E� = �
ij=1

N

trQ�Ai�CAj
†��R � 	i
�j	 ,

where p=trN��C�, which precisely correspond to expres-
sions �16� and �17�. As in Sec. III we conclude that

Fe��C,R � N� � p − �D�tr,

showing that trN��C�− �D�tr is indeed a lower bound of
Fe�C ,N�.

APPENDIX D: TYPICAL SEQUENCES

The first property follows from

1 = �
A

pA � �
A �-typical

pA � N�,n2−n�H�A�+��.

To prove the second property we first realize that by defini-
tion

P�,n = Prob�“Aj1
, . . . ,Ajn

is �-typical ” �

= Prob�	− log2�pj1
. . . pjn

� − nH�A�	 	 n��

= Prob���
l=1

n

�− log2 pjl
− H�A��� 	 n�� .

The negative logarithms of the probabilities pjl
can be under-

stood as n independent random variables Yl that assume val-
ues −log2 p1 , . . . ,−log2 pN with probabilities p1 , . . . , pN.
Their mean is the Shannon entropy H�A�,


 = E�Y1� = − �
i=1

N

pi log2 pi = H�A� .

This means that

1 − P�,n = Prob���
l=1

n

�Yl − 
�� � n��
is the probability of a large deviation �n. Since the variance
� and all higher moments of Y1−
 are finite we can employ
a result from the theory of large deviations �33�, according to
which

Prob���
l=1

n

�Yl − 
�� � n�� 	 2e−n����,

where ���� is a positive number that is approximately
�2 /2�2.

APPENDIX E: BOUNDS FOR trÑ�,n„�QN
… AND

‖Ñ�,n„�Qn
…‖F

2

It is convenient to introduce the complementary operation
M�,n of N�,n by

N�n = N�,n + M�,n.

The operation elements of M�,n are exactly the
�-“untypical” operation elements of N�n. Then,

trÑ�,n��Qn
� = tr��,n�N�n��Qn

� − M�,n��Qn
��

� tr��,nN�n��Qn
� − trM�,n��Qn

� . �E1�

The inequality results from the fact that for two positive
operators A ,B always trAB�0, and therefore �indices sup-
pressed�

trM��� = tr�M��� + tr�1 − ��M��� � tr�M��� .

The first term in Eq. �E1� can be bounded from below as

tr��,nN�n��Qn
� = tr��,nN�n��Q

�n�

= tr��,nN��Q��n � 1 − 2e−n�2���,

where we used inequality �44�. The second term in Eq. �E1�
obeys

trM�,n��Qn
� = trN�n��Qn

� − trN�,n��Qn
� 	 2e−n�1���,

by inequality �42�. We thus find

trÑ�,n��Qn
� � 1 − 2�e−n�2��� + e−n�1���� � 1 − 4e−n�3���,

when �3���ªmin��1��� ,�2����. For large n the homoge-
neously distributed state �Qn

is almost certainly selected by

the reduced operation Ñ�,n.

Now, let us address the Frobenius norm of Ñ��Qn
�. For

positive operators A ,B

�A + B�F
2 = �A�F

2 + �B�F
2 + 2trAB � �A�F

2 + �B�F
2 .

This can be used to derive

�P�,n � N�n��Qn
��F

2 = �P�,n � �N�,n + M�,n���Qn
��F

2

� �P�,n � N�,n��Qn
��F

2 .

Thus

�Ñ�,n��Qn
��F

2 = �P�,n � N�,n��Qn
��F

2 	 �P�,n � N�n��Qn
��F

2

= ���,nN��Q��n��,n�F
2

= �
l:	vl
 �−typical

�pl�2 	 2−n�S„N��Q�…−3��,

*where we used Eq. �43� and pl	2−n�S(N��Q�)−�� to derive the
last inequality.
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