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We propose an entanglement measure to quantify three-qubit entanglement in terms of negativity. A mo-
nogamy inequality analogous to the Coffman-Kundu-Wootters inequality is established. This consequently
leads to a definition of residual entanglement, which is referred to as the three-� in order to distinguish it from
the three-tangle. The three-� is proved to be a natural entanglement measure. By contrast to the three-tangle,
it is shown that the three-� always gives greater than zero values for pure states belonging to the W and
Greenberger-Horne-Zeilinger classes, implying that three-way entanglement always exists for them; the three-
tangle generally underestimates the three-way entanglement of a given system. This investigation will offer an
alternative tool to understand genuine multipartite entanglement.
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I. INTRODUCTION

Quantum entanglement lies at the heart of quantum-
information processing and quantum computation �1�; ac-
cordingly, its quantification has drawn much attention in the
last decade. In order to achieve such quantification, legiti-
mate measures of entanglement are needed as a first step.
The existing well-known bipartite measure of entanglement
with an elegant formula is the concurrence derived analyti-
cally by Wootters �2�, and the entanglement of formation
�3,4� is a monotonically increasing function of the concur-
rence. They have been applied to describing quantum phase
transitions in various interacting quantum many-body sys-
tems �5,6�. Another useful entanglement measure is negativ-
ity �8�, regarded as a quantitative version of Peres’ criterion
for separability. Compared with the concurrence, the process
of calculating the negativity is significantly simplified with
respect to mixed states, since it does not need the convex-
proof extension.

On the other hand, multipartite entanglement is a valuable
physical resource in large-scale quantum-information pro-
cessing �7� and plays an important role in condensed matter
physics. The negativity has been used to study multipartite
entanglement in a Fermi gas �9�. However, it is a formidable
task to quantify multipartite entanglement since there are few
well-defined multipartite entanglement measures, just as for
bipartite systems. For now, the widely used basis for charac-
terizing and quantifying tripartite entanglement is the three-
tangle �10�. Very recently, a proof of the general Coffman-
Kundu-Wootters �CKW� inequality for bipartite
entanglement �11� and a demonstration that the CKW in-
equality cannot generalize to higher-dimensional systems
�12� have been provided.

Recall that the concurrence of a two-qubit state � is de-
fined as C����max�0,��1−��2−��3−��4�, in which
�1 , . . . ,�4 are the eigenvalues of the matrix ���y � �y��*��y

� �y� in nonincreasing order and �y is a Pauli spin matrix.
For a pure three-qubit state �ABC, the CKW inequality in
terms of concurrence reads

CAB
2 + CAC

2 � CA�BC�
2 , �1�

where CAB and CAC are the concurrences of the mixed states
�AB=TrC�	�
ABC��	� and �AC=TrB�	�
ABC��	�, respectively,

and CA�BC�=2�det �A with �A=TrBC�	�
ABC��	�. According to
Eq. �1� the three-tangle can be defined as

�ABC = CA�BC�
2 − CAB

2 − CAC
2 , �2�

which is used to characterize three-way entanglement of the
state �13�. For example, quantified by the three-tangle, the
state 	GHZ
= �1/�2��	000
+ 	111
� has only three-way en-
tanglement �the GHZ state is the Greenberger-Horne-
Zeilinger state�, while the state 	W
= �1/�3��	100
+ 	010

+ 	001
� has only two-way entanglement. For a general
mixed three-qubit state of �ABC, the three-tangle should be
�ABC=min�CA�BC�

2 �−CAB
2 −CAC

2 , where CA�BC�
2 has to be mini-

mized for all possible decompositions of �ABC. Now one may
wonder whether there exist other entanglement measures sat-
isfying Eq. �1�, and whether the three-way entanglement of a
given state provided by these entanglement measures is the
same. This will help us to further understand genuine multi-
partite entanglement.

To this end, the main result of this paper is to provide a
monogamy inequality in terms of negativity. In Sec. II, we
recall some basic concepts of negativity. In Sec. III, we de-
duce the monogamy inequality in terms of negativity. In
Secs. IV and V, the three-� measure, analogous to the three-
tangle is defined, which is shown to be a natural entangle-
ment measure. By calculation on the 	W
 state, the 	GHZ

state, and the superposed states of the two states, the three-�
is shown to be greater than zero, i.e., for such states there
always exists three-way entanglement. It is also shown that
the three-� is always not less than the three-tangle for any
tripartite pure states and can be extended to mixed three-
qubit states. In Sec. VI, the monogamy inequality is ex-
tended to pure multiqubit states. The conclusions are in Sec.
VII.

II. BASIC CONCEPTS OF NEGATIVITY

For either a pure or mixed state �, in the tensor product
HA � HB of two Hilbert spaces HA and HB for two sub-
systems A and B, the partial transpose with respect to the A
subsystem is ��TA�ij,kl= ���kj,il and the negativity is defined by
N= ���TA�−1� /2 where the trace norm �R� is given by �R�
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=Tr�RR†. N�0 is the necessary and sufficient inseparable
condition for the 2 � 2 and 2 � 3 bipartite quantum systems
�14�. In order for any maximally entangled state in 2 � 2
systems to have the negativity 1, it can be reexpressed as

N = ��TA� − 1, �3�

with only a change of the constant factor 2. Therefore N
=1 for Bell states like �1/�2��	01
+ 	01
� and vanishes for
factorized states. For pure two-qubit systems in terms of the
coefficients ��00,�01,�10,�11� of 	�AB
 with respect to an
orthonormal basis, the concurrence is defined as CAB
=2	�00�11−�01�10	. From Eq. �3� it is easy to check that
NAB=CAB for such systems. Now let us consider pure three-
qubit systems A, B, and C in the standard basis �	ijk
�, where
each index takes the values 0 and 1: 	�
ABC=
ijk�ijk	ijk
.
For our goal it is necessary to show NA�BC�=CA�BC�. The
density matrix of 	�
ABC is �= 	�
ABC��	 and �TA

=
ijk,i�j�k��ijk�i�j�k�
* 	i�jk
�ij�k�	. Following from Eq. �3� we

arrive at

NA�BC� = � 

ijk,i�j�k�

�ijk�i�j�k�
* 	i�jk
�ij�k�	� − 1

= �

ijk

�ijk	jk
�i	 � 

i�j�k�

�i�j�k�
* 	i�
�j�k�	� − 1

= �R � R†� − 1 = �R�2 − 1 = 2��0�1 = CA�BC�, �4�

where R=
i�j�k��i�j�k�
* 	i�
�j�k�	, and �0 and �1 are eigenval-

ues of RR†. The third formula obtained is based on the prop-
erty of the trace norm �G � Q�= �G� · �Q�, the observation that
RR†=
i�j�k�,ijk�ijk�i�j�k�

* 	i�
�j�k�	 · 	jk
�i	, and that �R� is equal
to the sum of the square root of the eigenvalues �i of RR†

with �0+�1=1. From the further observation that �0 and �1
are also the eigenvalues of the reduced density matrix
�A=TrBC�	�
ABC��	�, whose matrix elements are
	00=
 jk�0jk�0jk

* , 	01=
 jk�0jk�1jk
* , 	10=
 jk�1jk�0jk

* , and

	11=
 jk�1jk�1jk
* , and that the concurrence between A and

BC is defined as CA�BC�=�2�1−Tr�A
2�=2��0�1, the last for-

mula is obtained. The next sections are devoted to one of the
main results of this paper.

III. MONOGAMY INEQUALITY IN TERMS
OF NEGATIVITY

For any pure 2 � 2 � 2 states 	�
ABC, the entanglement
quantified by the negativity between A and B, between A and
C, and between A and the single object BC satisfies the fol-
lowing CKW-inequality-like monogamy inequality:

NAB
2 + NAC

2 � NA�BC�
2 , �5�

where NAB and NAC are the negativities of the mixed states
�AB=TrC�	�
ABC��	� and �AC=TrB�	�
ABC��	�, respectively.

In order to prove Eq. �5� it is helpful to recall the theorem
appearing in �15�, which states that for any m � n �m�n�
mixed state �, the concurrence C��� satisfies

� 2

m�m − 1�
���TA� − 1� � C��� . �6�

In our considered qubit system, m=n=2. Therefore it fol-
lows from Eqs. �3� and �6� that N�C, implying that the
negativity is never greater than the concurrence in this case.
Thus for the state 	�
ABC we have

NAB � CAB, NAC � CAC. �7�

Observing Eqs. �1�, �4�, and �7�, the conclusion in Eq. �5�
can be proved.

In a similar way, if one takes the different focus B and C,
the following monogamy inequalities:

NBA
2 + NBC

2 � NB�AC�
2 �8�

and

NCA
2 + NCB

2 � NC�AB�
2 �9�

hold also.
Now one is naturally concerned about the tightness of the

monogamy inequality in Eq. �5�. All pure three-qubit states
can be sorted into six classes through stochastic local opera-
tion and classical communication �SLOCC� �13�. �1� The
A-B-C class including product states; �2� A-BC, �3� B-BC,
and �4� C-AB classes including bipartite entanglement states;
�5� W and �6� GHZ classes including genuine tripartite en-
tanglement states. For the first four classes it is easy to verify
that Eqs. �5�, �8�, and �9� turn out to be an equality, being the
same as the CKW inequality. However, it is different for the
W class. For the pure state of ABC

	�
 = 
	100
 + �	010
 + �	001
 , �10�

which belongs to the W class. Substituting NAB
2 =4
2�2

+2�4−2�2��4+4
2�2, NAC
2 =4
2�2+2�4−2�2��4+4
2�2,

and NA�BC�
2 =4
2��2+�2� into Eq. �5� we have �4+�4


�2��4+4
2�2+�2��4+4
2�2, with the result that the in-
equality in Eq. �5� is strict because 
�0, ��0, and ��0,
while the CKW inequality can only be an equality for the W
class �13�.

Having seen that both the equality and inequality in Eq.
�5� can be satisfied by some three-qubit states, we can define
the residual entanglement, which is referred to as the three-�
in order to distinguish it from the three-tangle in the follow-
ing main results of this paper.

IV. THE THREE-� ENTANGLEMENT MEASURE

The difference between the two sides of Eq. �5� can be
interpreted as the residual entanglement

�A = NA�BC�
2 − NAB

2 − NAC
2 . �11�

Likewise, Eqs. �8� and �9� create the corresponding residual
entanglement as

�B = NB�AC�
2 − NBA

2 − NBC
2 �12�

and
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�C = NC�AB�
2 − NCA

2 − NCB
2 , �13�

respectively. The subscripts A, B, and C in �A, �B, and �C
mean that qubit A, qubit B, and qubit C are taken as the
focus, respectively. Unlike the three-tangle, in general �A
��B��C, which can be easily confirmed after calculating
them for the state in Eq. �10�. This indicates that the residual
entanglement corresponding to the different focus varies un-
der permutations of the qubits. We take �ABC �referred to as
the three-�� as the average of �A, �B, and �C, i.e.,

�ABC =
1

3
��A + �B + �C� , �14�

which thus becomes invariant under permutations of the qu-
bits since, for example, permutation of qubit A and qubit B
accordingly only leads to exchanging �A and �B with each
other in �ABC.

As we will prove here, the three-� in Eq. �14� is a natural
entanglement measure satisfying three necessary conditions
�16�. The first condition is that the three-� should be local
unitary �LU� invariant. After the LU transformations UA, UB,
and UC have acted separately on a pure three-qubit state
�ABC, the state can read �ABC� =UA � UB � UC�ABCUA

†
� UB

†

� UC
† . It is necessary to prove that the six squared negativi-

ties in Eq. �14� are invariant under the three simultaneous LU
transformations. Since �A� =TrBC �ABC� =UA�AUA

† and NA�BC��

=CA�BC�� =�2�1−Tr�A�
2�=NA�BC�, NA�BC� is LU invariant.

Similarly, NB�AC� and NC�AB� are also LU invariant; while
�AB� =TrC �ABC� =UA � UB�ABUA

†
� UB

† , together with the prop-
erty that the negativity itself is LU invariant �17,18�, leads to
N��AB� �=N��AB�. Thus N��AB� is LU invariant, and so are
N��BC� and N��AC�. Now we finish proving the first condi-
tion.

Observation of Eqs. �5�, �8�, and �9�, shows that �ABC
�0; thus the second condition is satisfied. Moreover, it is
easy to verify that �ABC=0 for product pure states. �ABC is
invariant under permutations of the qubits allowing us to use
the proof outlined in �13� to confirm the third condition. Let
us consider local positive operator valued measures
�POVMs� for one qubit only. Let A1 and A2 be two POVM
elements such that A1

†A1+A2
†A2= I. We can write Ai=UiDiV,

with Ui and V being unitary matrices, and Di being diagonal
matrices with entries �a ,b� and ��1−a2 ,�1−b2�, respec-
tively. Consider an arbitrary initial state 	�
 of qubits A, B,
and C with �ABC���. After the POVM, 	��
=Ai	�
. Normal-
izing them gives 	�i
= 	�i�
 /�pi with pi= ��i� 	�i�
 and p1

+ p2=1. Therefore ��ABC
= p1�ABC��1�+ p2�ABC��2�. Taking
into account both the fact that �ABC�UiDiV��=�ABC�DiV��
due to its LU invariance and the key fact that the three-� is
also a quartic function of its coefficients in the standard ba-
sis, which can be seen from the calculation for the state of
Eq. �10�, we have �ABC��1�= �a2b2 / p1

2��ABC��� and
�ABC��2�= ��1−a2�2�1−b2�2 / p2

2��ABC���. After simple alge-
braic calculations, we obtain ��ABC
��ABC���; thus the
third condition that the three-� should be an entanglement
monotone is satisfied.

V. DEMONSTRATION OF TWO EXAMPLES
OF THE THREE-�

In order to explicitly see the difference between the three-
� and the three-tangle we present the following two ex-
amples.

Example 1: The different classes by SLOCC. For the state
in Eq. �10� belonging to the W class we get

�ABC��� =
4

3
�
2�
4 + 4�2�2 + �2��4 + 4
2�2

+ �2��4 + 4
2�2 − 
4 − �4 − �4�

� �ABC��� = 0. �15�

We also have performed extensive numerical calculations on
the three-� of the other states in the W class, and found that
it is always greater than zero �i.e., �ABC�W��0� as shown in
Eq. �15� for the state 	�
 �see also Fig. 1�, implying that these
states have three-way entanglement, also. Taking into ac-
count that �ABC�W�=0, the conclusion that the three-tangle
underestimates three-way entanglement can be drawn. For
the GHZ class we have the property that �ABC�GHZ�
��ABC�GHZ��0, while �ABC���=�ABC���=0 for the states
	�
ABC belonging to the classes excluding the W and GHZ
classes.

Example 2: Superpositions of GHZ and W states. Quanti-
fying of multipartite mixed states is also a fundamental issue
in quantum-information theory. An optimal decompositions
for the three-tangle of mixed three-qubit states composed of
a GHZ state and a W state is obtained �19�. In order to
further explore the relationship between the three-� and
three-tangle, we first write down the superposed state of
GHZ and W states:

0
0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

β
γ

π A
B

C
(φ

)

FIG. 1. �Color online� Three-� for the state in Eq. �9� as a
function of the coefficients � and �. Only two coefficients are in-
dependent since 	
	2+ 	�	2+ 	�	2=1. �ABC��� is always greater than
zero and reaches the maximal value �4/9���5−1� when 
=�=�
=1/�3, which, to a certain degree, demonstrates why the W state is
maximally entangled.
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	��±�
ABC = �p	GHZ
 ± �1 − p	W
 . �16�

The three-tangle for 	��±�
ABC is known as �ABC
�±�

= 	p2± �8�6/9��p�1− p�3	 and with Eqs. �11�–�14� we plot
�ABC

�±� �see Figs. 2 and 3�. The two measures show similar
trends and the fact that �ABC��ABC is shown. Notice that a
similar result was obtained also in �20�; however, their de-
fined residual entanglement E=NA�BC�−NAB−NAC is not an
entanglement measure �21�. On the other hand, for the state
	��−�
ABC the location of p of the minimal value of the two
measures does not match �see Fig. 2�, i.e., when p�0.58 the
extremely minimal �ABC

�−� �0.5, which is smaller than
�ABC�W�= 4

9 ��5−1��0.55, being equal to �ABC
�−� when p=0.

But �ABC
�−� =0 when p=4�32 / �3+�32��0.63 for the state

	��−�
ABC, which provides a basis for the optimal decompo-
sition of mixtures of the GHZ and W states �19�. In a similar
way, we can also achieve optimal decomposition of such

mixed states for the three-� �22�. Note that, for mixed three-
qubit states of ABC, the monogamy inequality Eq. �5� turns
out to be

NAB
2 + NAC

2 � min�NA�BC�
2 � , �17�

which has to be minimized for all possible decomposition of
�ABC. The other inequalities in Eqs. �8� and �9� need the same
manipulations.

VI. EXTENSION TO PURE MULTIQUBIT STATES

The generalized CKW inequality for the case of n qubits
is proved �11� analogously to Eq. �1�, which can be ex-
pressed as

CA1A2

2 + CA1A3

2 + ¯ + CA1An

2 � CA1�A2A3¯An�
2 , �18�

where we denote n qubits by A1 ,A2 , . . . ,An, and CA1�A2A3¯An�
2

is the bipartite quantum entanglement across the bipartition
A1 :A2A3¯An. Provided that the concurrence C is replaced
with the negativity N, it is desirable to know whether Eq.
�18� holds. As we will show in the following, it does hold.
For the bipartition A1 :A2A3¯An Eq. �4� may generalize to

NA1�A2A3¯An� = CA1�A2A3¯An�. �19�

In the previous section we have shown that N�C for mixed
two-qubit states, so in this case we have

NA1A2
� CA1A2

,

NA1A3
� CA1A3

,

]

NA1An
� CA1An

. �20�

Thus Eqs. �18�–�20� result in

NA1A2

2 + NA1A3

2 + ¯ + NA1An

2 � NA1�A2A3¯An�
2 , �21�

which may also be used to study the entanglement for a wide
class of complex quantum systems �11�.

In order to show the applicability of the generalized mo-
nogamy inequality in Eq. �21� we present two examples.
Before continuing, we denote by �A1A2¯An

the residual en-
tanglement based on Eq. �18�, and by �A1A2¯An

the residual
entanglement based on Eq. �21�. The first example is the
generalized GHZ state �25�

	�
A1A2¯An
=

1
�2

�	0�n
 + 	1�n
� . �22�

It is easy to check that ��	�
A1A2¯An
�=��	�
A1A2¯An

�=1. The
second example is the generalized multiqubit state

	�
A1A2¯An
= 
1	100 ¯ 0
 + 
2	010 ¯ 0
 + ¯

+ 
n	000 ¯ 1
 . �23�

For this state, one obtains that CA1A2

2 =4
1
2
2

2, CA1A3

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

FIG. 2. �Color online� Plot of �ABC
�−� �solid line�, �ABC

�−� �dashed
line�, and squared NA�BC�

�−� �dash-dotted line� for the state 	��−�
ABC

in Eq. �15� as a function of p. The dotted line indicates the minimal
value of �ABC

�−� . The two measures match at p=0.2 and 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

FIG. 3. �Color online� Plot of �ABC
�+� �solid line�, �ABC

�+� �dashed
line�, and squared NA�BC�

�+� �dash-dotted line� for the state 	��+�
ABC

in Eq. �15� as a function of p. The two measures match at p
� �0.4,1�; together with the squared NA�BC�

�+� , they match at p=0.4.
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=4
1
2
3

2 , . . ., CA1An

2 =4
1
2
n

2, and CA1�A2A3¯An�
2 =4
1

2�
2
2+
3

2

+ ¯ +
n
2�, and these quantities make Eq. �18� an equality. As

a result, we get ��	�
A1A2¯An
�=0, which was also shown in

�10�. On the other hand, one can obtain

NA1A2

2 = 4
1
2
2

2 + 2�1 − 
1
2 − 
2

2�2

− 2�1 − 
1
2 − 
2

2���1 − 
1
2 − 
2

2�2 + 4
1
2
2

2,

NA1A3

2 = 4
1
2
3

2 + 2�1 − 
1
2 − 
3

2�2

− 2�1 − 
1
2 − 
3

2���1 − 
1
2 − 
3

2�2 + 4
1
2
3

2, . . . ,

NA1An

2 = 4
1
2
n

2 + 2�1 − 
1
2 − 
n

2�2

− 2�1 − 
1
2 − 
n

2���1 − 
1
2 − 
n

2�2 + 4
1
2
n

2,

and

NA1�A2A3¯An�
2 = 4
1

2�
2
2 + 
3

2 + ¯ + 
n
2� ,

and these quantities make Eq. �21� a strict inequality. Thus
we get ��	�
A1A2¯An

��0=��	�
A1A2¯An
�.

These two examples show that the residual entanglement
defined by Eq. �21� is always greater than zero for genuine
multiqubit entangled states, which makes us believe that the
measure of entanglement based on this residual entanglement
would be a powerful candidate for a good measure of en-
tanglement for multipartite pure states.

VII. CONCLUSIONS

Summarizing, we proved a monogamy inequality in terms
of negativity such that the three-� is defined so as to quantify
the residual entanglement for three-qubit states. The three-�
is shown to be a natural entanglement measure and can be
extended to mixed states and general pure n-qubit states. The
three-way entanglement for the W and GHZ classes quanti-
fied by the three-� always exists, while the three-tangle is
zero for the W class. Compared to the three-�, the three-
tangle generally underestimates the entanglement. Note that
the monogamy inequality for distributed Gaussian entangle-
ment in terms of negativity was also established �23� and the
information-theoretic measure of genuine multiqubit en-
tanglement based on bipartite partitions was introduced �24�.
Therefore, further investigation by using the results in this
paper will help us deeply understand genuine multipartite
entanglement.
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