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In this paper, we discuss the problem of determining whether a quantum system is in a pure state, or in a
mixed state. We apply two strategies to settle this problem: the unambiguous discrimination and the maximum
confidence discrimination. We prove that the optimal versions of both strategies are equivalent. Furthermore,
the scheme also provides a method to estimate the purity of quantum states, and the Schmidt number of
composed systems.
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I. INTRODUCTION

In many applications of quantum information, one of the
important elements which affect the result of quantum pro-
cesses, is the purity of the quantum states produced or uti-
lized. Hence, an interesting and important problem in quan-
tum information is to estimate the purity of a quantum
system �1–5�. This problem is also strongly related to the
estimation of the entanglement of multiparty systems �6–8�.

However, all of the above references considered this prob-
lem only in the simplest case of qubits. Estimating the purity
of a general quantum system is still open. In this paper, we
first consider an extreme situation: given some copies of a
quantum state, the task for us is to determine whether the
state is pure or mixed. The process is called discrimination
between pure states and mixed states. Then, by counting dif-
ferent results obtained in a set of the discriminations, we
offer an effective method to estimate the purity of quantum
states. The idea of discrimination between pure states and
mixed states, was first mentioned in Ref. �8�. However, they
did not study the problem formally and systematically, which
is our aim in this paper. There are two different strategies to
design the discrimination: the unambiguous discrimination
�11�, and the maximum confidence discrimination �12�. In
the strategy of unambiguous discrimination, one can tell
whether the quantum system is in a pure state or a mixed
state without error, but a nonzero probability of inconclusive
answer is allowed. The optimal unambiguous discrimination
is the one which minimize the probability of obtaining an
inconclusive answer. In this paper, in order to simplify the
presentation, we use the term “unambiguous” in a more gen-
eral sense: it allows the success probability to be zero in
some situation. On the other hand, in the maximum confi-
dence discrimination, an inconclusive answer is not allowed,
and after each discrimination, one must propose a statement
whether the quantum state is pure, or mixed. The discrimi-
nation is so named, because the probability of obtaining a
correct conclusion is maximized.

It is convenient to introduce some notations here. The
symmetric tensor product of states ��1�,��2� , . . . , ��n� in a
Hilbert space H is defined as

��1� ∨ ��2� ∨ ¯ ∨ ��n� =
1

�n!
�

��S�n�
���1

����2
� ¯ ���n

� ,

�1�

where S�n� is the symmetric �or permutation� group of de-
gree n. The span of all symmetric tensors
��1�∨ ��2�∨ ¯ ∨ ��n� in H�n is called the symmetric sub-
space of H�n, and denoted as Hsym

�n . If the dimension of H is
m, then the dimension of Hsym

�n is � n+m−1
n

� �13�. The orthogo-
nal complement of Hsym

�n is called the asymmetric subspace of
H�n, and denoted as Hasym

�n . We use ��Hsym
�n � and ��Hasym

�n � to
represent the projectors of these two subspaces, respectively.
In this paper, we prove that, given n copies of a quantum
state � in Hilbert space H, the optimal unambiguous dis-
crimination and the maximum confidence discrimination can
be carried out by the same measurement 	�0=��Hsym

�n � ,�1

=��Hasym
�n �
. The difference between these two discrimina-

tions comes only from the different explanations of the out-
comes. In the optimal unambiguous discrimination, the out-
come “0” is an inconclusive answer, and the outcome “1”
indicates that the system must be in a mixed state. The draw-
back of the unambiguous discrimination is that, if the quan-
tum system is in a pure state, people always fail to confirm
the answer. However, in the maximum confidence discrimi-
nation, the outcome “0” indicates that the quantum system is
likely to be in a pure state, and the outcome “1” means a
mixed state.

There are two assumptions in this paper. First, the purity
of quantum states is invariant under any unitary operation.
Suppose the purity of a quantum state � is represented by
����, it must satisfy that ����=��U�U†�, for any unitary
operator U. We also assume that, when � is a pure state,
����=1, otherwise 0������1. For instance, the usually
used definition for the purity of quantum states, ����
=Tr2���, clearly satisfies the conditions. Second, the a priori
probability distributions of quantum states are also assumed
invariant under unitary operations. Let us denote the a priori
probability density function as 	���, then 	���=	�U�U†�,
for any unitary operator U. The first assumption is easy to
understand, however the second assumption needs some ex-
planation. It may be not true in some situations, when the
quantum process is known or partly known. However, we
make this assumption based on the situation that there is no
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classical information available to design the discrimination,
i.e., the only resource one can utilize is the multiple copies of
the quantum state. In this case, the second assumption is
reasonable. In some applications, people may know the a
priori distribution of the quantum state, for instance in Ref.
�4�, then one can design more efficient discriminations by
utilizing the classical information offered. However, it
should be pointed out that even the a priori distribution
breaks the unitary invariant assumption, the conclusion about
optimal unambiguous discrimination is still correct. Further-
more, the strategy to estimate the purity of quantum states
and the method to estimate the Schmidt number of bipartite
systems are still available.

The remainder of our present paper is organized as fol-
lows. In Sec. II we provide the optimal unambiguous dis-
crimination between pure states and mixed states. In Sec. IV
we provide the maximum confidence discrimination between
pure states and mixed states. We also generalize the unam-
biguous discrimination between pure states and mixed states
to a “semiunambiguous” estimation for ranks of quantum
states in Sec. III, which can also be used to estimate the
Schmidt number �14� of bipartite quantum systems. Finally,
in Sec. V, we provide a strategy to estimate the purity of
quantum states.

II. OPTIMAL UNAMBIGUOUS DISCRIMINATION

In this section, we consider the unambiguous discrimina-
tion between pure states and mixed states. Suppose we are
given n copies of a quantum state, which is in the Hilbert
space H. The unambiguous discrimination is described by a
positive operator-valued measure �POVM� on the Hilbert
space H�n. The measurement is comprised by three positive
operators, �p, �m, and �?, satisfying that

Tr��p��n� = 0, �2�

for any mixed state �,

Tr��m��n� = 0, �3�

for any pure state �= �
��
�, and

�? = I − �m − �p. �4�

Therefore, if the outcome is p, the system is assured to be in
a pure state; if the outcome is m, the system is in a mixed
state; and outcome “?” denotes an inconclusive answer.

The efficiency of the discrimination is defined as the pos-
sibility of successfully receiving a conclusive answer, which
can be expressed as

P = �
0������1

Tr���n�m�	���d� + �
����=1

Tr���n�p�	���d� .

�5�

The optimal unambiguous discrimination is the one with the
maximum efficiency, and we have the following theorem.

Theorem 1. The optimal unambiguous discrimination be-
tween pure states and mixed states is a POVM of
	�p ,�m ,�?
, such that

�p = 0,

�m = ��Hasym
�n � ,

�? = ��Hsym
�n � , �6�

where ��Hsym
�n � and ��Hasym

�n � are the projectors of symmetric
subspace and asymmetric subspace of H�n, respectively.

Proof. For a mixed state �, whose spectrum decomposi-
tion is �=�i=1

m �i ��i���i�, and for any n-tuple chosen from
	1, . . . ,m
, = �1 , . . . ,n�, where repetition is allowed, let
us introduce the following two definitions:

� = 
j=1

n

�j
�7�

and

��� = � j=1
n ��j

� . �8�

Then,

��n = �


������� , �9�

where  ranges over all n-tuples chosen from 	1, . . . ,m
.
Because �p is a positive operator, from Eq. �9� and Eq.

�2�,

����p��� = 0, �10�

for any product state ���. Therefore, when the system is in
a pure state �
�, it satisfies that

�
��n�p�
��n = 0, �11�

i.e., for any situation, the probability of getting the p result is
always zero, which means that without loss of generality, we
can simply let �p=0.

Then, from Eq. �3�, we know that �m is orthogonal to any
�
��n, where �
��H. It is known that the span space of all
�
��n is just the symmetric subspace of H�n, which has been
denoted as Hsym

�n �15�. Thus, the support space of �m must be
in the asymmetric subspace Hasym

�n , i.e., �m���Hasym
�n �.

Hence, the probability of determining a mixed state � is

P�m��� = Tr���n�m� � Tr���n��Hasym
�n �� . �12�

Therefore, the optimal unambiguous discrimination is the
measurement 	�p ,�m ,�?
 given in Eq. �6�. �

Under the optimal unambiguous discrimination, when the
quantum system is in a pure state, the result is sure to be
inconclusive. Moreover, if the quantum system is in a mixed
state �, the probability of receiving an inconclusive answer is

P�? ��� = Tr���n�?� = �


������Hsym
�n ����

= �


�

n!
per��� , �13�

where � is the Gram matrix derived from 	��1
� , . . . , ��n

�
,
and per�A� denotes the permanent of the matrix A, i.e.,
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per�A� = �
�


i

A„i,��i�… , �14�

where � ranges over all permutation on n symbols �13�.
Let  be an n-tuple valued in 	1, . . . ,m
. We use ni

 to
denote the number of occurrences of i in , where i
=1, . . . ,m. Because for any two eigenvectors of � with non-
zero eigenvalues, ��i �� j�=�i,j,

� = �
i=1

m

Ini
, �15�

where Ini
 is the ni

-dimensional identity matrix. Conse-
quently, from Eq. �13�,

P�?���� = �


�

n! 
i=1

m

ni
 ! = �

�i=1
m ni=n

n!


i=1

m

ni!


i=1

m

�i
ni


i=1

m

ni!

n!

= �
�i=1

m ni=n


i=1

m

�i
ni. �16�

From the above analysis, it is easy to see that the optimal-
ity of the unambiguous discrimination given in Theorem 1 is
not dependent on the a priori probability distribution. More
clearly, for any pure state, any unambiguous discrimination
will fail to give a conclusive answer. On the other hand, for
any mixed state �, the unambiguous discrimination offered in
Theorem 1 always has the maximum success possibility
among all unambiguous discriminations, and the success
possibility is

P�m��� = 1 − P�? ��� = 1 − �
�i=1

m ni=n


i=1

m

�i
ni, �17�

where �1 , . . . ,�m are nonzero eigenvalues of �.

III. SEMIUNAMBIGUOUS ESTIMATION
FOR THE SCHMIDT NUMBER

As we know, the entanglement of a bipartite quantum sys-
tem is closely related to the purity of one of its subsystems
�8–10�. Especially, the entanglement of a bipartite pure state
sometimes can be well characterized by its Schmidt number
�16�. For simplicity, in the rest of this section, we assume
that the total quantum system is in a pure state. Then,
whether a subsystem is in a pure state is equivalent to
whether the total quantum system is in a product state.
Hence, the measurement given in Sec. II also provides an
unambiguous estimation for the entanglement of bipartite
quantum systems. Moreover, in this section, we will provide
a natural generalization, which can be called semiunambigu-
ous estimation of the Schmidt number of bipartite systems.

The Schmidt number of a bipartite system is equal to the
rank of the quantum state in each of its subsystems �14�.
Hence, estimating the Schmidt number is equivalent to esti-

mating the rank of quantum states. First, let us reconsider the
discrimination between pure states and mixed states. In the
discrimination, the m result means that the rank of the state is
no less than 2, while the inconclusive answer can also be
considered as a trivial conclusion that the rank of the state is
no less than 1. Although the discrimination does not offer the
exact value of the rank of the quantum state, it offers a lower
bound for the rank. Moreover, the lower bound is assured to
be correct. In this mean, we can consider the discrimination
between pure states and mixed states, also a “semiunambigu-
ous” estimation for the rank of quantum states. A more gen-
eral “semiunambiguous” estimation of the rank of quantum
states can be defined as a POVM on H�n with operators
	�1 ,�2 , . . . ,�m
, where m is the dimension of H. The mea-
surement satisfies that for any quantum state � whose rank is
k, Tr��i�

�n�=0, for any i�k. Thus, whenever the outcome k
is observed, we can make sure that the rank of � is no less
than k.

Before providing the semiunambiguous estimation of the
rank of quantum states, we first introduce some fundamental
knowledge about group representation theory needed here.
For details, please see Ref. �17�.

A Young diagram ���= ��1 , . . . ,�k�, where ��i=n and
�1��2� ¯�k�0, is a graphical representation of a parti-
tion of a natural number n. It consists of n cells, arranged in
left-justified rows, where the number of cells in the ith row is
�i.

A Young tableau is obtained by placing the numbers
1 , . . . ,n in the n cells of a Young diagram. If the numbers
form an increasing sequence along each row and each col-
umn, the Young tableau is called a standard Young tableau.
For a given Young diagram ���, the number of standard
Young tableaus can be calculated with the hook length for-
mula, and denoted by f ���. In this paper, we use Tr

��� to denote
the rth standard Young tableau, where r=1, . . . , f ���.

The Hilbert space H�n, where the dimension of H is m,
can be decomposed into a set of invariant subspaces under
operation U�n, where U can be any unitary operation on H.
Each of the subspaces corresponds to a standard Young tab-
leau Tr

���, where the number of rows in ��� is no more than
m. So, we can denote the subspaces as Hr

���, and denote its
projector as ��Hr

����. Then, we have

H�n = �
���,r

Hr
���. �18�

For instance, the symmetric subspace Hsym
�n is just one of

these subspaces, H1
��¯�.

For a quantum state � in H, whose rank is k, the support
space of ��n is in the sum of subspaces Hr

���, where the
number of rows in the Young diagram ��� is no greater than
k. Therefore, a semiunambiguous estimation of the rank of
quantum states can be designed as a POVM of 	�1 , . . . ,�m
,
such that

�i = �
h�����=i

�
r

��Hr
���� , �19�

where h����� is the number of rows in ���. As said above, if
the rank of � is k, Tr��i�

�n�=0, for any i�k. Thus, once an
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“i” result is observed, we can assert that the rank of � is no
less than i. For n copies of a bipartite quantum system,
through measuring any of its subsystems with the measure-
ment given in Eq. �19�, we can semiunambiguously estimate
the Schmidt number of the whole system.

IV. MAXIMUM CONFIDENCE DISCRIMINATION

In this section, we consider a different strategy for deter-
mining whether the quantum system is in a pure state, which
is called “maximum confidence discrimination” �12�.

The discrimination is still a POVM of 	�p ,�m
. But
when the outcome is m, the quantum system is believed in a
mixed state; otherwise, the outcome is p, and the quantum
state is considered to be pure. A maximum confidence strat-
egy is to maximize the reliability of the conclusion, i.e., let
the following two probabilities be maximized:

P�pure�p� =

�
����=1

	���Tr���n�p�d�

�
�����1

	���Tr���n�p�d�

�20�

and

P�mixed�m� =

�
�����1

	���Tr���n�m�d�

�
�����1

	���Tr���n�m�d�

. �21�

Clearly, Eq. �20� and Eq. �21� do not always get maxi-
mum values at the same time. However, on the assumptions
about unitary invariance of 	��� and ����, we can prove that
there exists a measurement 	�p ,�m
 maximizing both Eq.
�20� and Eq. �21�, as the following theorem states.

Theorem 2. The maximum confidence discrimination be-
tween pure states and mixed states is a POVM of 	�p ,�m
,
such that

�p = ��Hsym
�n � ,

�m = ��Hasym
�n � , �22�

where ��Hsym
�n � and ��Hasym

�n � are as in Theorem 1.
Proof. First, we consider the construction of �p. From the

assumptions that 	���=	�U�U†� and ����=��U�U†�,

P�pure�p� =

�
����=1

	���Tr���n�p�d�

�
�����1

	���Tr���n�p�d�

=

�
����=1

	���Tr���nU�n�p�U†��n�d�

�
�����1

	���Tr���nU�n�p�U†��n�d�

,

�23�

for any unitary operation U. Hence, if �p maximizes Eq.

�20�, so does �U�n�p�U†��ndU with respect to the normal-
ized invariant measure dU of the unitary group U�m�. Hence,
we can choose the operator �p to satisfy that

�p =� U�n�p�U†��ndU , �24�

which shows that �p commutes with any unitary operator of
the form U�n. Thus, from the representation theory of clas-
sical groups in Ref. �18�, �p can be expressed as a linear
combination of permutation operators,

�p = �
�

��V�, �25�

where ���C, � ranges over all permutations of n elements,
and V� is the permutation operator derived from �, i.e.,

V��
1��
2� ¯ �
n� = �
�1
��
�2

� ¯ �
�n
� . �26�

For any state ��� in the symmetric subspace Hsym
�n ,

V� ���= ���, so �p ���= ������ ���, which indicates that

�p = ���Hsym
�n � � �p� , �27�

where �p� is a positive operator whose support space is in
Hasym

�n , and �=����. Because for any pure state �= �
��
�,
the support space of ��n is in the symmetric subspace Hsym

�n ,
Tr���n�p��=0 for any ����=1. Therefore, the numerator of
Eq. �20� does not change if we substitute �p with ���Hsym

�n �,
and the denominator diminishes or remains the same. So, the
optimal �p has the form of ���Hsym

�n � for any constant �.
On the other hand, if we choose ��Hasym

�n � as �m, then for
any pure state �, whose purity ����=1, we have
Tr���n�m�=0, and Eq. �21� has the maximum value 1. To
satisfy the condition �p+�m= I, let �=1, �p=��Hsym

�n �. This
completes the proof. �

It is easy to see that the optimal unambiguous discrimina-
tion and the maximum confidence discrimination are the
same measurement 	�0=��Hsym

�n � ,�1=��Hasym
�n �
. The dif-

ference between the two discriminations is the meaning of
the “0” result. In the former discrimination, the “0” result
means an inconclusive answer; however, in the latter one, if
a “0” result is obtained, the quantum system is considered to
be in a pure state.

From Eq. �16�, for n copies of a quantum state �, under
the measurement of 	�0 ,�1
 given above, the probability of
receiving a “0” result is

P0�n� = �
�i=1

m ni=n


i=1

m

�i
ni, �28�

where �1 , . . . ,�m are the eigenvalues of �. As we know, the
above quantity is the complete symmetric polynomial of de-
gree n for 	�1 , . . . ,�m
, which is usually denoted by
hn��1 , . . . ,�m�. From Ref. �19�, the complete symmetric
polynomials can be derived from a generating function

Hm�t� = �
k�0

hk��1, . . . ,�m�tk =
1


i=1

m

�1 − t�i�

. �29�
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Let �* stand for the maximum eigenvalue of �, then, if we
have n copies of the states, the probability of judging it to be
pure can be evaluated as

P0�n� = �
�i=1

m ni=n


i=1

m

�i
ni � �n + m − 1

n
���*�n. �30�

Then, if the quantum system is in a pure state, P0�n� will
always be 1, otherwise �*�1, and P0�n� will converge to
zero with exponential convergence rate. Hence, when n is
large enough, the maximum confidence discrimination offers
high reliability.

In Sec. III we discuss the semiunambiguous estimation of
the rank of quantum states, which is given in Eq. �19�. An
open problem is whether this measurement also offers a
maximum confidence estimation of the rank of quantum
states, if we consider the result “i” as a claim that the rank of
the quantum state is i.

V. ESTIMATING THE PURITY OF QUANTUM STATES

The maximum confidence discrimination between pure
states and mixed states provides a natural intuition for the
purity of a quantum system, i.e., the greater the probability
of getting a “0” result, the closer it is to a pure state. Hence,
by repetitively performing the measurement, and counting
the proportion of “0” results, we can estimate the probability
of judging the system being pure, which, in some sense,
reflects some information about the purity of the system.
However, a more interesting conclusion is that, no matter
how people define the purity of quantum states, as long as it
satisfies the condition of unitary invariant, it can be well
estimated through a set of maximum confidence discrimina-
tions.

On the assumption of unitary invariant, the purity of
a quantum state �, ����=�(diag��1 , . . . ,�m�), where
�1 , . . . ,�m are the eigenvalues of �. Hence, ���� is a function
of its eigenvalues. Estimating the purity of a quantum state �
can be reduced to estimating the eigenvalues of � �20�. The
characteristic polynomial of � is a polynomial, whose roots
are the eigenvalues, i.e.,

det�xI − �� = 
i=1

m

�x − �i� = �
j=0

m

ajx
m−j . �31�

If we can successfully estimate every coefficient aj, j
=0, . . . ,m, the eigenvalues can be estimated by solving the
equation � j=0

m ajx
m−j =0.

Recall the famous Viete’s theorem, it is easy to know

a0 = e0��1, . . . ,�m� = 1,

a1 = − e1��1, . . . ,�m� = − �
i=1

m

�i,

a2 = e2��1, . . . ,�m� = �
1�i1�i2�n

�i1
�i2

,

¯ ,

ak = �− 1�kek��1, . . . ,�m� = �− 1�k �
1�i1�¯�ik�n

�i1
¯ �ik

,

¯ ,

am = �− 1�mem��1, . . . ,�m� = �− 1�m�1�2 ¯ �m. �32�

Here, the polynomial ek��1 , . . . ,�m� is the mth elementary
symmetric polynomial of 	�1 , . . . ,�m
 �19�, whose generat-
ing function is

Em�t� = �
i=0

m

ei��1, . . . ,�m�ti = 
i=1

m

�1 + t�i� . �33�

Combined with Eq. �29�, we have that H�t�E�−t�=1, so

�
r=0

k

�− 1�rerhm−r = 0, �34�

for any k�1, if we set er��1 , . . . ,�m�=0, when r�m. Here,
for simplicity, we use ek, hl to denote ek��1 , . . . ,�m�,
hl��1 , . . . ,�m�, respectively. Then, it is not hard to see that

ek = �
h1 h2 h3 ¯ hk−1 hk

1 h1 h2 ¯ hk−2 hk−1

0 1 h1 ¯ hk−3 hk−2

� � � � �
0 0 0 ¯ h1 h2

0 0 0 ¯ 1 h2

� . �35�

Clearly, h1=�i=1
m �i=Tr���=1. As stated in Sec. IV, for any

k�2, hk is the probability of receiving the “0” result, when
we measure ��k by the measurement 	�0=��Hsym

�k � ,�1

=��Hasym
�k �
. Therefore, if we have N copies of quantum state

�, where N is much larger than m, we can estimate the ei-
genvalues of � in the following strategy.

First, separate the N copies into m groups, the kth group
has kNk copies of the quantum state. Then, operate the mea-
surement 	�0=��Hsym

�k � ,�1=��Hasym
�k �
 on ��k for Nk times

in the kth group. Suppose among these results, the number of
“0” results is Sk, then we can estimate P0�k�, i.e., hk by
Sk /Nk. Then, through Eq. �35�, we can estimate every ek,
where 1�k�m. Hence, from Eq. �32�, the characteristic
polynomial of �, whose roots are the eigenvalues we want to
estimate, is known. The task that remains for us is to solve
the equation given in Eq. �31�.

VI. CONCLUSION

In this paper, we investigate the discrimination between
pure states and mixed states, which may play an important
role in further study for estimating the purity of quantum
states. The discrimination is described by a POVM of 	�0

=��Hsym
�n � ,�1=��Hasym

�n �
 on n copies of the quantum
state being discriminated. If the “0” result is considered as
an inconclusive answer, the measurement is the optimal
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unambiguous discrimination. On the other hand, if the “0”
result is considered as a hint that the quantum system is in a
pure state, the discrimination is the maximum confidence
discrimination. We also provide a semiunambiguous estima-
tion for the rank of quantum states, which also can be used to
estimate the Schmidt number of bipartite quantum systems.
Finally, we give a strategy to estimate the purity of quantum
systems.
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