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In this paper, we study the effect of phase fluctuations of the pump field upon the entanglement generation
in a two-photon correlated emission laser (CEL). We consider initial vacuum and coherent state for the
two-cavity modes. In both cases, we find reduction in the entanglement due to the phase fluctuations. However,
our results indicate that entanglement generation is highly sensitive to phase fluctuations when we have initial

coherent state in the two modes.
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I. INTRODUCTION

Generation of macroscopic entangled states of atoms and
photons have attracted considerable attention in recent years.
The prime motivation for these studies come from the field
of quantum information. Schemes for the realization of mac-
roscopic entangled atomic ensemble have been demonstrated
via quantum state transfer from nonclassical light to atom by
Polzik and co-workers [1]. The generation of such states for
photons have also been studied. For example, the generation
of bright two-mode quadrature squeezed light from a
narrow-band nondegenerate optical parametric amplifier
(NOPA), polarization entangled light from parametric down
conversion driven by an intense pulsed pump field inside a
cavity and others [2-6].

In a recent study, we considered a two-photon correlated
emission laser (CEL) [7] as a source of an entangled radia-
tion [8,9]. The system essentially consists of a three-level
atomic scheme inside a doubly resonant cavity. It is shown
that when the amplitude of the Rabi frequency (associated
with the strong driving field) is much larger than the atomic
decay rates, the system approaches towards a nondegenerate
parametric amplifier. Interestingly, entanglement can be ob-
tained for any arbitrary initial state of the two modes, even in
the presence of cavity losses.

Essential to our earlier scheme is the strong driving field
and the important question is how the fluctuations in the
pump affect the system. In some earlier studies, effects of
pump fluctuations on squeezing properties of the field in a
degenerate parametric amplifier [10,11], two-photon phase
sensitive amplifier [12], and nondegenerate multiwave mix-
ing have been studied [13]. It is shown that these fluctuations
tend to decrease the amount of squeezing. In a recent study,
we considered the effects of amplitude and phase fluctuations
upon entanglement generation in a nondegenerate parametric
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amplifier. It is shown that the entanglement between the sig-
nal and idler modes in NOPA is more sensitive to phase
fluctuations than to amplitude fluctuations [14].

In this paper, we study the role of pump-phase fluctua-
tions on entanglement generation in a correlated emission
laser. In our earlier scheme for the entanglement generation
using CEL, it is assumed that the pump is a perfectly coher-
ent monochromatic source. However, in a realistic situation,
driving field has always a finite bandwidth associated with
the phase fluctuations of the pump field. Here we restrict
ourselves to phase fluctuations of the pump beam which is
typically an intense driving field with a well stabilized am-
plitude. We use the classical phase diffusion model to de-
scribe the phase of the driving-pump field by following the
method discussed in our earlier paper [11]. The phase of the
driving field undergoes Brownian motion that may be ap-
proximated by a Wiener-Levy diffusion process. In order to
estimate the entanglement generation in a CEL, we apply the
criterion of Duan et al. [18] that requires the measurement of
quadratures for the two modes of the cavity field. The field
quadratures can be measured employing balanced homodyne
detection scheme (BHDS). We consider the same pump
source as a local oscillator (LO) in the BHDS. In this con-
figuration, it is expected that the effect of the finite band-
width of the driving field will no longer occur. However, our
results show the suppression of the entanglement due to the
phase fluctuations associated with the driving field. This can
be understood in terms of the time lag in the response of the
system to an instantaneous change in the pump phase. We
consider initial vacuum and coherent state for the two-cavity
modes. In both cases, we find the suppression of entangle-
ment between the two modes in a CEL due to the phase
fluctuations. However, the entanglement generation is more
sensitive to the pump phase fluctuations when we have initial
coherent state in the two modes of the cavity. This suggests
the requirement of a highly stabilized driving source to gen-
erate the entanglement.

II. MODEL
Nilore, Islamabad, Pakistan. Electronic address:
shahid_qgamar @pieas.edu.pk We consider a system of three-level atoms as shown in
"Electronic address: zubairy @tamu.edu Fig. 1 in which atoms interact with the two modes of the
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FIG. 1. Schematic for the entanglement amplifier. A three-level
atomic system in a cascade configuration. The transition between
levels |a)-|b) and |b)-|c) at frequencies v, and v, are resonant with
the cavity. The transition |a)-|c) is dipole forbidden and can be
induced by a strong magnetic field.

field inside a doubly resonant cavity. The dipole allowed
transitions |a)-|b) and |b)-|c) are resonantly coupled with the
two non-degenerate modes v; and v, of the cavity, while the
forbidden transition |a)-|c) is induced by applying a strong
magnetic field for magnetic dipole allowed transition. The
Hamiltonian for the system in the rotating wave approxima-
tion is given by

H;=1ig,(a,|a)b| + aT|b><a|) +hg(aslb){c| + a§|c><b|)

1 . .
- zﬁﬂ(e_’¢(’)|a><c| + e’¢(’)|c><a|), (1)

where a; (a'{') and a, (a;) are the annihilation (creation) op-
erators for the two nondegenerate modes of the cavity field
and g,(g,) are the associated vacuum Rabi frequency. The
Rabi frequency induced by the strong driving field is repre-
sented by Qe /%0,

In our earlier study, we consider similar configuration for
entanglement generation by taking the phase of the driving
field to be constant. Here we assume a realistic situation in
which the phase undergoes a diffusion process which leads to
the finite bandwidth of the driving field. In the above Hamil-
tonian, ¢(7) represents the fluctuating phase of the pump
field. This fluctuating phase can be written as

B(1) = o+ (1), 2)

where ¢, is a constant corresponding to the average value of
the fluctuating phase and ¢ (r) is the random phase described
by a Gaussian random process which performs a Brownian
motion described by a Wiener-Levy stochastic process such
that ((r))=0. For such a process, the two-time correlation
function is given by

(i (1"))y=D(t+1" ~t~1']), A3)

where D is the diffusion coefficient. The derivative of this
diffusion process is a white noise with

(1(N (1)) =2D81t-1"), (4)

from which follows
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<e—i</>(r)> = e i90)e-Dr (5)

This leads to a Lorentizian power spectrum for the pump
field, whose linewidth (half width at half maximum) is D.

The estimation of the entanglement for a mixed state re-
mains a challenging problem [15]. Formally, a system is con-
sidered to be entangled if it is nonseparable, i.e., the density
matrix for the state p cannot be written as a convex combi-
nation of product states

p2 pip @ pf?, (6)
j

with p;=0 and X;p,=1. For pure state there exist sufficient
and necessary conditions for entanglement. For example, the
Schmidt decomposition or the von Neumann entropy of the
reduced density matrix of a state can be used to estimate the
entanglement of a pure state. For an arbitrary mixed state
there exist no sufficient and necessary criteria for the estima-
tion of entanglement. However, several sufficient entangle-
ment criteria have been proposed in some recent studies
[16,17]. In a recent study, Hillery and Zubairy [15] provide a
class of inequalities whose violation show the presence of
entanglement in two-mode systems which can be extended to
detect entanglement in systems consisting of more than two
modes.

In order to estimate the entanglement for the two modes
of the cavity field in a correlated emission laser, here we use
the criterion which is due to Duan et al. [18]. In some recent
experiments this criterion has been tested to demonstrate the
entanglement between the twin beams produced in an optical
parametric oscillator [6]. According to this criterion, a state
of the system is entangled if the sum of the quantum fluc-
tuations of the two Einstein-Podolsky-Rosen (EPR)-like op-
erators i and ¥ of the two modes satisfy the inequality

(Ad)? + (AD)* < 2. (7)

For a general state this criteria provides a sufficient condition
for entanglement. It is also shown in Ref. [18] that for a
two-mode continuous variable Gaussian states, this criteria
turns out to be a necessary and sufficient condition for in-
separability. In Eq. (7),

G=3% +%,,

6=p1-pa. (8)
Here £,(%,) and p,(p,) are the quadratures for the two modes
of the cavity field which can be measured using the balanced
homodyne detection (BHD) scheme [19].

In homodyne detection, the signal which in our case
comes from the cavity field interferes with a beam from the
local oscillator at a lossless beam splitter. For a realistic
beam splitter, fluctuations add into the system, which can
introduce noise in BHD. However, a detailed analysis is re-
quired to study their influence. Typically, the same source is
used for the local oscillator whose phase fluctuations are cor-
related with those of the pump. The reference frame for the
two Hermitian, mutually conjugate quadratures in BHD is
defined by the phase of the local oscillator. In our case the
phase of the local oscillator is time dependent and undergoes

062305-2



INFLUENCE OF PUMP-PHASE FLUCTUATIONS ON...

a diffusion process. In order to accommodate it the factor
¢(2) is introduced such that

. (ajei¢(t)/zei0+ a;fe—iqﬁ(t)/ze—i&)

i ~
J \” 2

bl

. ( a; o1 02,i6 _ a/T' omid02 eif)

-
! V2i

)

(with j=1,2) are the quadrature operators for the two cavity
modes 1 and 2, respectively. Here 6 is the reference phase
between the field quadratures. In some earlier studies effects
of phase fluctuations on squeezing is considered. It is shown
that the phase fluctuations degrade the amount of squeezing
even when both local oscillator and pump field is considered
from the same source. The dependence of the observed
squeezing on the phase diffusion is due to the time lag in the
response of the system to the instantaneous change in pump
phase [11].

If we substitute the definition of 4 and ¢ into Eq. [7], we
obtain

(M) +(A0)* = {({aja) + (ara)) + (azap) + (azar))
+2({ayare™ D)) + ((alale i1y
— {a, "1 (are!h1D2))
— <<GT€_i¢l(t)/z))«a;e‘i‘f’l(’)/z»)
- <<alei¢1(t)/2>><<a”lre—i¢1(z)/2>> _ ((aJ{e‘i%(f)/Z»
X((aleiqﬁl(t)/Z» _ <<(12€i¢1(t)/2>><<a;e_i¢l(l)/2>>
= (age M) (are 1)} (10)

Here the reference phase 6 is taken as —7r/4 to cancel out the
constant phase term, i.e., ¢g=m/2, from our expression for
(A2)2+(A0)%. The total photon numbers (Ny=((ala))
+((abar)).

In our notations, the single bracket stands for stochastic
averages and the double bracket stands for the quantum me-
chanical average as well as the stochastic average. It is clear
from Eq. (10) that entanglement in our system can be mea-
sured by evaluating the values of the averaged moments
Cafa)),  (aa)),  (aad ), (ae®©2),  and
{aye'® )y (and their respective conjugates). We need an
equation of motion for the stochastically averaged reduced
density operator {p) to calculate the expression for ((a*{al)),
whereas equations for the transformed phase shifted density
operators, i.e., {pexp[—ig(r)]) and {pexp[—ip()/2])(and
their respective conjugates) are needed to evaluate the ex-
pressions for ((ajaje D)), (aja,e’®V)), ((ale 12y,
(a1 ®2)), (a3 91072)), and ((are'@12)).

Here ({(a,a,¢!?1")) and its complex conjugate terms are
the correlation between the two quantum-mechanical modes
averaged over the stochastic process. This is also known as
the combination tone [13], which is responsible for the gen-
eration of entanglement between the two modes. The corre-
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lation between the two modes should be greater than the
correlation between the same modes to ensure the entangle-
ment generation.

III. EFFECT OF PUMP-PHASE FLUCTUATIONS UPON
ENTANGLEMENT GENERATION

In this section we discuss the effect of phase fluctuations
upon the entanglement generation in a correlated emission
laser. Our system is modified as compared to the system
discussed in Ref. [8] due to the introduction of phase fluc-
tuations in the driving field. Hence we are interested in the
master equation for the reduced density matrix for the two-
quantum-mechanical cavity modes averaged over the ran-
dom phase of the driving field. Here we are considering a
linear theory of two-photon CEL, which is sufficient for the
discussion of entanglement generation. Therefore, we treat
the transition |a)-|b) and |b)-|c) quantum mechanically up to
the second order in the coupling constant g. Physically, this
means that the cavity field cannot saturate the atoms. How-
ever, for strong driving field, we consider all orders in the
Rabi frequency (). We also assume that the atoms are in-
jected in the cavity in the lower level |c) at a rate r,.

A similar situation for the master equation of the cavity
field for a single-mode two-photon phase sensitive linear am-
plifier is considered in Ref. [12]. A detailed procedure for the
derivation of the equation of motion for stochastic variables
averaged over the stochastic process is also presented there.
We follow the same procedure to obtain the stochastically
averaged equation of motion for the two mode of the cavity
field. The resulting equation is given by

(py=—[B,a1aj(p) + By (p)a,a| - (B, + B )aj(p)a,
+ Byyabar(p) + Byx(p)aja, — (By + Byy)ax(p)aj]
— [Ba1ax(pe'®?) + By (pe'?)aa,
— (B, + Byy)ax(pe'*)a,] - [Byajai(pe ")
+ B (pe ¥ Nalal — (B, + B;))al{pe  *Nya]]
- ky(ajayp - 2a,pa] + paja;)
— ky(abayp — 2axpal + paas), (11)

where the cavity damping term is included in the usual way.
Here we have assumed that the two cavity modes are coupled
to two independent vacuum reservoir with «; and «, being
the cavity decay rates of modes 1 and 2, respectively. The
coefficients By, By, By, and By, in Eq. (11) are the same as
defined in Appendix A. For simplicity, it is assumed that the
atomic decay rate I" is the same for all three levels. Here
terms proportional to B;; and B,, correspond to the emission
from level |a) and absorption from level |c), respectively, and
the terms proportional to Bj, and B,; corresponds to the
atomic coherence generated by the coupling field (). The
equations of motion for the stochastically averaged reduced
phase shifted density operators (pe~'*®)and (pe~'?"") are
presented in Appendix B. Equations (11), (B1), and (B6),
which incorporate the effects of the finite bandwidth associ-
ated with the strong driving pump field, reduce to the results
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of Xiong, Scully, and Zubairy [8] for D=0. In the limit when
O>T and DT, the system describes a nondegenerate
parametric amplifier.

We can evaluate the time evolution of the quantum fluc-
tuations of the EPR operators i and ¢ and the mean number
of photons from Egs. (11), (B1), and (B6). In particular we
calculate the time evolution of the various moments involved
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in the quantities (A72)>+(A9)? and the total photon number

(N) which are given in Appendix C. The resulting expres-
sions for an arbitrary state are rather complicated and we do
not reproduce them here. We present here the exact analyti-
cal results only for the initial vacuum state, which is given
by the following:

2A At A+ C,)ett! C MN(Cy+ N,
[(Au)? + (Av)2](f) = =212 sinh— — A,B A, @+ Cyle > (G2 +2)
A 2 AIHZ, (A =N) AIHI, N igkarigrk A= NN = NN = Ny)
C N(Cy+ \; eM 1
+ A2B4 _2 - ( 2 ) + CIBIA3 E -
Hi N idirijek NG = NN =N iikiriiik NN =N (N = N\)) Hl. N
Nt Nt
(N —A A (Cy+ \; C
+C,B, E eMi( 1) + 1 ~ BA, E eMil( 2 ) _ 2
ijki%),j#k NN = )\j)()\i -\ Hi \; ik i# ), j#k NN = )\j)()\i -\ Hl. N;
NN —A CA eM(N - A
S WRZ DI G B 0-a) | -
iikiziek M= M) =N) T\, Likiziiek MO =N = Ny

A 2A Aqt
<N>(t) = _3€A1l/2 Sinh_l —A231A3

(Al + C2)€All

C2 e)\l-t

A, 2

M(Cy+ N

- X
AIH,- (A;=N) H N; kit itk (A =N =N =Ny

Nt
e 1
+ AzB4 E + ClBlA3 E
{i,j,k,i#:j,j#:k )\i()\i - 7\1)(7\1 - )\k) i,j.ki#j.jFk )\i()\i - )\j)()\l - )\])

5 -y }

+C\B
1 4{i,j,k,i#j,j#k 7\1'()\1‘ - )\j)o\i - )\k)

In Fig. 2, we show the time development of [(Au)?

+(Av)2](r) and (N)(r) against the dimensionless interaction
time gt. We choose, (=400 kHz, I'=20 kHz, «,=k;
=3.85 kHz, r,=22 kHz, g=g,=g,=43 kHz (these param-
eters values are such that they correspond to the micromaser
experiment in Garching [20]) for D/I'=0, D/I'=0.01, and
D/T'=0.02. Here the initial state of the two modes is consid-
ered to be the vacuum state. For D=0, we obtain the same
results as discussed in Ref. [8], i.e., the two modes evolve
into the entangled state and remains entangled for a long
time unless it is destroyed by some other dissipation chan-
nels. For D # 0, we obtain a decrease in the time for which
the two modes remain entangled. This is due to decoherence
that is introduced into the system as a result of the finite
linewidth of the pump source. Further increase in D shows
that entanglement remains only for a very limited period of
time. It is clear from the results that the entanglement will be
finally eliminated due to the phase fluctuations. This elimi-
nation becomes faster due to the increase in pump-phase
fluctuations. The other important quantity is the mean num-
ber of photons in the two modes which is also influenced by
the phase fluctuations. If we increase the diffusion coefficient

(13)

D then the average number of photons (corresponding to
entangled state) in the two modes significantly decrease.

In Fig. 3, we consider the initial coherent state with 10?
photons in each mode. All the other parameters are the same
as in Fig. 2. The choice of the phase for the coherent state is
such that a;a,=—|aja,| (which is the best choice for the
growth of the mean photon numbers in two modes of the
cavity provided a> k, as discussed in Ref. [8]. It may be
mentioned that the analytical expressions for (A#?)+(A?)

and <]<7) are cumbersome when we have an initial coherent
state in the two modes of the cavity field. We present here
our numerical results. For D=0, we reproduce the results
presented in Ref. [8]. It is interesting to note that even for
D/T'=0.0001, we obtain a significant decrease in the time for
which the two modes remain entangled. When we choose,
D/T'=0.0012, entanglement almost vanishes. The average
number of photons also show a significant reduction due to
the increase in D/I". The dotted points here show the trun-
cation when (A#%)+(A5?)=2 and the state is not necessarily

entangled at that point. The temporal evolution of the (V) is
almost the same as in Fig. 2 for D/I'=0, 0.0001, and
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FIG. 2. Time development of (a) (N) and (b) (A#i)*+(Ad)? for
the initial vacuum states for the two modes (in terms of normalized
interaction time gr) with Q=400 kHz, I'=20kHz, «;=«,
=3.85 kHz, r,=22 kHz, g=g,=g,=43 kHz (parameters are chosen
such that they correspond to the micromaser experiments [20]) for
D/T'=0,0.01, and 0.02.

0.0002. It is just due to the small difference in D/I" that they
appear to be coincided. Our results show that the effects of
phase diffusion on entanglement generation is drastic when
we have initial coherent state in the two modes of the cavity
field. An insight in these results can be obtained from Eq.
(10) that shows the various moments required to estimate the
entanglement of the system. It is clear that for the initial
vacuum state all the first-order moments, which are phase
sensitive, never show up, however, for the initial coherent
state they contribute. For D=0 all the first-order moments
contribute coherently, however, in the presence of phase
fluctuations decoherence introduces, which results in the sig-
nificant reduction of entanglement even for very small values
of D/T". Due to this fact, for the coherent state we assumed
the value for the ratio of D/I" that is dropped by a factor of
100 as compared to its value for initial vacuum state. Finally,
in Fig. 4, we show the same plots as in Fig. 3 for a fixed
value of the diffusion coefficient, i.e., D/I'=0.01. Here we
consider the initial vacuum and coherent states with 1, 4, and
9 photons in each mode of the cavity. All the other param-
eters are the same as in Fig. 2. It is interesting to note that the
time scale for the two modes to remain entangled reduces as
we go from the initial vacuum state to the different coherent
state with increasing amplitude. Our results clearly show that
the decoherence effects due to the finite bandwidth of the
driving field become more and more important as we in-
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FIG. 3. Time development of (a) (N) and (b) (Aid)*+(Ad)? for
the initial coherent states |10,—10> in terms of normalized time gt
for different values of D/I". All the other parameters are the same as
in Fig. 2.

crease the amplitude of the initial coherent state in the two
modes.

These results are interesting because in BHDS we mea-
sure the field quadratures with respect to a reference phase
whose fluctuations depend upon the phase of the pump field.
Therefore, we expect no effect of the pump bandwidth on the
measured quadratures. The question then is what causes the
suppression of the entanglement in our system. An insight
into these results can be obtained by considering the fact that
the atomic coherence which is produced at any time by the
driving field with a certain phase decays exponentially in
time because of the atomic decay rate I'. As a result, at a
particular time the atomic response not only depends upon
the phase of the driving field at that particular moment, but
also keep track of its previous interaction until it decays. The
interaction of the atom with the fluctuating phases of the
driving field during this time is responsible for the suppres-
sion of the entanglement. In fact there is a delay in the re-
sponse of the system to an instantaneous change in the phase
of the local oscillator.

It may be pointed out that in our earlier paper, we also
predicted the reduction in the entanglement due to the phase
diffusion in a nondegenerate parametric amplifier, Ref. [14].
However, in contrast to the present system, there we have
defined the quadratures with respect to a fixed reference
phase.
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FIG. 4. Time development of (a) (N) and (b) (A#i)*+(Ad)? for
the initial vacuum states and coherent states |1,—1), |2,-2), and
|3,-3) for D/T'=0.01. All the other parameters are the same as in
Fig. 2.

IV. CONCLUSION

We have studied the generation of entanglement using
correlated emission laser by including the effects of a finite
bandwidth associated with the driving pump field. The inter-
action of three-level atoms with two modes of the cavity
field inside a doubly resonant cavity is considered. Atomic
coherence is introduced by driving the system with a strong
classical field whose phase fluctuations are modeled by a
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classical phase-diffusion process. The master equation for
the cavity field modes averaged over the stochastic process is
derived. In order to estimate the entanglement, we apply the
criterion of Duan et al., which requires the measurement of
quadratures for the two modes of the cavity field. In balanced
homodyne detection, we consider the interference of the cav-
ity field with a beam whose phase fluctuations are correlated
with the pump. By doing so, we expect that the quadrature
measurement will be independent of the phase fluctuation,
however, it is not true. A clear difference with the case D
=0 is that the time for which two modes remain entangled
decreases. It is due to the exponential decay of the atomic
coherence, which leads to a delayed atomic response as com-
pared to the instantaneous change in the phase of the local
oscillator. We consider initial vacuum and coherent state for
the two modes of the cavity field. It is interesting to note that
the condition to obtain entanglement in the presence of phase
diffusion is more stringent when the two modes are initially
considered in a coherent state as compared to the vacuum
state. For example, for initial coherent state, the two modes
evolve into entangled state only under the condition when
D<T.

Our results clearly show that the effect of phase fluctua-
tions on the generation of the macroscopic entangled state
using two-photon CEL can be minimized by considering a
gain medium with large atomic dipole decay rate I' as com-
pared to the diffusion constant D of the driving field. Physi-
cally, this means the generation of bright entangled beams
requires a highly stabilized laser source such that the line-
width of the driving field is much less than the atomic line-
width; otherwise, the driving field is going to completely
destroy the entanglement generation.
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APPENDIX A

The coefficients By, By, By, and B,, in Eq. (11) are
given by

B 2187, V(312 + D]
Bu= P+ D)+ Q2T (T + D) + 0%4] (A1)
3 ig18,r,QU2[(2T + D)(4D +T)(I' + D) + (2D + I Q?/2] -
277 (C+D)[T(T +4D)(T + D) + QAT + 2D)][T(T + D) + ['%4] (42)
3 ig18.7,Q2[(T' + D)(-T = D)(I' + 4D) + (2D + 1) Q%/2] A3
27 (T + D) +4D)(T + D) + QXL +2D)|[[(T + D) + L'¥4]’ (A3)
818 [(T+D)[I (T + D) + Q2] - T O%/4] (Ad)

27 T + D) + Q[T + D) + Q¥4]
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APPENDIX B
The equations of motion for the reduced density matrix for the fields, i.e., (pe "?") and (pe~'?"’?) averaged over the
stochastic processes are obtained by following the same method as discussed in [12] and are given by the following:

d L ‘ . ,
d_t<P€_l¢(t)> =-[C, 1alai<P_l¢(t)> +C 1<P_l¢(l)>6llaT -(C 1+ C, 1)“T<P_l¢(t)>a1

+ C;2a£a2<P_i¢(f)> + C22<P_i¢(t)>a;az —(Cyr+ sz)a2<p‘id’(’)>a§]

— [Chhaiax(p) + Cy{p)asar — (Ciy + Cay)ax(play]

- [Cyiajaipe™ ) + Ciolpe*Pajal — (Cip + Cp)ai(pe ™ )a]]

- ki(aja;p—2a,pa| + paja;) - ky(asarp — 2arpal + pasaz) — D{pe™!7), (B1)
where the coefficients C;, C5, C5;, and C,, are given by

21827 AT[QY4(T + 4D) + TQ%4]+ Q¥4 + D)(I' + 4D)}

= , B2
U7 (T + D)X +D)T +4D) + Q%+ 2DQ|[T(T + D) + Q¥4] (B2)
oo ig18:r,QU2{(T +D)T(D+T) + Q*2]+T*(D +T)} (83)
2= I(C+D)L(C+D)+ QYT +D)+T%4] °
oo ig18:r,Q2[(T +4D)(-T —4D)(I' +9D) + (5D + ) Q%/2] (B4)
17T (T +4D)[(T +4D)(T +9D)(T + D) + QXTI + 5D)|[(I + D)(I +4D) + ['%/4]’
_ 2187 A(C+4D)[(T +4D)(D + DI + TO%2 + DO - (Q¥4)T (T + D)} (B5)
27 (T +D)[I( +D)I +4D) +TQ>+ 2DO*|[(T +4D)(I + D) + Q¥4]
Also
d ; * _i —i * —i
Z(Pe_ld’(tm) =~ [Dy,a1d{{p "%y + D (p " a a] — (D, + Dyy)al(p " )a,
+ Dayajax(p ) + Doy(p D"V ala, — (Doy + D3y)ar(p ' ?")a]]
—[Da1ax(p" ") + Dy (p" ") a, — (D, + Dyyp)ax(p'®)ay]
—[D3a{al(pe™ D) + D5 (pe ¥ alal — (D, + D3))al(pe™"?)a]]
— ki(ajayp - 2a,pa| + pajay) — ryalarp — 2arpal + paya,) — DIA(pe™ M%), (B6)
where the coefficients Dy, Dy,, D, and D,, are given by
_ 218r (T + D/4)Q?/2(T +5D14) + Q*/4(T + D/4)(T + 9D/4)} B7)
"7 (T + D/a)[(T + DI4)XT +9D/4) + QAT + 5DIA (T + D/4)* + Q¥/4]
Do ig182r,Q2[ (T + DI4)*(9D/4 +T') + Q%/2(T' + 5D/4) + (T + D/4)(T" + 9D/4)(D/4 +T)] (B8)
12 [T +D/4)*T +9D/4) + QX (T + 5D/4) (T + D/4)][(- T - D/4)> + T%/4] ’
Do ig18r, Q2[(T +9D/4) (- T = 9D/4)(T + 25D/4) + (13D/4 + T)Q?/2] (89)
A7 (T +9D/M)[(T +25D/4) (T +9D/4) (T + DI4) + QAT + 13D/IA)|[(T + D/4)(T +9D/4) + T¥/4]
_ 81827 A(T +9D/4)[(I' + 9D/4)(D/4 +T)* + (I + 5D/4)I'Q%/2] - (Q%/4)(T + D/4)*} (B10)
22—

(T + DI +9D/4)(T + D/4)? + Q*(T + 5D/4)|[(T + D/4)T +9D/4) + Q*/4]

APPENDIX C

The equations of motion for the various moments required to estimate the entanglement generation in a two-photon CEL
can be obtained in a straightforward way from Egs. (11), (B1), and (B6). For a suitable choice of the average value of the
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fluctuating phase ¢,=/2, we obtain the following two sets of coupled equations for various moments:

d . . L
d—t<<a1a1>> =A((ajap) + Ay(((a a8 1)) + ((ajafe D1 D))) + As, (C1)
d ) ) ) )
E(«alazel(bl([)» +((ajaie 1)) = By(((a a2 7)) + ((ajale 1)) + By((ajar)) — B\({aja,)) - By, (C2)
d . . .
E«a;az)) = - Cy{(ajar)) — Ci({{ayare" ) + ((ajaje™ 1)), (C3)
and
%(((alei‘ﬁl(’)’ ) =Dy {are 1) + Dy((afe™ M1 2)), (c4)
%(((aze""’}‘(’)’ ) = E\({abe 1 02)) — E)((a,e'h0"2)), (Cs)

where the coefficients A,A,,A3,B,B,,B3,B4,C;,C,,D,D,,E, and E, are defined in Appendix D.
The coupled set of Egs. (C1)—(C3) and (C4) and (C5) can be solved exactly using, for example, the Laplace transform
techniques. The solutions are given by the following:

+ _ Alt (Al + C2)€Al[ _ e)\it(CZ + )\l) +
((a,al»(t) AR (AIHi (A =N\) i,j,k,gj,j#k (A =N\ = )\j)()\i -\ <<alal>>0

Nt
e (C2 + )\1) . .
ia Y EE TN L a0 + (alale i)

z{i,j,k,i##k (M—M)(M—M)} o o ’

Mt

+A233{ > 2

ij.k,i#j.j#k ()\i - )\j)()\i - )\j)
(Al + Cz)eAlt 6‘)\it(C2 + )\l) Cz

}<<a§az>>o

AIHi (A =N)  igkizijee A= NN = M)\ =N AlH,» \i
M(Cy+ \, C 2A Ayt
_ALB, > e"'(Cy+\) 2\, 208 A sinhTI, (C6)

ijkijjk NN = NN = N Hi A A

Mt
i (1) 7T =iy (1) __ eM'(Cy+ \)
(e 7+ daiae o b { i,j,k,%,j#k N =N =Ny

}«a'l'al»o

N Nt

t )\i - A i )\[’ -A .

+ > Xt v +C, X et ) X (({ayaze™®®y)
i k%] j#k i =N\ =N ijki#j.j#k A= NN =N

Nt
F ot —igy(0) _e\-AY) t
+ (afale 1)) + 33{ ,A,,,-,k,%,_,-#k o) [ e

D MN(Cy+ ;) G
ij.ki#j.j#k )\i()\i - )\j)()\i - )\k) ]__L )\,»

NN = A A NI\ = A
—B4 2 e (1 1) +C2<Hl)\+ 2 e (z 1) ) ,

ij.ki#j.jFk ()\i - 7\1‘)(7\1' - )\k) ij.k,i#j,j#k 7\,-()\,- - Aj)()\i - )\k)

- B Az

(C7)
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. e
(aza))(t) = CIBI{ i,j,k,gjsﬁk A= NN =Ny

iz ek (N = NN =N

NN —
+C1{ 2 € ()\1 Al)

}((a%))o

NN —Ay)

PHYSICAL REVIEW A 75, 062305 (2007)

}(((alazei"’l(’)>> +{(ajaze 1)),

e_CZ'(Al + C2)

+ e_C2t+ C1B3( 2

+
i ki) j#k (Co=N)(\; = )\j) (i =N Hi (Cy+N\)

) {aja))o

Nt it
el 1 eM'(N—A)
+C1B1A; > - +C B, > , (C8)
igkizie M= NN =MD TN, ki ek NOG= NN =N
|
where \;’s are the roots of the following cubic equation: APPENDIX D
N+ aN? = BN+ y=0, (C9) The coefficients A,,A,,As,B;,B,,B5,B,,C;,C5,D,,D,,

and

o= CZ_AI_BQ’ (ClOa)
BZA]C2—B]A2+32C2—A132—B3C], (ClOb)

'y=BlA2C2 +A132C2—A1B3C1. (CIOC)
The roots of the cubic equation can be obtained exactly by,
for example, using the Cardano formula. The solutions of
(@' 2)y and ((ale ') are given by

((a e 1) (1) = {[e(E, +\) = (E; +\)]

_
INENY
X({apdy+ (€= e Dy(ah)ot}, (C11)

1

(aje ) (1) =~ m{em — M Ex(an)o

ex*z
+ E_Elt - D2E2
(E;+ NN =X\)

ot

T E A N)E, +0)

g)\t

T E AV -0 ) }<<a§>>o, (C12)

NE = (E, = D)) = \(E, - D,)* + 4(D,E, — D,E,)
= 5 .

(C13)

E,, and E, in Egs. (C1)—(C5) are given by the following:

Al =2Bll — K| — Ky,
Ay=iBj,=~iBp,
A3=By, +BT1:

. .~
Bl =lC21 —lC21,

By=C|—Cp-D—k - Ky,

By=iCp,—iC,,
By=iCy —iCyy,
C,=iB,y =—iB,,,
G =B§2+ By — ki — Ky,
D,=D,, - Dl4 -k,
Dy=—1iDy,
E =Dy, +D/4 + Ky,

E2 = iDz] .
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