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We present a simple renormalization-group method of investigating ground-state properties of interacting
bosonic systems. Our method reduces the number of particles in a system, which makes numerical calculations
possible for large systems. It is conceptually simple and easy to implement, and allows investigation of
properties unavailable through mean-field approximations, such as one- and two-particle reduced density
matrices of the ground state. As an example, we model a weakly interacting one-dimensional Bose gas in a
harmonic trap. Compared to the mean-field Gross-Pitaevskii approximation, our method provides a more
accurate description of the ground-state one-particle density matrix. We have also obtained the Hall-Post lower
bounds for the ground-state energy of the gas. All results have been obtained by straightforward numerical
diagonalization of the Hamiltonian matrix.
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I. INTRODUCTION

The numerical investigation of the ground-state properties
of a multiparticle interacting bosonic system is a much
harder task than in the case of a single-particle system. The
naive approach consists in choosing a large enough finite
Hilbert space basis and the numerical diagonalization of the
resulting Hamiltonian matrix. However, the necessary basis
size grows exponentially with the number of particles, which
makes this simple method inadequate for the treatment of
large systems. To avoid this problem, many approximations
have been invented, such as the Gross-Pitaevskii �GP� mean-
field approach �1,2�, the density-matrix renormalization-
group �DMRG� method �3,4�, or, in the case of strong inter-
actions, the Thomas-Fermi approximation �1� and the Tonks-
Girardeau model �5,6�. For fermionic systems, the exact
diagonalization ab initio method �EDABI� has been imple-
mented �7–9�. One should also note the exceptional case of a
full analytical solution in one dimension by Lieb and Liniger
�10�. From this solution, two- and three-pair correlation
functions of an interacting one-dimensional �1D� Bose gas
have been derived �11–13�. In this paper we present a differ-
ent approach, which has similarities to renormalization-
group methods but is conceptually simple and easy to imple-
ment. Our method amends the problem of unmanageable
basis size by reducing the number of particles in the system
and renormalizing the Hamiltonian. We approximate the one-
and two-particle properties of the large system using the
same properties of the smaller system. In contrast to mean-
field methods, our approach allows calculation of such quan-
tities as one- or two-particle reduced density matrices �1-
RDMs and 2-RDMs� of the ground state.

In Sec. II, we describe how our method works. Section III
contains an example application of the method to the prob-

lem of a one-dimensional interacting Bose gas in a harmonic
trap. The results are summarized in Sec. IV.

II. HAMILTONIAN RENORMALIZATION AND THE
APPROXIMATION OF GROUND-STATE PROPERTIES

We present our approximation in the case of a system
with two-body interactions. It can be easily generalized to
the general case of n-body interactions.

Consider a 1D Hamiltonian describing a system of N sca-
lar �zero- spin� bosons,

ĤN = �
k=1

N �−
�2

2m

�2

�xk
2 + V1�xk�� + �

k=1

N

�
k�=1

k−1

V2�xk,xk�� , �1�

where N is the number of particles, m is the particle mass,
V1�x� is the external one-particle potential, and V2�x ,x��
=V2�x� ,x� is the two-particle interaction potential.

When investigating such a system, we are often interested
only in one-or two-particle properties of the ground state.
One way to calculate them is to obtain an approximation of
the 1-RDM or 2-RDM of the ground state.

We approximate the system by replacing it with a much
smaller system containing N��N scalar bosons. The smaller
system is governed by a renormalized version of the original

Hamiltonian ĤN, that is,

ĤN� =
N

N���
k=1

N� �−
�2

2m

�2

�xk
2 + V1�xk��

+
N − 1

N� − 1�
k=1

N�

�
k�=1

k−1

V2�xk,xk��	 . �2�
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PHYSICAL REVIEW A 75, 062113 �2007�

1050-2947/2007/75�6�/062113�6� ©2007 The American Physical Society062113-1

http://dx.doi.org/10.1103/PhysRevA.75.062113


of ĤN�, thus avoiding the insurmountable problem of diago-

nalizing the Hamiltonian of the large system, ĤN. The results
for increasing values of N� will converge to the values of the
corresponding properties of the N-particle system.

We will now justify our procedure. Let � and � be a state
of the large system and its N�-RDM, respectively. It is easy
to show that their mean energies, measured by the respective
Hamiltonians, are equal,

Tr�ĤN��� = 
��ĤN��� . �3�

Hence, when the mean energy of � becomes lower, moving

closer to the mean energy of the ground state �0 of ĤN, the
mean energy of � also becomes lower and moves closer to
the mean energy of the �pure-state� density matrix �0� of the

ground state �0� of ĤN�. Because of the variational principle,
the density matrix �0� is an approximation of the reduced
density matrix �0 of the ground state �0. The one- or two-
particle properties of �0 �i.e., of �0�, like the probability
density, are approximated by the same properties of �0� �i.e.,
of �0��. Since N��N, it is much easier to calculate numeri-
cally the ground state �0� than the ground state �0, and to
investigate the one- or two-particle properties of �0 by in-
vestigating the same properties of �0�.

The main source of error in our method is the fact that the
variational search for the ground state converges to the
N�-particle ground state �0�, not to the RDM of the
N-particle ground state, �0. This is because, for bosons, not
every N�-particle density matrix is a RDM of an N-particle
state. A better strategy would be to perform the variational
search not in the whole N�-particle Hilbert space but in the
smaller space of N�-particle density matrices which are
RDMs of N-particle states. However, the problem of identi-
fying this space, the so-called N-representability problem
�14–16�, remains unsolved. Therefore, we have to perform
our calculations for a sequence of N�. The energy of the
N�-particle ground state is a lower bound of the energy of the
investigated N-particle ground state �17�. When N� increases,
the ground state energy increases and approaches the ground
state energy of the N-particle ground state. Due to the varia-
tional principle, this means that the N�-particle ground states
approximate the N-particle ground state increasingly well, in
the sense that the one- and two-particle properties calculated
from these ground states converge to the corresponding prop-
erties of the N-particle ground state.

In the general case of n-particle interactions, the renor-
malization goes as follows: an n-particle interaction potential
term �k1=1

N �k2=1
k1−1

¯�kn=1
kn−1−1Vn�x1 , . . . ,xn�, symmetrical with re-

spect to permutations of coordinates xk, is replaced
by the term �N�N−1�¯ �N−n+1�� / �N��N�−1�¯ �N�−n

+1����k1=1
N� �k2=1

k1−1
¯�kn=1

kn−1−1Vn�x1 , . . . ,xn�. Equation �3� is true
also in this general case.

III. A SIMPLE EXAMPLE

A. Investigated system

In our example, we consider a system of N=100 scalar
bosons with a dimensionless Hamiltonian

ĤN = �
k=1

N �−
1

2

�2

�xk
2 +

1

2
xk

2� + ��
k=1

N

�
k�=1

k−1

��xk − xk�� ,

where ��x−x�� is the Dirac � function. This interaction po-
tential is often used to describe cold bosons forming a Bose-
Einstein condensate in a trap, when only s-wave scattering
occurs �1�. Our example concerns positive �, which lead to
repulsive interaction.

We have approximated numerically the 1-RDM and
2-RDM of the ground state for two values of interaction
strength �. The procedure begins with the calculation of a
finite matrix of the renormalized Hamiltonian ĤN� in a finite
basis composed of the noninteracting Hamiltonian ��=0�
eigenstates, permanents �19� of N� one-particle Hermite
functions Hk,

Hk�x� =
1

�k!2k��
Hk�x�exp�−

x2

2
� , �4�

where Hk�x� is the kth Hermite polynomial. The basis con-
tains all eigenstates with �nonrenormalized� energies lower

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

x

N’=5, L=50
GP

nonint.

FIG. 1. Comparison of the probability densities obtained from
our method �for N�=5 and L=50� and from the GP approximation,
for �=10−2 �dimensionless units�. The curves overlap perfectly, in-
dicating convergence. The probability density of the noninteracting
��=0� ground state is shown too. One can clearly see the difference
between the interacting system and the noninteracting one, with the
repulsive interaction pushing away the bosons in the trap.
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FIG. 2. Probability densities for �=10−2 calculated for increas-
ing N� �L=56,50,60,40,40, respectively� in dimensionless units.
The curves overlap perfectly, indicating convergence.
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than a cutoff energy L+N� /2, i.e., permanents of functions

Hkn
, n=1, . . . ,N�, such that �n=1

N� kn�L. Then, the ground
state is calculated with the help of an iterative Lanczos-type
numerical procedure �18�. From the ground state we obtain
the 1-RDM and the 2-RDM, with trace normalized to unity.
Using them, we can calculate any one- or two-particle prop-
erty of the ground state. For given N�, the basis cutoff L is
chosen to be large enough so that calculated properties do
not change upon further increase of L.

In the case of the 1-RDM �1, we compare the diagonal
part �1�x ,x� with the probability density calculated by mini-
mizing numerically the GP energy functional �1� of our sys-
tem,

E��� =
N

2
�

−	

	 ��*�x��−
�2

�x2 + x2���x�

+ �N − 1�����x��4	dx . �5�

The minimization is performed by expanding the wave func-
tion ��x� in the finite basis of the first 20 Hermite functions
�4�, inserting the expansion into �5�, and minimizing numeri-
cally the resulting functional of the expansion coefficients.

We present numerical results for two values of �, 10−2,
and 5
10−2. Both values are in the regime of weak interac-
tions, where the minimization of the GP energy functional
provides a good approximation of the ground state. All nu-
merical values are given in dimensionless units.

B. Ground-state energy

First, we provide the data for the ground-state energy E0.
In the noninteracting case �=0, E0 is precisely known and
equals 50. Table I lists three different approximations of E0
for two nonzero values of �. In the second and third columns
of Table I, two different upper bounds for E0 are listed: the
one obtained from the GP functional, EGP, and the variational

bound, EGauss, calculated as a minimal mean value of ĤN in
the state ��, a product of N Gaussian one-particle wave
functions with a common variational parameter �,

���x1, . . . ,xN� = �
k=1

N
1

�4 2��2
exp�−

xk
2

4�2� ,

i.e., EGauss=min��R
���ĤN����. Relatively small differ-
ences between EGP and EGauss indicate that the ground states

are close to Gaussian. As expected, the GP approximation
provides a better estimation of the ground-state energy than
the Gaussian ansatz. Our method provides an estimation of
the true ground-state energy E0 as the so-called Hall-Post
�17� lower bound EHP. Values of EHP are listed in the fourth
column of Table I. They were calculated by nonlinear least
squares fitting of the ground-state energy for fixed N� �in our
calculations, we have used results for N�=8, so as to make
EHP as high as possible� as a function of L to a power law

E�L� = EHP + BLC, C � 0,

and taking the L→	 limit, obtaining EHP as the answer. It
has been necessary to follow this procedure, since raw nu-
merical results vary with L, even for L large enough so that
the 1-RDM does not change. The relative asymptotic stan-
dard error of the fitting procedure is below 0.01% for both
values of �.

The bounds on E0 �EHP and EGP� presented above are
quite close. The relative uncertainty with which E0 is deter-

TABLE I. Bounds for the ground-state energy E0 �dimensionless
units�. The first two, EGP and EGauss, are the upper bounds calcu-
lated from the GP approximation and the variational method with a
Gaussian wave function, respectively. The last one, EHP, is the Hall-
Post lower bound, which is provided by our method as an estimate
of the true ground-state energy.

� EGP EGauss EHP

10−2 68.8 68.9 68.2

5
10−2 130.9 132.3 121.4
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FIG. 3. Probability densities for �=10−2 calculated for increas-
ing N� �L=56,50,60,40,40, respectively�, shown in the range x
� �−0.25,0.25� �dimensionless units�. The plot has been magnified
in order to show the details of the convergence.
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FIG. 4. Contour plot of �1�x ,y� for �=10−2, calculated for N�
=5 and L=50 �dimensionless units�. Isolines display a radial
symmetry.
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mined by them is below 1% for �=10−2 and around 8% for
�=5
10−2. �We have calculated the relative uncertainty as
the ratio of the difference between the upper and the lower
bound to the lower bound.� The fact that it is small supports
the applicability of our approximation, as it means that the
true ground-state energy is also close to the obtained lower
bound. On the other hand, if the reduced density matrix of
the N�-particle ground state �0� is to be a good approxima-
tion of the reduced density matrix of the true ground state,
the mean energy of �0�—i.e., the Hall-Post lower bound—
must be close to the true ground-state energy of the system.
Our results satisfy this condition.

C. Density matrices

For �=10−2, we obtain identical one-particle probability
densities from our method and from the GP approximation,
as shown on Fig. 1. The accuracy of our approximation is

confirmed by Fig. 2, which shows that different values of N�
and L yield identical probability densities. A magnified sec-
tion of this plot is shown in Fig. 3. We will use the conver-
gence with increasing N� as a benchmark of the accuracy of
our method, treating our numerical results as correct if they
stabilize quickly. For each N�, we take the results for L large
enough so that they do not change upon further increase of L.
A similar convergence occurs for the antidiagonal part of the
1-RDM, �1�x ,−x�.

The GP approximation, however, cannot provide us with
knowledge about the nondiagonal parts of the 1-RDM. The
merit of our method is that we can calculate �1�x ,y� for any
�x ,y�. For �=10−2, we obtain numerically

�1�x,y� � �1��x2 + y2� , �6�

which is clearly shown by the contour plot of �1�x ,y�
in Fig. 4.

The convergence of the diagonal part of the 1-RDM,
�1�x ,x� and of the diagonal part of the 2-RDM, �2�x ,x ,x ,x�
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FIG. 5. On the left plot, the probability density �1�x ,x� for �
=10−2 is shown for increasing N� �L=56,50,60, respectively� in
dimensionless units. The curves converge quickly. On the right plot,
the diagonal part of the 2-RDM, �2�x ,x ,x ,x�, is plotted �for the
same �� for increasing N� �L=56,50,60,40,40, respectively�. Even
for N�=7 or 8, the curves do not converge.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

x

N’=4
N’=5
N’=6
N’=7
N’=8

FIG. 6. Convergence of the probability densities �1�x ,x� for �
=5
10−2 and increasing values of N� �L=55,50,60,40,40, re-
spectively� in dimensionless units. The curves overlap, indicating
convergence.

0.36

0.361

0.362

0.363

0.364

0.365

0.366

0.367

0.368

0.369

-0.2 -0.1 0 0.1 0.2

x

N’=4
N’=5
N’=6
N’=7
N’=8

FIG. 7. Probability densities for �=5
10−2 calculated for in-
creasing N� �L=55,50,60,40,40, respectively�, shown in the range
x� �−0.25,0.25� �dimensionless units�. The plot has been magnified
in order to show the details of the convergence.
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FIG. 8. Probability density for �=5
10−2, as calculated with
our method �N�=8 and L=40� and from the minimization of the GP
functional �dimensionless units�. A slight difference between the
two curves can be seen in the middle of the plot, indicating that
interactions are strong enough so that the GP approximation results
differ from ours.
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�the probability of finding both particles in the same position
x�, is compared in Fig. 5. It is clear that the convergence,
with increasing N�, of the second function is much slower.
The consequence of this is that using only such simple di-
agonalization techiques as we did, which limit us to N�
�10, we cannot estimate the 2-RDM, even for � as small as
10−2.

For �=5
10−2, we obtain the convergence of the prob-
ability densities as easily, as for �=10−2 �see Fig. 6�, al-
though it is slightly slower �not visible on the plot�. A mag-
nified section of this plot is shown in Fig. 7. A similar
convergence occurs for the antidiagonal part of the 1-RDM,
�1�x ,−x�. However, the probability density differs slightly
from the one obtained from the GP functional, as seen in Fig.
8. Contrary to the case of �=10−2, the contour plot of the
1-RDM for �=5
10−2 is no longer radially symmetric, as
can be seen on Fig. 9. It differs noticeably from the one
�shown in Fig. 10� we would obtain from the mean-field

method, using the formula

�1�x,y� � �GP�x��GP�y� ,

where �GP is the real wave function that minimizes the GP
energy functional. This difference is the most striking result
in this section, and indicates that our method gives more
accurate results than mean-field approximations.

For an even higher value of �, 10−1, we did not obtain fast
enough convergence of either �1�x ,x� �see Fig. 11� or, espe-
cially, �1�x ,−x� �see Fig. 12�. This prevented us from inves-
tigating the full 1-RDM for this interaction strength. We con-
clude that �=10−1 is outside the range of our approximation
in its present form. To reach this interaction strength, we
would have to calculate the density matrices of the
N�-particle ground state for N� higher than those treatable
with the simple numerical diagonalization algorithm used by
us.

IV. SUMMARY

We have presented a method of investigating one- and
two-particle reduced density matrices of the ground state of
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FIG. 9. Contour plot of �1�x ,y� for �=5
10−2, calculated for
N�=8 and L=40 �dimensionless units�. Isolines do not display ra-
dial symmetry, unlike for �=10−2.
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FIG. 10. Contour plot of �1�x ,y� calculated for �=5
10−2 us-
ing the GP approximation �dimensionless units�. It is clearly visible
that this plot is more symmetrical than the one in Fig. 9.
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FIG. 11. Left panel: Probability density �1�x ,x� for �=10−2 for
increasing N� �L=56,50,60, respectively� in dimensionless units.
Right panel: Same quantity for �=10−1 �L=55,50,60, respec-
tively�. The convergence for the higher value of � is visibly slower.
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FIG. 12. Antidiagonal part of 1-RDM for �=10−1 for increasing
N� �L=55,50,60,39,40, respectively� in dimensionless units. Con-
vergence is too slow for the results to be meaningful.
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an interacting system with a large number of bosonic par-
ticles. The method approximates it with a smaller, renormal-
ized system. It is conceptually simple and easy to implement
numerically. The results it provides would be, for high
enough interaction strengths �e.g., �=5
10−2 in our ex-
ample�, impossible to calculate using mean-field methods,
such as the GP approximation.

We have provided an example application of our method
to the problem of a one-dimensional interacting Bose gas in
a harmonic trap, obtaining accurate approximations of a
quantity unobtainable from mean-field methods, namely, the
full one-particle density matrix. The results are precise and
accurately describe the large system, which is proven by the
fact the the results converge quickly with increasing N�. The
GP approximation does not give as accurate a picture of the
ground-state one-particle density matrix as our approach.
Additionally, the Hall-Post lower bounds for the ground-state

energy have been calculated. The relatively small difference
between them and the upper bounds �GP and Gaussian� also
supports the applicability of our method.

Even using simple numerical procedures, our method
gives access to properties that were previously not as accu-
rately described by mean-field methods. To investigate the
two-particle density matrix, or to perform simulations of sys-
tems with higher interaction strengths, would require the use
of more refined approaches to the calculation of the ground
state of the renormalized Hamiltonian, for example the
DMRG �3,4� or the EDABI �7–9� method.
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