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We study coherent superpositions of clockwise and anticlockwise rotating intermediate complexes with
overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents
an analog of a famous double-slit experiment. The time for disappearance of the interference fringes is
estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the
coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D2 chemical reac-
tion. Thus we demonstrate the quantum-classical transition in temporal behavior of highly excited quantum
many-body systems in the absence of external noise and coupling to an environment.
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The famous double-slit experiment �1� provides the most
vivid demonstration of quantum coherent superpositions.
These manifest themselves in interference fringes of the in-
tensity due to the interference between the matter waves
emerging from different slits. The double-slit experiments
have successfully demonstrated the wave nature of, e.g.,
electrons, neutrons, atoms, small molecules, noble gas clus-
ters, and fullerenes �1�. A process of converting coherent
superpositions into a classical sum of intensities manifests
itself in the disappearance of the interference fringes. This
fundamental physical process of the emergence of classical
dynamics from the quantum-mechanical description is re-
ferred to as the quantum-classical transition �QCT�.

There are two possible roots to describe QCT. The first
one is decoherence �2� due to the external noise or coupling
to the environment. This mechanism of QCT results from a
nonunitary evolution of the system. The QCT due to the
decoherence for the double-slit experiment with fullerenes
has been demonstrated �3�. On the contrary, dynamical deco-
herence �4� describes the QCT without coupling to environ-
ment and only due to the intrinsic unitary evolution of a pure
quantum state �5�. This process, unlike decoherence �2�, de-
scribes the QCT on a finite time scale shorter than Heisen-
berg time, which diverges in the macroscopic limit �4�.

In this paper we address the problem of quantum-classical
transition in the absence of any coupling to the environment,
revealing an effect analogous to dynamical decoherence
�4,5�. We focus on the QCT in a temporary quantum evolu-
tion. This problem is motivated by the work �5�, where time-
integration appeared to be a precondition for the quantum-
classical transition. However, without disappearance of the
interference fringes at a fixed moment of time the QCT is
clearly incomplete. This raises the question whether dynami-
cal decoherence �4� can lead to a QCT in a way that deco-
herence does �2�.

Instead of a single-particle problem �5�, we consider co-
herent superpositions of clockwise and anticlockwise rotat-

ing many-body intermediate complexes �ICs� with strongly
overlapping resonances. Such ICs can be created in atomic
cluster collisions, bimolecular chemical reactions, and
heavy-ion collisions. The physical picture of rotational wave
packets and their interference, originally revealed for heavy-
ion collisions �6–8�, has been strongly supported by numeri-
cal calculations for, e.g., the H+D2 �9�, F+HD �10�, and
He+H2

+ �11� state-to-state chemical reactions. The many-
body aspect is of primary importance for the QCT since the
macroscopic world consists of complex systems. We demon-
strate here that isolated quantum systems can undergo a QCT
and we obtain the characteristic time for such a transition.

We consider the spin-less collision partners in the en-
trance �a� and exit �b� channels. The energy fluctuating
S-matrix elements are taken in the pole form �12�. This is a
good approximation in the regime of overlapping resonances
of the IC, � /D�1, where � is the total width of resonance
levels and D is average level spacing of the IC, provided
nch�� /D with nch being a number of open channels �12�.
The high excitation energy of the IC, the smallness of the
average level spacing of the IC, the strong overlap of the
resonance levels, and the condition nch�1 imply that we are
deeply in the semiclassical region. In this regime we expect
the quantum evolution to reveal fingerprints of classical dy-
namics of the classical counterpart of the system. We shall
see that this is indeed the case.

Under the above stated conditions the time power spec-
trum for the time-delayed collision has the form ��t ,��
=H�t�exp�−t / tlt��P�t ,���2, where

P�t,�� =
1

N1/2�
J

�2J + 1�W�J�1/2 exp�i�J�PJ���

��
	

c̃	
J exp�− iE	

J t/
� . �1�

Here, t is the time, � is the scattering angle, J is the total spin
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of the IC, and H�t� is the Heaviside step function. The de-
flection angle � is given by the first J derivative of a sum of
the potential phase shifts in the entrance and exit channels,
and the PJ��� are Legendre polynomials. In the ��t ,��, the
factor exp�−t / tlt� accounts for the finite lifetime, tlt=
 /�, of
the IC. Therefore its energy levels have a finite width, 
 / tlt,
corresponding to the continuous spectrum. On the other
hand, even though the resonance levels are strongly overlap-
ping, P�t ,��= �P�t ,���2 describes the time evolution in dis-
crete spectrum. Note that while P�t ,�� is the probability,
except for the omitted factor exp�−t / tlt�, for the IC to decay
into an angle � at the moment t, it also describes the time
evolution of the angular orientation of the IC �13�. In Eq. �1�,
c̃	

J =c	
J / ��c	

J �2�1/2, c	
J =�	

Ja�	
Jb−�	

Ja�	
Jb �c	

J =0�, �	
Ja�b� and

��
J�a�b� are real partial width amplitudes, and E	

J , E�
J� are the

resonance energies. The overbars stand for averaging over
resonance states. The number of resonance states included in
the sum in Eq. �1� is N=I /D�1, where the energy interval
I should be sufficiently long to resolve the interference
fringes �14�. In Eq. �1�, W�J�= ��
SJ�E��2� is the average par-
tial reaction probability taken in the Gaussian form,
exp�−�J− I�2 /d2�, where I is the average total spin of the IC
and d is the J-window width.

The intensity �P�t ,���2 includes the sums
1
N�	�c̃	

J c̃�
J� exp�i�E�

J�−E	
J �t /
�. We calculate these sums by

performing first a partial �	 ,��-summation with �E	
J −E�

J��
fixed within an uncertainty of about a few units of D. Then,
we get instead of the product c̃	

J c̃�
J� its average over reso-

nances, c̃	
J c̃�

J�. The latter is given �6� by

c̃	
J c̃�

J� =
�1/��D��J − J��

�E	
J − E�

J� − 
��J − J���2 + �2�J − J��2
, �2�

where ��D is the phase relaxation width and � is the an-
gular velocity of the coherent rotation of the highly excited
IC. The spin diagonal contribution is evaluated by perform-
ing first a partial �	 ,	��-summation with fixed �	−	��
value. This yields c̃	

J c̃	�
J =
		�. The above approximation is

justified if the time for formation of the many-body eigen-
states of the effective Hamiltonian of the IC originated from
the intramolecular energy relaxation due to, e.g., a strong
anharmonic coupling between the normal vibrational modes,
is faster than a characteristic rotation time of the IC. The
diagonal approximation, for the states with the same
J-values, is the standard assumption in the theory of quantum
chaotic scattering �15�. The employed approximations imply

that instead of the products c̃	
J c̃�

J� we can use their average
over resonances. This substitution does not violate the time
quasiperiodicity of �P�t ,���2, which is characteristic of a uni-
tary evolution, since it is still given by a discrete superposi-
tion of a finite number of Fourier components with discrete

frequencies �E	
J −E�

J�� /
.
We first calculate the sums

1

N
�
	�

c̃	
J c̃�

J� exp�i�E�
J� − E	

J �t/
� �3�

in the macroscopic limit 
→0. Since D�
 f, where f is a
number of degrees of freedom, the macroscopic limit corre-

sponds to a continuous spectrum approximation. Changing
from the summation to integration in Eq. �3� we obtain

exp�− i�t�J − J���exp�− �t�J − J��/
� . �4�

Therefore the continuous spectrum approximation results in
an irreversible decay of the spin off-diagonal correlations
implying a nonunitary nonperiodic time evolution. In order
to preserve a unitary time-periodic evolution we must evalu-
ate the sums �3� for a discrete spectrum. We do so using first
the equidistant spectrum approximation. Such an approxima-
tion is justified for t�2�
 /D, when the spectrum is not
resolved and thus the detailed spectral properties do not af-
fect the time behavior. Then, for I�
� ,�, the original sums
�3� are reduced to

�1/��D��J − J�� �
k=−�

�
exp�− ikDt/
�

�kD − 
��J − J���2 + �2�J − J��2

with k being integers. We calculate these sums using the
Poisson summation formula and obtain

�
M=−�

�

exp�− 2���/D��J − J���M − Dt/2�
��

�exp�i2��
�/D��J − J���M − Dt/2�
�� , �5�

where M are integers. The above expression is periodic in
time, with the period 2�
 /D, resulting in a periodicity of
�P�t ,���2 with this same period. However, we are interested
in the time evolution of the IC with strongly overlapping
resonances corresponding to relatively short time intervals
0� t�2�
 /D. Then, the above sums are dominated by the
M =0 term since, for ��D, the M �0 terms are exponen-
tially small and can be neglected. Then, the M =0 term
equals the expression �4� and we observe that, for t
��
 /D, the continuous and equidistant spectrum approxi-
mations yield identical results. Yet, while the continuous
spectrum approximation violates a unitary periodic in time
evolution, the equidistant spectrum approximation obviously
leads to a unitary time-periodic evolution. We have also cal-

culated the sums �3� numerically with E	
J and E�

J� discrete
spectra being uncorrelated for J�J� and each having the
universal spectral fluctuations of random matrix theory
�Wigner-Dyson statistics �16��. We have found that, for D
�� and t�2�
 /D, these sums are accurately given by the
expression �4�, i.e., by the M =0 term in Eq. �5�. Again, this
is because for t�2�
 /D the spectrum is not resolved and
the sums �3� are insensitive to the detailed spectral proper-
ties. Altogether, for t�2�
 /D, we have

P�t,�� � �
JJ�

�2J + 1��2J� + 1��W�J�W�J���1/2

� PJ���PJ����exp�i�� − �t��J − J�� − ��J − J��t/
� .

�6�

Obviously, the above result can also be obtained within the
continuous spectrum approximation which is valid only for
t�
 /D when the spectrum is not resolved. Clearly the ap-
pearance of the decaying factor exp�−��J−J��t /
� for t
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�
 /D does not violate the unitary character of evolution of
the IC. The problem of experimental determination of P�t ,��
has been discussed in �14,17�.

We employ the near-side far-side decomposition �11� of
the collision amplitude, P�t ,��=P�−��t ,��+P�+��t ,��, so that
P�t ,��� �P�+��t ,���2+ �P�−��t ,���2+2 Re�P�+��t ,��P�−��t ,��*�.
The amplitudes P�±��t ,�� have the form of Eq. �1� but with
QJ

�±����= �1/2��PJ���� �2i /��QJ���� instead of PJ���. Here
QJ��� are Legendre functions of the second kind of degree J
and the traveling Legendre functions have the semiclassical
asymptotics QJ

�±����	�1/2�J sin ��1/2 exp
±i��J+1/2��
−� /4��.

It is expected that the quantum superpositions originate
from the interference between the P�−��t ,�� and P�+��t ,�� in a
close vicinity of �=0,�, where the wave packets overlap.
However, for these angle ranges, the asymptotic form of
QJ

�±���� is not valid. Yet, tq−cl may be conjectured from the
time dependence of the near-side and far-side intensities,
�P�±��t ,���2, for the intermediate angle interval, where the
asymptotic form of QJ

�±���� is an accurate approximation.
We calculate �P�±��t ,���2 using the same approximations

as those employed for the calculation of P�t ,��. The
�P�±��t ,���2 have the form of Eq. �6� but with the asymtotics
of QJ

�±���� instead of PJ���. Calculations analogous to those
of �6� yield that, for t�
 /d�, �P�±��t ,���2 describe Gaussian
rotational wave packets having a constant width �angular dis-
persion� �1/d. Thus for t�
 /d�, there is no spreading of
the wave packets and the memory about their width at t=0
remains. This is characteristic of purely quantum integrable-
like evolution while the classical counterpart of the many-
body IC is clearly chaotic. On the contrary, for t�
 /d�, the
width of the wave packets becomes much greater than that at
t=0 and the memory about the angular dispersion at t=0 is
lost. In addition, for t�
 /d� and �t /
�1, �P�±��t ,���2 ap-
proach a uniform distribution exponentially fast �6�,
�P�±��t ,���2�exp�2 cos��±�−�t� / exp��t /
��. We conjec-
ture that this long-time behavior may be considered as a
fingerprint of chaotic dynamics of the classical counterpart
of the IC. Since the crossover from the integrablelike to the
chaoticlike dynamics of the quantum evolution occurs be-
tween t1�
 /�d and t2�
 /�d, the characteristic time for the
QCT can be evaluated as tq−cl	
 /�d; but then another fea-
ture of the QCT should be the disappearance of the interfer-
ence between P�+��t ,�� and P�−��t ,��. This transformation of
the quantum superposition into an incoherent sum of the in-
tensities should also happen at tq−cl	
 /�d.

To test this we use Eq. �6� to describe rotational wave
packets and their interference revealed �9� for the chemical
reaction H+D2�vi=0, ji=0�→HD�v f =3, j f =0�+D, where
vi , ji and v f , j f are vibrational and rotational quantum num-
bers for the initial and final states, respectively. In this reac-
tion, the wave packets likely originate from interference of
the overlapping resonances of the IC �18�. From the numeri-
cal calculations �9� we deduce �=135° and 
�=0.045 eV.
It was found that the main contribution to the time-delayed
reaction mechanism comes from the total angular momenta
J=15–20. Accordingly, we choose I=18. To reproduce the
width of the wave packets, �25°, at an early stage, when

���, we take d=2. To account for the strong interference
contrast in the forward direction we choose �=0.003 eV.

In Fig. 1 we present P�t ,�� / Pdiag���, where Pdiag��� is a
time-independent quantity given by the diagonal J=J� terms
in Eq. �6�. The reason for this scaling is that amplitudes of
individual wave packets are strongly and abruptly enhanced
in the vicinity of �=0,� due to the azimuthal symmetry of
the problem �8�. However, Pdiag��� has the similar enhance-
ment for �	0,�, so that the quantity P�t ,�� / Pdiag��� per-
mits us to probe the interference between the wave packets
whose amplitudes depend smoothly on �. Another advantage
of this scaling is that Pdiag��� corresponds to the very quick
phase-relaxation �
 /�→0� yielding the universal limit of the
theory of quantum chaotic scattering �15�. In this limit, wave
packets are uniformly spread and their interference is com-
pletely destroyed due to the absence of the spin off-diagonal
contributions. Thus a deviation of P�t ,�� / Pdiag��� from a
constant unity is a quantitative measure of the deviation of
the collision process from the universal limit of the quantum
chaotic scattering theory.

In Fig. 1 we present P�t ,�� / Pdiag��� for three moments of
time. One can see that the wave packets, initially oriented
along �=�, 2�−�, rotate towards each other. Interference
fringes are produced when the wave packets start to overlap.

FIG. 1. �Color online� Time power spectra related to the H
+D2�vi=0, ji=0�→HD�v f =3, j f =0�+D schemical reaction for dif-
ferent moments of time. Solid lines correspond to d=2 and �
=0.003 eV, dashed lines d=5 and �=0.003 eV, and dashed-dotted
lines d=10 and �=0.003 eV.
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For d=2, �=0.003 eV we have tq−cl�
 /�d=220 fs. This
time is longer by about a factor of 6.5 than the longest time
3T /8 in Fig. 1, where T=2� /�=90 fs. We observe a strong
contrast of the interference fringes. Now we decrease tq−cl by
taking d=5 and keeping � the same. Then, for t=3T /8
�0.38tq−cl, the interference fringes are suppressed but still
visible in the bottom panel of Fig. 1. We further decrease
tq−cl by taking d=10 with the value of � unchanged. Then,
for t=3T /8�0.77tq−cl, the interference fringes practically
disappear manifesting a transformation of the coherent su-
perpositions into the incoherent mixture of the intensities.
Thus we have confirmed the validity of our estimate for the
tq−cl. This estimate has also been confirmed by calculations
where we have increased � keeping d=2 fixed.

To test that the interference fringes do originate from the
interference between the P�+��t ,�� and P�−��t ,�� we calculate
P�+��t ,��+ P�−��t ,��, where P�±��t ,��= �P�±��t ,���2. We em-
ploy the same approximations used in calculating P�t ,��, Eq.
�6�. We obtain P�±��t ,�� having the same form as Eq. �6� but
with QJ

�±����Q
J�
�±����* instead of PJ���PJ����. In Fig. 2 we

present �P�+��t ,��+ P�−��t ,��� / �Pdiag
�+� �t ,��+ Pdiag

�−� �t ,��� for the
same values of parameters as used in Fig. 1. The time inde-
pendent quantity �Pdiag

�+� �t ,��+ Pdiag
�−� �t ,��� contains the diago-

nal J=J� terms only. The reason for this scaling is the same
as that employed in Fig. 1. In addition, QJ

�±���� have a loga-
rithmic divergence at �=0,� resulting in an unphysical in-
crease of P�±��t ,�� in a close vicinity of �=0,�. The presen-
tation in Fig. 2 allows one to scale out these undesirable
features enabling a meaningful comparison with Fig. 1. We
see that the interference fringes in Fig. 1 do originate from
the interference between the P�+��t ,�� and P�−��t ,�� while
Fig. 2 shows a classical sum of the near-side and far-side
intensities.

Note that the linear size of the chaotic billiard �5� is only
about twice as big as the spatial width of the wave packet at
t=0. Therefore, at any moment of time, the width of the
wave packet cannot exceed its width at t=0 more than by
about a factor of 2. From the obtained criterion the interfer-
ence fringes wash out when the width of the spreading wave
packets begins to exceed its initial value at t=0 by a factor
�2. It could be of interest to check if the interference
fringes, at fixed moments of time, for chaotic billiard would
disappear upon increasing the size of the billiard by a factor
of 2 to 3 keeping the width of the wave packet at t=0 the
same as in �5�.

Our approach does not intend to substitute rigorous nu-
merical calculations �9�. Yet, it does show that the compli-
cated many-body collision problem can be accurately repre-
sented by a much simpler physical picture of a weakly
damped ���
�� quantum rotator. This mapping has en-
abled us to address a problem of the quantum-classical tran-
sition in complex collisions and evaluate a characteristic
time for such a transition. Remarkably, this simple picture of
a weakly damped coherent rotation has also emerged from
the numerical calculations for the F+HD �10� and He+H2

+

�11� chemical reactions. Originally this same physical picture
of stable rotational wave packets was revealed for heavy-ion
collisions �7,19�. Interestingly, this is in spite of the fact that
a characteristic rotation time of the IC formed in bimolecular
reactions is 	8 orders of magnitude longer than that for the
IC formed in heavy-ion collisions.

The obtained criterion yields tq−cl� tspr /d, where tspr
=
 /� is a characteristic time for the spread of a wave packet
�6�. For classical macroscopic systems the wave packet
spreading may be associated with the chaotic dynamics and
tspr could be macroscopically large. However, since d is in 

units and, in the macroscopic limit, 
 vanishes, then tq−cl
�
→0. This provides an alternative to the explanation in �2�
of the practically instantaneous collapse of coherent superpo-
sitions into a classical sum of intensities for macroscopic
systems. Unlike decoherence �2�, in our approach “the quan-
tum origins of the classical” are obtained in the absence of
external noise or coupling to an environment and only due to
the unitary evolution of a pure quantum state.

L.B. and S.Y.K. acknowledge financial support from
Projects No. IN-101603 �DGAPA-UNAM� and No. 43375
�CONACyT�.

FIG. 2. �Color online� Classical limits for the time power spec-
tra presented in Fig. 1 �see text�.
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