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The question of the existence of a nonzero minimum dipole moment D0 that can sustain an electron bound
state for an electric dipole in two dimensions is examined both classically and quantum mechanically. The
results suggest that in the latter case, D0�0.209 compared to the Fermi-Teller value 0.904 for three dimensions
�in atomic units�.
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I. INTRODUCTION

The question of the existence of a bound state for an
electron in the field of an electric dipole, in three dimensions,
has an interesting history. In 1955, G. Handler �1� pointed
out that the electron bound states for a finite dipole, consist-
ing of equal and opposite point charges ±e separated by a
distance R and thus having dipole moment D=eR could be
treated by separating the Schrödinger equation in prolate
spheroidal coordinates as suggested by Jaffé and Baber and
Hassé �2,3�. For the units used here, �=1, e2=2, me=1, the
unit dipole moment is 2.52 debye, the energy unit is the Ry-
dberg, and distances are measured in Bohr radii. Handler
estimated the binding energy E for D=0.424,0.707,0.990
and pointed out that E depends on D and not separately on R.
Although he did not indicate this explicitly, the consequence
is that E�D� is the same for a finite and a point dipole. Stimu-
lated by this work and sensing its usefulness for studying
defects in solids, a few years later Wallis, Herman, and Mil-
nes �4� carried out a much more extensive numerical analysis
for the ground state and several excited states with 1.188
�D�42.426. At the lower limit their procedure became un-
stable and they raised, but left open, the question as to
whether there is a minimum value D0�0 which can support
a bound state.

In the 1960’s there was renewed interest in explaining the
large electron cross sections observed in Townsend scattering
�5� for molecules possessing large dipole moments �e.g.,
DH2O=0.990�, but not for less polar molecules �e.g., DH2S

=0.566�. This led back to the question raised in �4� and re-
sulted in an explosion of papers treating the problem �most
of these are listed in �6��. The conclusion is that �7� D0
=0.904 128.

In 1968, after a seminar by one of the authors of �7�, a
participant mentioned that in 1950 Wightman �8� had quoted
a paper by Fermi and Teller �9� on �-meson scattering con-
taining the line “… when the mesotron approaches the �hy-
drogen� nucleus to a distance of 0.639 Bohr radii, the bind-
ing energy of the electron becomes zero.” This paper
contains no indication of how this value was obtained. How-
ever, we can infer from �8� that the question was presented to
Wightman as a thesis project by John Wheeler; the derivation
is summarized in �8�. Historical research by Turner �6�
showed that Fermi’s notebooks contain several pages de-

voted to the calculation, but that he stopped short of arriving
at the critical value. Turner also reports that in a private
communication Teller told him that he probably worked out
the value. This is likely the case, since Teller had much ear-
lier carried out a very similar calculation for the ground state
of the hydrogen molecular ion �10�.

In this paper we present an investigation of D0 in two
dimensions, which from phase space considerations, one ex-
pects to be less than its value in three dimensions. Since
semiconductor quantum wells can be engineered to contain a
low density two-dimensional electron gas, the trapping of
electrons in a dipole potential set up by a distribution of
ionized donors and acceptors could have profound effects on
the properties of these systems. It is surprising that this el-
ementary problem has not been examined previously.

Our note is organized as follows: In Sec. II the problem is
examined by classical mechanics and we conclude that D0
=0, i.e., any dipole can support a bound state. In Sec. III a
simple quantum mechanical variational estimate is made to
obtain an upper bound for D0. In Sec. IV the Schrödinger
equation is set up and separated in elliptic cylindrical coor-
dinates. In Sec. V numerical results are presented for the
ground state and we conclude with a brief discussion.

II. CLASSICAL CALCULATION

In the �x ,y� plane let charge e be located at �−R /2 ,0� and
−e be located at �R /2 ,0� and let r1 be the distance of an
electron at �x ,y� from the first and r2 be its distance from the
second charge. In confocal elliptic coordinates defined by �
= �r1+r2� /R, �= �r1−r2� /R,

x =
R

2
�� and y = ±

1

2
R���2 − 1��1 − �2� . �1�

Therefore, the kinetic energy is, in atomic units,

K =
1

4
�ẋ2 + ẏ2� =

R2

16
��2 − �2�� �̇2

�2 − 1
+

�̇2

1 − �2� , �2�

and the potential energy is

V = 2� 1

r2
−

1

r1
	 =

8�

R��2 − �2�
. �3�

The canonical momenta are
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p1 =
�K

��̇
=

�W

��
=

R2

8
��2 − �2�

�̇

�2 − 1
, �4�

p2 =
�K

��̇
=

�W

��
=

R2

8
��2 − �2�

�̇

1 − �2 , �5�

where W�� ,�� is the transformation function. The Hamilton-
Jacobi equation

��2 − 1�� �W

��
	2

+ p2�2 + �1 − �2�� �W

��
	2

− p2�2 + 2R� = 0,

�6�

with p2=−1 � 4R2E, where E�0 is the �bound state� energy,
is clearly separable by W�� ,��=W1���+W2���. Writing the
separation constant A2, we have

��2 − 1�p1
2 + p2�2 − A2 = 0, �7�

or

p1 = ±�A2 − p2�2

�2 − 1
. �8�

Since the momentum must be real and �	1, we have 1��
�A / p. Thus for all E�0, the � coordinate is bounded,
which means that no matter how small R is, there is a
bounded orbit. Thus classically D0=0.

III. QUANTUM MECHANICAL CALCULATION:
VARIATIONAL APPROXIMATION

Let the polar coordinates of the electron be r and 
. In
atomic units the electron Hamiltonian is

H = − �r
2 −

1

r
�r −

1

r2�

2 −

2
��R/2�2 + r2 + rR cos 


+
2

��R/2�2 + r2 − rR cos 

. �9�

A simple, but reasonable, trial wave function is

��r,
� = e−ar�1 − br cos 
� , �10�

with variational parameters a ,b�0. One obtains for the en-
ergy functional

E�R,a,b� =
a2

2��a2 + 3b2/4��a2 +
3�2

2
b2 + 32a2bF�R,a�� ,

�11�

where, in terms of the complete elliptic integrals K and E,

F�a,R� = R2�

0

1

ue−aRu�E�u� − K�u��du

+ 

1



u2e−aRu�E�1/u� − K�1/u��du� . �12�

By exploring this numerically we found that on varying a the

minimum value for small fixed R occurs for b near 0.5 and
by plotting

E�R,a,1/2� =
a2

2��a2 + 3/16��a2 +
3�2

8
+ 16a2F�R,a��

�13�

against a for fixed R, we obtained the values

a = 1.5, b = 1/2, and Rmin = 0.35, �14�

where Rmin is the separation at which the energy minimum
vanishes. Hence we obtain the variational upper bound D0
�0.495. As we shall see, this is too large by about a factor of
2, but does confirm that it is less than the three-dimensional
value.

IV. PLANAR TWO CENTER SCHRöDINGER EQUATION

Again, let charges Z1e and Z2e be located at x=−R /2 and
x=R /2, respectively. The Hamiltonian for an electron is

H = − �2 − 2�Z1

r1
+

Z2

r2
	 . �15�

The electronic energy is E+2Z1Z2 /R. In the confocal elliptic
coordinates 1��= �r1+r2� /R�, −1��= �r1−r2� /R�1, z
=0, the Laplacian is

�2 =
4

R2��2 − �2����2 − 1
�

��
���2 − 1

�

��
	

+ �1 − �2 �

��
��1 − �2 �

��
	� . �16�

One finds that the Schrödinger equation separates, with
��� ,��=X���S���, into

��2 − 1���2 − 1X��� + �A − p2�2 + R�Z1 + Z2���X��� = 0,

�17�

and

�1 − �2��1 − �2S��� − �A − p2�2 + R�Z1 − Z2���S��� = 0.

�18�

We have introduced a separation constant A and the energy
parameter p2=−R2E /4. To specify boundary conditions, we
note that �=1, �=−1,1 are regular singular points, at which
the respective functions must be finite, and �= is an irregu-
lar singular point at which the wave function must vanish.
The initial conditions are, from a series analysis, X�1�=1,
X��1�=−�A− p2+R�Z1+Z2��, S�−1�=1, and S��−1�=A− p2

−R�Z1−Z2�.
Recently, Bondar, Hnatich, and Lazur �11� have carried

out the separation of the Schrödinger equation for the two-
Coulomb centers problem in d	2 spatial dimensions in hy-
perspheroidal coordinates. For small intercenter separation in
d=2 they find it convenient to introduce a new set of func-
tions, the angular Coulomb elliptic functions, which are
closely related to the Mathieu functions, for which they
present a number of formal expansions. For the case they
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study, the hydrogen molecular ion, they find that these are
useful for obtaining the excited states �n	5�, but that for the
ground state, as we suggest here, numerical integration is
more efficient.

To illustrate our numerical procedure, we first examine
the two-dimensional hydrogen molecular ion Z1=Z2=1 for
which the ground state has been studied by Zhu and Xiong
�12�. This gives us the equations

�1 − �2�S� − �S� − �A − p2�2�S��� = 0, �19a�

��2 − 1�X� + �X� + �A − p2�2 + 2R��X��� = 0. �19b�

Note that if one introduces new variables by �=cosh u, �
=cos t one obtains a pair of Mathieu equations

S��t� − �A − p2 cos2 t�S�t� = 0, �20a�

X��u� + �2R cosh u + A − p2 cosh2 u�X�u� = 0. �20b�

Although we make no use of them here, in principle the
system �20� can be solved in terms of the 2�-periodic
Mathieu functions ce0,1, where A�p2� is to be determined as a
characteristic constant following the procedure outlined in
�13�, but this is difficult to deal with numerically and it is
simpler to proceed as follows: Choose p2 and integrate Eq.
�19a� from �=−t0 varying A to obtain S��0�=0 �for the
ground state S is even� with no intervening nodes. Here,
since �=−1 is a singular point, we start from t0=−1+10−8

computing the values at this point from the first two terms of
the series expansion. This gives us a table of pairs �p2 ,A�.
Next introduce each pair into Eq. �19� and integrate numeri-
cally from �=1+10−8 while varying R to obtain X�a�=0 for
a sufficiently large value of a�0 to ensure numerical stabil-
ity. Although A vanishes with p2, the behavior is singular and
it does not appear possible to find this limiting solution sim-
ply by setting A and p2 in Eq. �19� �as well as in Eq. �21�
below�. The solution was carried out by the short interactive
MATHEMATICA procedure in the Appendix. Some results are
shown in Table I.

The relation between the electronic energy E+2/R and R
is sketched in Fig. 1. We find that the energy minimum E0
=−5.645 occurs for R=0.513 in close agreement with the
corresponding values from �11�: E0=−5.646 at R=0.511.

V. QUANTUM CALCULATION OF THE PLANAR DIPOLE
GROUND STATE

In this case, we have Z1=−Z2=1, so our equations
become

��2 − 1�X� + �X� + �A − p2�2�X��� = 0, �21a�

�1 − �2�S� − �S� − �A − p2�2 + �2D��S��� = 0, �21b�

subject to X�1�=1, X��1�=−A+ p2, S�−1�=1, and S��−1�
=A− p2−�2D. We ignore the electrostatic term 2/R. The sys-
tem is essentially a two-dimensional hydrogen atom located
at �−R /2 ,0� perturbed by an “electron” at �R /2 ,0�, so the
ground state wave function has no symmetry about the ori-

gin, except for y→−y, nor can it have any nodes. Once
again, Eq. �21a� is Mathieu’s equation �13�. As a quantizing
condition we require that X��� vanish for large ��a, where a
was initially set at 200 and then doubled as necessary to
check stability in determining A �reaching a=128 000 at one
point�. The wave function magnitude is reduced in the vicin-
ity of the negative charge, and therefore has a minimum at
�=1, so we use as a second condition S��1�=0. Again, since
only the dipole moment D occurs in the equations and the
boundary conditions, the energy does not depend separately
on R, so it must be the same for a point dipole �directed
along the x axis� and a finite dipole.

By numerical integration using the MATHEMATICA proce-
dure in the Appendix we find the results displayed in Fig. 2.
Selected values are given in Table II.

At very small values of D it becomes necessary to inte-
grate over such a large range of � that we felt values obtained
for p2�3�10−6 would not be reliable.

At large values of D, the ground state energy approaches
E=−4, which is that for a two-dimensional �2D� hydrogen

TABLE I. Hydrogen molecular ion binding energies in Ryd-
bergs, with their corresponding values of the parameters p2, A, and
R in Bohr radii.

p2 A R E+2/R

0.01 0.005003 0.0509 23.8519

0.05 0.025078 0.1185 2.63098

0.10 0.050312 0.1731 −1.79551

0.20 0.101250 0.2569 −4.33972

0.30 0.152811 0.3262 −5.14127

0.40 0.204994 0.3881 −5.47099

0.50 0.257799 0.4451 −5.60182

0.60 0.311222 0.4986 −5.64276

0.62 0.321981 0.5090 −5.64464

0.63 0.327370 0.5141 −5.64466

0.64 0.332764 0.5192 −5.64457

0.70 0.365261 0.5494 −5.63718

0.80 0.419913 0.5980 −5.60421

0.90 0.475174 0.6447 −5.56137

0.2 0.4 0.6 0.8
R

1

-4

-2

2

E

4

FIG. 1. Energy in Rydberg vs R in Bohr radii for a planar
hydrogen molecular ion.
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atom, as expected physically. By linear interpolation of the
lowest values in Table II we estimate that D0l0.209.

VI. DISCUSSION

We have examined, from various points of view, the ex-
istence of a positive minimum dipole moment D0 that will
bind an electron in two dimensions and estimate that for a
finite dipole the quantum mechanical value is at most 0.209
in atomic units. This is smaller than the three-dimensional
value 0.904 found by Fermi and Teller as is to be expected
from phase space considerations. By arguing that the energy
depends only on D the curve of binding energy must be the
same for a finite as for a point dipole. However, our result
has not been proven rigorously and there is, for example, the

remote possibility that the ground state energy might have
nonanalytic behavior such as e−c/D2

for D→0, which would
lie “below the radar� of our numerical procedure. This could
be settled by solving the Schrödinger equation for a point
dipole. We have found that the latter separates in polar coor-
dinates to give a Bessel function of r times a Mathieu func-
tion of 
, but have not yet succeeded in working out the
ground state.

Note added in proof. Recently, the paper �16� appeared in
which the two-dimensional Schrödinger equation is solved
for the critical case �E=0� and shows that D0=0. Therefore
the ground state energy in the range 0�D�0.2231 remains
to be examined. In conclusion we merely note that an elec-
tron is more easily trapped by an ionized impurity complex
in two dimensions than in three, but defer specific applica-
tions until other effects, such as screening �14,15�, are ac-
counted for; this will be dealt with elsewhere.
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APPENDIX: MATHEMATICA ROUTINES

The MATHEMATICA routine used to generate Fig. 1 and
Table I is the following:

pˆ2=37; A=0.04943042775949;
NDsolve���1−tˆ2�S’�t�−t S’�t�−

�A−pˆ2 t ˆ2�S�t�= =0,

S�−1+10ˆ �−8��= =1+ �A−pˆ2� 10ˆ �−8�,
S��−1+10ˆ �−8��= =A−pˆ2�,
S�t� , �t ,−1+10ˆ �−8� ,0.99999999��

s�t � �ªEvaluate�S�t� / . % �; s’�0�
R=0.34937

NDsolve���xˆ2−1�X’’�x�+x X’�x�+
�A−pˆ2 xˆ2+2 R x�X�x�= =0,

X�1+10ˆ �−8��= =1− �A−pˆ2+2R�10ˆ �−8�,
X’�1+10ˆ �−8��= =−A+pˆ2−2 R�,
X�x� , �x,1+10ˆ �−8� ,200��

g�x � �ªEvaluate�X�x� / . % �; g’�200�
E=−4 pˆ2/Rˆ2

The MATHEMATICA routine for Fig. 2 and Table II is

pˆ2=20; A=24.7100590
NDSolve���xˆ2−1� X��x�+x X��x�+

�A−pˆ2 xˆ2�X�x�= =0,

X�1+10ˆ �−8��= =1− �A−pˆ2�10ˆ �−8�,
X��1+10ˆ �−8��= =−�A−pˆ2��,
X�x� , �x,1+10ˆ �−8� ,200��

TABLE II. Finite dipole ground state energies E in Rydbergs,
with their corresponding values of the parameters p2, and A in Bohr
radii, and the dipole values D in Debye.

p2 A D −E

3�10−6 0.047781 0.2231 0.00048

4�10−6 0.049742 0.2278 0.00062

5�10−6 0.051349 0.2316 0.00074

6�10−6 0.052718 0.2348 0.00087

1�10−5 0.056861 0.2443 0.00134

1�10−4 0.083236 0.2987 0.00897

5�10−4 0.114230 0.3539 0.03194

0.001 0.133156 0.3845 0.05411

0.002 0.157205 0.4209 0.09091

0.003 0.174424 0.4455 0.12049

0.004 0.188418 0.4648 0.14811

0.005 0.200467 0.4810 0.17287

0.01 0.246265 0.5387 0.27564

0.10 0.592531 0.8762 1.04195

0.50 1.409073 1.4167 1.99296

1.00 2.211411 1.8187 2.41890

5.00 7.464567 3.5396 3.19177

10.00 13.39605 4.8420 3.41116

1 2 3 4 5
D

6

0.5

1

1.5

2

2.5

3
E

3.5

FIG. 2. Ground state energy in Rydberg vs D in debye for a
finite dipole.
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g�x � �ªEvaluate�X�x� / . % �; g��200�
R=4.73090;

NDSolve���1−tˆ2�S��t�−t S��t�−
�A−pˆ2 t ˆ2+2 R t� S�t�= =0,

S�−1+10ˆ �−8��= =1+ �A−pˆ2−2 R�10ˆ �−8�,

S��−1+10ˆ �−8��= =A−pˆ2−2 R�,
S�t� , �t ,−1+10ˆ �−8� ,0.999999999��;

s�t � �ªEvaluate�S�t� / . % �; s��0.999999999�
d=Sqrt�2� R

En=−4pˆ2/Rˆ2
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