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One and two photon wave functions are derived by projecting the quantum state vector onto simultaneous
eigenvectors of the number operator and a recently constructed photon position operator �Phys. Rev. A 59, 954
�1999�� that couples spin and orbital angular momentum. While only the Landau-Peierls wave function defines
a positive definite photon density, a similarity transformation to a biorthogonal field-potential pair of positive
frequency solutions of Maxwell’s equations preserves eigenvalues and expectation values. We show that this
real space description of photons is compatible with all of the usual rules of quantum mechanics and provides
a framework for understanding the relationships amongst different forms of the photon wave function in the
literature. It also gives a quantum picture of the optical angular momentum of beams that applies to both one
photon and coherent states. According to the rules of quantum mechanics, this wave function gives the
probability to count a photon at any position in space.
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I. INTRODUCTION

The current interest in entanglement and its application to
quantum information has rekindled the controversy sur-
rounding the photon wave function �1–6�. It is still unclear
what form a real space photon wave function should take, or
if one exists. In the standard formulation of quantum me-
chanics, the coordinate space wave function is the projection
of the state vector onto an orthonormal basis of eigenvectors
of a Hermitian position operator. It has been claimed since
the early days of quantum mechanics that there is no position
operator for the photon that allows the introduction of a
wave function in this way. Contrary to these claims, we have
recently constructed a photon position operator whose trans-
verse eigenvectors form a real space basis. Here we will use
this basis to obtain a photon wave function that is compatible
with the usual rules of quantum mechanics. We will show
that this clarifies a number of previously unresolved issues
regarding the real space description of one photon and mul-
tiphoton states.

In 1933 Pauli �7� stated that the nonexistence of a density
for the photon corresponds to the fact that the position of a
photon cannot be associated with an operator in the usual
sense. Based on definitions of center of mass, Pryce found

the k-space photon position operator r̂P= i�−ik̂ /2k+ k̂
�S /k where Sj are the 3�3 spin 1 matrices, k̂ is a unit wave
vector, and � j =� /�kj �8�. This operator does not have com-
muting components which suggests that three spatial coordi-
nates cannot simultaneously have a definite value. In 1949
Newton and Wigner sought rotationally invariant localized
states and the corresponding position operators. They were
successful for massive particles and zero mass particles with
spin 0 and 1/2, but found for photons “no localized states in
the above sense exist” �9�. This result is widely quoted as a
proof of the nonexistence of a photon position operator. It
has been proved that there is no photon position operator
with commuting components that transforms as a vector
�10�.

Our position operator �11� has commuting components
but is not rotationally invariant and does not transform as a
vector �12�, and thus it is consistent with the previous work.
Description of a localized state requires a sum over all k, and
a localized photon can have definite spin in the k direction,
that is it can have definite helicity, but it cannot have definite
spin along any fixed axis. It is the total angular momentum
�AM� that can have a definite value along some specified
direction in space �13�. The position eigenvectors are not
spherically symmetric, instead they have a vortex structure
as is observed for twisted light �14�. Compared to the New-
ton Wigner position operators for which transformation of a
particle’s spin and position are separable, the photon position
operator must incorporate an additional unitary transforma-
tion that reorients this vortex.

Valid position eigenvectors cannot violate the Hegerfeldt
�15� and Paley-Wiener �16� theorems based on Fourier trans-
form theory. Hegerfeldt proved that a positive frequency
wave function can be exactly localized at only one instant in
time and interpreted this to imply a violation of causality.
Bialynicki-Birula �17� noted that the Paley-Wiener theorem
limits g�x�=�0

�dk h�k�exp�−ikx� of the form exp�−Ax�� to �
�1. He then applied this to separate outgoing and incoming
exponentially localized spherical pulses in three dimensions.
However, their sum is not subject to the exponential local-
ization limit, as can be seen from the form of the k integral.
Position eigenvectors require a sum over all wave vectors,
and thus must be a sum of outgoing and incoming waves that
interfere to give exact localization at a single instant in time,
consistent with the Hegerfeldt theorem.

Maxwell’s equations �MEs� are analogous to the Dirac
equation when written in terms of the Riemann-Silberstein
�RS� field vector, proportional to E± icB where c is the speed
of light in vacuum, E is the electric field, and B is the mag-
netic induction. This suggests that the photon is an elemen-
tary particle like any other, and that MEs provide a first
quantized description of the photon. Use of the positive fre-
quency RS vector as a photon wave function in vacuum and
in a medium has been thoroughly studied �1,18–20�. If a field
��1/2� with quantum electrodynamic weighting, k1/2, is used*margaret.hawton@lakeheadu.ca

PHYSICAL REVIEW A 75, 062107 �2007�

1050-2947/2007/75�6�/062107�13� ©2007 The American Physical Society062107-1

http://dx.doi.org/10.1103/PhysRevA.75.062107


as wave function, a metric factor k−1 is required in the scalar
product. The real space squared norm then goes as
�d3r�d3r���1/2�*�r� ·��1/2��r�� / �r−r��2 and thus its inte-
grand cannot be interpreted as a local number density
�18,21�. Since the photon has no mass, it has been suggested
that there is no photon number density, only energy density
�20�. Photon number density based on the Landau-Peierls
�LP� wave function ��0� �without the factor k1/2� was inves-
tigated as early as 1930 �22,23�. Its absolute value squared is
positive definite but it has the disadvantage that its relation-
ship to electric current density and the electromagnetic fields
is nonlocal in real space �18,22–24�.

Returning to fieldlike ��1/2� functions, we will show here
that it is possible to define a biorthonormal basis that gives a
local density by combining the eigenvectors of an operator
with those of its adjoint. This formalism has recently been
applied to pseudo-Hermitian Hamiltonians that possess real
spectra �25�. Such a basis provides an interesting alternative
to explicit inclusion of a metric operator when working with
electromagnetic fields. The density ��1/2�*�r� ·��−1/2��r� is
local, but it not positive definite since it is not an absolute
value squared. Only the LP wave function defines a positive
definite photon density, equal to ���0��r��2. However, we will
show that the biorthogonal field-potential pair gives the same
results in most calculations.

In the present paper one and two photon wave functions
and photon density will be obtained by projection onto a
basis of position eigenvectors. In Sec. II the photon position
operator will be reviewed and the scalar product and hermi-
ticity will be discussed. In Sec. III the orthonormal and bior-
thonormal eigenkets of the position operator will be obtained
in the Heisenberg picture �HP�. We will then derive photon
wave functions from quantum electrodynamics �QED� in
Sec. IV by projecting the state vector onto simultaneous
eigenvectors of the photon position, helicity, and number op-
erators. We will discuss MEs, photon wave mechanics, and
angular momentum and beams in Secs. V–VII, respectively,
and then conclude.

II. POSITION OPERATOR

We start with a discussion of the photon position operator.
The procedure used in �11� was to construct an operator with
transverse eigenvectors of definite helicity, �= ±1. In k
space, it is reasonable to expect that the transverse function

�r,�,j
��� �k� = ��k��ek,�,j

�	� exp�− ik · r�/�V �1�

describes a photon located at position r, where �k=kc in
vacuum and the parameter 	 will be discussed later in this
section. Subscripts denote eigenvalues and Cartesian compo-
nents of the vectors � and e. Cartesian components are used
where it is necessary to avoid confusing vector notation. The
parameter � allows for both LP and field based wave func-
tions. The position eigenvectors are electric and/or magnetic
fields if �=1/2, the vector potential if �=−1/2, or LP wave
functions if �=0. This is consistent with the QED based
interpretation that a mode with frequency �k has energy 
�k
so that the square of the fields gives energy density while the

wave function gives number density. The spherical polar
definite helicity unit vectors are

ek,�
�0� = ��̂ + i��̂�/�2, �2�

where �̂ and �̂ are unit vectors in the increasing � and �
directions. Periodic boundary conditions in a finite volume
are used here to simplify the notation, and the limit as V
→� can be taken to calculate derivatives and perform sums.
If the wave function �1� is a position eigenvector it should
satisfy the eigenvector equation

r̂����r,�,j
��� �k� = r�r,�,j

��� �k� , �3�

where r̂��� is the k-space representation of the position op-
erator and its eigenvalues, r, can be interpreted as photon
position.

The operator arrived at in �11� using the condition �3� is

r̂��� = r̂P
��� + Sk�̂ cot �/k , �4�

where

r̂P
��� = iI � − iI�k̂/k + k̂ � S/k �5�

is a generalization of the Pryce operator, I is a 3�3 unit
matrix, �Si� jk=−i
ijk, and the component of spin parallel to k,

Sk= k̂ ·S, extracts the helicity �. The operator r̂��� is essen-
tially the usual k-space position operator, i�, with terms
added to compensate for differentiation of the unit vectors

and k� by �. The term k̂�S /k gives a transverse vector,

while Sk�̂ cot � /k rotates �̂ and �̂ back to their original

orientations, and −iI�k̂ /k corrects for differentiation of k�. It
was proved in �11� that r̂��� has commuting components and
satisfies the other expected commutation relations.

The photon’s position coordinates must be real, and this
normally implies that the position operator must be Hermit-
ian. In the LP case the k-space inner product is

���0���̃�0�	 = 

k,j

� j
�0�*�k��̃ j

�0��k� ,

where �����k� and �̃����k� are any two state vectors. It can
be proved by converting the sum to an integral and integrat-

ing by parts that ���0� � r̂�0��̃�0�	= �r̂�0���0� ��̃�0�	 which im-
plies that r̂�0� is Hermitian. The case �=1/2 with inner prod-
uct

���1/2���̃�1/2�	 = 

k,j

k−1� j
�1/2�*�k��̃ j

�1/2��k� �6�

was considered in �21� and �11�. Integration by parts in this
case requires differentiation of k−1, which again gives

���1/2� � r̂�1/2��̃�1/2�	= �r̂�1/2���1/2� ��̃�1/2�	, proving that r̂�1/2�

is Hermitian based on the inner product �6�. This leads to the
nonlocal real space density discussed in the Introduction. Al-
ternatively the inner product can be written as
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���1/2���̃�−1/2�	 = 

k,j

� j
�1/2�*�k��̃ j

�−1/2��k�

by defining �̃�−1/2�=�̃�1/2� /k, thus avoiding explicit inclu-
sion of the factor k−1 and the consequent nonlocal real space
density. The expectation value of the position operator then

satisfies ���1/2� � r̂�−1/2��̃�−1/2�	= �r̂�1/2���1/2� ��̃�−1/2�	. If we

apply this to the localized state ����=�̃���=�r�,�
��� this proves

that the eigenvalue r� is still real. However, the position
operators r̂�1/2� and r̂�−1/2�= r̂�1/2�† are not self-adjoint. Opera-
tors such are these are referred to a pseudo-Hermitian by
Mostafazadeh �25�. Use of pseudo-Hermitian operators and a
biorthonormal basis is discussed in more detail in the next
section.

In �12� the position operator was generalized to allow for
rotation about k through the Euler angle 	�� ,�� to give the
most general transverse basis,

ek,�
�	� = e−i�	ek,�

�0� . �7�

It was found that the position operator can be written as

r̂��� = D�k�i � k−��D−1, �8�

where D=exp�−iSk	�exp�−iS3��exp�−iS2��. Starting from a
wave vector parallel to ẑ and transverse unit vectors x̂ and ŷ,
D rotates k from the z axis to an orientation described by the
angles � and �, while at the same time rotating the transverse

vectors first to �̂ and �̂ and then about k through 	. For
example, when r̂�1/2� acts on a transverse field parallel to �̂ it
rotates it to ŷ and divides it by ��k, then operates on it with
the usual k-space position operator i�. It then reverses the
process by multiplying it by ��k and rotates it back to its
original transverse orientation. This allows r̂�1/2� to extract
the position of the photon from the phase of the coefficient of
the transverse unit vector.

The quantum numbers �r ,�� index the basis states for a
given 	�� ,��. The z axis can be selected for convenience
and the choice 	=−m� gives �13�

ek,�
�−m�� =

x̂ − iŷ

2�2
�cos � − ��ei�m�+1�� −

ẑ
�2

sin �eim��

+
x̂ + iŷ

2�2
�cos � + ��ei�m�−1��. �9�

For example, 	=−� �m=1� rotates �̂ and �̂ back to the x
and y axes to give unit vectors that approach �x̂+ i�ŷ� /�2 in
the �→0 limit. This is useful in the description of paraxial
beams since the unit vectors describe spin alone. Their coef-
ficients then describe all of the orbital angular momentum so
that a factor exp�ilz�� implies a z component of orbital an-
gular momentum equal to 
lz.

The spin and orbital AM of a photon are not separable
beyond the paraxial approximation. For unit vectors of the
form �9� the z component of total angular momentum and
photon position operators satisfy �13�

�Ĵz, r̂k� = i

zklr̂l. �10�

This is just the usual commutation relation satisfied by a
vector operator and an angular momentum component. Here
it implies that photon position transforms as a vector under
rotations about the axis of symmetry of the localized states.
A photon on the z axis satisfies the uncertainty relation
�Jz�rk�0. Unit vectors of the form �9� contribute a definite
z component of the total AM, consistent with �sz , lz� equal to
�−1,m�+1�, �0,m��, or �1,m�−1�, with jz=m�, that is to-
tal AM has a definite value, but spin and orbital AM do not.

III. POSITION EIGENVECTORS

Here we will obtain the eigenvectors of the position op-
erators discussed in Sec. II. The LP form of the position
operator, r̂�0�, is self-adjoint, has real eigenvalues, and de-
fines an orthonormal basis as is usual in quantum mechanics.
To obtain QED-like fields as eigenvectors, the choice �
=1/2 is required. In this section we will use the mathemati-
cal properties of pseudo-Hermitian operators to obtained a
completeness relation for the field like photon wave function
and investigate how it is related to the LP wave function. The
operators will be obtained in the HP picture, so time depen-
dence as determined by the Hamiltonian must also be con-
sidered.

We will start with an examination of the expectation val-
ues to motivate the use of the biorthonormal formalism. Any
Hermitian operator ô satisfies the eigenvector equation
ô � fn	=on � fn	 and its eigenvalues, on, are real. To transform
from LP position eigenvectors to fields, multiplication by
��k is required. Assume that � is an operator with positive
square root �=�� which will equal ��k in the present appli-
cation. We can write

�fn�ô�fm	 = �fn����−1ô���−1�fm	 = ��n�Ô��m	 ,

where Ô=�−1ô� is a similarity transformation, ��m	
=�−1 � fm	 and ��n	= ��fn ���†=�†� ��n	. The eigenvector equa-

tion becomes Ô ��n	=on ��n	 and the eigenvalues and inner-
products are preserved. If � is a unitary operator, that is if

�−1=�†, then Ô†= Ô is Hermitian and ��n	= ��n	. The��n	 and
��n	 eigenvectors are the same, and the usual quantum me-
chanical formalism is obtained. On the other hand, if � is a
Hermitian operator satisfying �†=� then ��n	� ��n	 and
there are two distinct sets of eigenvectors. We can deal with
this is one of two ways: �1� The metric operator �=�2 can be
introduced to give the new inner product ��n ��−1�m	 and
work only with the ��n	 basis. �2� We can use the eigenvec-

tors of Ô and the eigenvectors of Ô†=�Ô�−1 which are
��n	and ��n	, respectively. Since �fn � fm	= �fn ���−1 � fm	 trans-
forms to ��n ��m	, the eigenvectors ��m	 and ��n	 are bior-
thonormal �26�. If there is degeneracy, a biorthonormal basis
can be obtained by defining a complete set of commuting
operators �CSCO�.

The properties of pseudo-Hermitian operators and bior-
thonormal bases have recently been investigated by
Mostafazadeh and can be summarized as �25�
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Ô��n	 = On��n	, Ô†��n	 = On
*��n	 ,

Ô† = �Ô�−1, ��n��m	 = �n,m,

with the completeness relation



n

��n	��n� = 

n

��n	��n� = 1̂,

where � is a metric operator and 1̂ is the unit operator. If
�=�� exists,

ô = �Ô�−1 = �−1Ô†� �11�

is self-adjoint and the eigenvectors On are real. Expectation
values are preserved by the similarity transformation, �.

To apply this formalism to the photon we take �=�k and
work in k space. Then ô= r̂�0� is self-adjoint and the opera-

tors Ô†= r̂�1/2� and Ô= r̂�−1/2� have the biorthonormal eigen-
vectors �r,�

�1/2��k� and �r,�
�−1/2��k� given by Eq. �1� that go as

��k and 1/��k, respectively, as required by QED for the
electromagnetic fields and the vector potential. The position
operators and their eigenvectors satisfy

r̂�−��† = r̂���, �12�

�r,�
�−1/2��k� = �k

−1/2�r,�
�0� �k� , �13�

�r,�
�1/2��k� = �k

1/2�r,�
�0� �k� , �14�

the biorthonormality condition



j

��r�,��,j
�−�� ��r,�,j

��� 	 = �3�r − r����,��, �15�

and the completeness relation



�,j

 d3r��r,�,j

��� 	��r,�,j
�−�� � = 1̂. �16�

Here �3 is the three-dimensional Dirac � function and we can
interchange � and −�. The field and the LP operators, ô, are
related as

Ô† = �k
1/2ô�k

−1/2, �17�

consistent with Eq. �8�. This transforms the LP position op-

erator r̂�0� to r̂�1/2�, introducing an addition term −iIk̂ /2k. The
momentum and angular momentum operators 
k and 
�−k
� i� +S� are unaffected by the similarity transformation

�17�. In the angular momentum case this is because k̂�k
=0.

Time dependence is determined by the Hamiltonian Ĥ

+ Ĥ0 with

Ĥ = 

k,�


�kak,�
† ak,�, �18�

where the zero point terms Ĥ0=
k,�
�k /2 which are unaf-
fected by the photon state will be omitted here. The operator
ak,� annihilates a photon with wave vector k and helicity �

and satisfies the commutation relations �ak,� ,ak�,��
† �

=��,���k,k�. The operators and their eigenkets are time de-
pendent in the HP �27�. Using the unitary time evolution
operator

U�t� = exp�− iĤt� , �19�

the HP position operator becomes

r̂HP
��� = U†�t�r̂���U�t� = r̂��� + ��kt �20�

with eigenvectors U†�t� ��r,�
���	 with ��r,�

���	 given by Eq. �1� in
k space. The coefficient of t in the last term of Eq. �20� is the
photon group velocity.

We can define one-photon HP annihilation and creation
operators for a photon with helicity � at position r and time
t as

�̂r,�,j
��� �t� � 


k
��k��ek,�,j

�	� ak,�
eik·r−i�kt

�V
, �21�

�̂r,�,j
���† �t� � 


k
��k��ek,�,j

�	�* ak,�
† e−ik·r+i�kt

�V
. �22�

For �=1/2, Eq. �21� implies that the biorthonormal pairs are
related through

�̂r,�
�1/2��t� = i

��̂r,�
�−1/2��t�
�t

�23�

analogous to the relationship between the vector potential
and the electric field in the Coulomb gauge. The one-photon
position eigenkets normalized according to Eq. �15� are

��r,�
����t�	 = �̂r,�

���†�t��0	 , �24�

where �0	 is the electromagnetic vacuum state. The projec-
tion of Eq. �24� onto the momentum-helicity basis, ��k ,�	�,
gives back Eq. �1� in the Schrödinger picture. The free space
operators for a photon with helicity � satisfy the r-space
dynamical equation

i
��̂r,�

����t�
�t

= �c � � �̂r,�
����t� . �25�

The annihilation and creation operators satisfy the equal time
commutation relations



j

��̂r,�,j
�−���t�,�̂r�,��,j

���† �t�� = ��,���
3�r − r�� . �26�

The Hermitian operator describing the density of photons
with helicity �, obtained by averaging over the � and −�
forms, is

n̂�
����r,t� =

1

2
�̂r,�

���†�t� · �̂r,�
�−���t� + H.c. �27�

The total number operator is

N̂ =
 d3r n̂����r,t� = 

k,�

ak,�
† ak,�. �28�
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An alternative linear polarization basis can be obtained if
we define operators that annihilate a photon state with polar-

ization in the �̂ and �̂ directions as

�̂r
����t� = ��̂r,1

����t� + �̂r,−1
��� �t��/�2,

�̂r
����t� = − i��̂r,1

����t� − �̂r,−1
��� �t��/�2, �29�

respectively. While the direction of these eigenvectors de-
pends on k, they do not rotate in space and time, and in that
sense they are linearly polarized. The inverse transformation
is

�̂r,�
����t� = ��̂r

����t� + i��̂r
����t��/�2. �30�

In free space

��̂r
����t�
�t

= c � � �̂r
����t� , �31�

��̂r
����t�
�t

= − c � � �̂r
����t� .

If �=0 these are the operators introduced by Cook �24�,
while if �=1/2 their dynamics is ME-like.

The localized definite helicity basis states are eigenvec-
tors of a CSCO, so it is the helicity basis that will be used
here. Linearly polarized fields can be found by taking the
sum and difference as in Eq. �29�.

IV. WAVE FUNCTION

In this section we will obtain one and two photon wave
functions and photon density by projection onto the basis of
position eigenvectors found in Sec. III. This density is a two-
point correlation function that is based on the LP or bior-
thonormal basis, rather than electric fields alone as in
Glauber photodetection theory �28�.

The QED state vector describing a pure state in which the
number of photons and their wave vectors are uncertain can
be expanded as

��	 = c0�0	 + 

k,�

ck,�ak,�
† �0	

+
1

2! 

k,�;k�,��

�Nk,�;k�,��ck,�;k�,��ak,�
† ak�,��

† �0	 + ¯ ,

�32�

where c0= �0 ��	, ck,���0 �ak,� ��	, ck,�;k�,���ck�,��;k,�

= �0 �ak,�ak�,�� ��	, and Nk,�;k�,��=1+�k,k���,��. Division by
2! corrects for identical states obtained when the �k ,�� sub-
scripts are permuted while �N /2 normalizes doubly occu-
pied states. A more general state requires a formulation in
terms of density matrices that will not be attempted here.

The one-photon real space wave function in the helicity
basis, equal to the projection of this state vector onto eigen-
vectors of r̂HP

��� as ��r,�,j
��� ��	, is

��
����r,t� = 


k
ck,�ek,�

�	� ��k��eik·r−i�kt

�V
, �33�

where we have used Eqs. �22�, �24�, and �32�. The expansion
coefficients depend on the choice of basis, for example when
	→	+�	 the coefficients ck,�→ck,�exp�−i��	� analogous
to gauge changes of the vector potential describing a mag-
netic monopole in real space �12�. In any basis the inner
product �� ��	=
k,� �ck,��2��c1�2 where �c1�2 is the net
probability for one-photon in state ��	. The free space one-
photon dynamical equations mirror the operator Eqs. �23�
and �25�. They are

i
���

�−1/2��r,t�
�t

= ��
�1/2��r,t� ,

i
���

����r,t�
�t

= �c � � ��
����r,t� . �34�

To obtain the two-photon wave function we can project
��	 onto the two-photon real space basis

��r,�,j�t�,�r�,��,j��t��	 = �̂r,�,j
���† �t��̂r�,��,j�

���† �t���0	

giving

��,��;j,j�
��� �r,r�;t,t�� = �0��̂r,�,j

��� �t��̂r�,��,j�
��� �t����	 . �35�

Use of Eq. �22� and �ak,� ,ak�,��
† �=�k,k���,�� to evaluate

�0 � �̂r,�,j
��� �t��̂r�,��,j�

��� �t��ak,��
† ak�,��

† �0	 then gives

��,��;j,j�
��� �r,r�;t,t�� =

1

2 ! V



k,�;k�,��

�Nk,�;k�,��

� ck,�;k�,����k�k��
�

� �ek,�,j
�	� ek�,��,j�

�	� eik·r−i�kteik�·r�−i�k�t�

+ ek�,��,j
�	� ek,�,j�

�	� eik·r�−i�kt�eik�·r−i�k�t�

�36�

which becomes a two-photon wave function if we set t�= t. A
separate symmetrization step is not required since its sym-
metric form is a direct consequence of the commutation re-
lations satisfied by the photon annihilation and creation op-
erators.

To obtain an n-photon basis the creation operator can be
applied to the vacuum n times with each occurrence having
different parameters r, �, and j. The state vector can then be
projected onto this basis to give the n-photon term. The re-
sult is the symmetric n-photon real space function

��m�
��� �r, . . . ,r�n−1�;t, . . . ,t�n−1�� = �

m=0

n−1

��m
������	 �37�

where ��m
���	 is a short hand for ��

r�m�,��m�,j�m�
��� �t�m��	 and m

represents the mth set of variables, quantum numbers and
components �r�m� , t�m� ,��m� , j�m��. Generally the n-photon
states provide more information than can be measured. In-
stead the real space helicity � photon density, equal to the
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expectation value of the number density operator, Eq. �27�,
can be defined as

n�
����r,t� = ���n̂��r,t���	 =

1

2

j

����̂r,�,j
���† �t��̂r,�,j

�−���t���	 + c.c.

�38�

The zero-photon contribution to n is 0, while the one-photon
contribution is

n�
����r,t� =

1

2
��

���*�r,t� · ��
�−���r,t� + c.c. �39�

For the two-photon state �35�, substitution of Eq. �26� gives

n�
����r,t� =

1

2 

��;j,j�


 d3r���,��;j,j�
���* �r,r�;t,t�

���,��;j,j�
�−�� �r,r�;t,t� + c.c.,

implying that unobserved photons are summed over. A simi-
lar argument can be applied to each n-photon term. Photons
are noninteracting particles and the existence of a photon
density is consistent with Feynman’s conclusion the photon
probability density can be interpreted as particle density
�29,30�.

The bases obtained here provide a real space description
of the multiphoton state that “encodes the maximum total
knowledge describing the system” as discussed in Ref. �3�.
The electric field wave function used in �2,5� or RS vectors
in �1,18� by themselves do not provide a basis, and this is the
root of the criticism of �2� made in �3�. The two-photon wave
function �36� is symmetric in agreement with �1,2�.

V. MAXWELL’S EQUATIONS

In this section we will show that MEs can be obtained
from QED in two distinct ways. The first is the conventional
approach of calculating the expectation value of operators
with all modes populated as coherent states. The fields ob-
tained in this way are real and they cannot be interpreted as
wave functions. The second approach is to project the state
vector onto the position eigenvectors obtained when a field
operator acts on the vacuum state to give fields proportional
to the one-photon wave function components in Sec. V.

If the multipolar Hamiltonian is used, the displacement is
purely photonic, while the vector potential will include pho-
ton and matter contributions �31�. The vector potential op-
erator is a sum over positive and negative frequencies, pho-
ton and matter parts, and both helicities. We can define

Â�r,t� = Â�+��r,t� + Â�−��r,t� ,

Â�+��r,t� = Âp
�+��r,t� + Âm

�+��r,t� ,

Âp
�+��r,t� = Â1

�+��r,t� + Â−1
�+��r,t� , �40�

where Â�−�= Â�+�† and the subscripts m and p denote matter
and photon parts, respectively. The electric field and mag-
netic induction are then given by

Ê = − �Â/�t − �� ,

B̂ = � � Â . �41�

In the presence matter of with polarization operator P̂ and

magnetization M̂ the displacement and magnetic field opera-
tors are

D̂ = 
0Ê + P̂ ,

Ĥ = B̂/�0 − M̂ , �42�

where SI units are used, 
0 is the permittivity and �0 the
permeability of vacuum, and c=1/�
0�0.

The momentum conjugate to the vector potential is −D̂�

where D̂� is the transverse part of the displacement operator
�20,31�. These operators satisfy canonical commutation rela-

tions. Since �̂r,�
�−�� and �̂r,�

���† satisfy Eq. �26� we can choose

Â�
�+��r,t� =� 


2
0
�̂r,�

�−1/2��t� ,

D̂�,�
�+� �r,t� = i�

0

2
�̂r,�

�1/2��t� . �43�

This is equivalent to the usual QED expansion of Â and D̂
and thus is consistent with the operator MEs

� · B̂ = 0, � � Ê = −
�B̂

�t
,

� · D̂ = �, � � Ĥ = j +
�D̂

�t
, �44�

where � and j are the free charge and current densities. In

free space D̂
�,�
�+� /�
0= i�B̂�

�+� /��0= F̂�
�+� /�2= i�
 /2�̂r,�

�1/2�

where the RS operator is F̂�
�+�= D̂�

�+� /�2
0+ B̂�
�+� /�2�0 as de-

fined in �18�.
Coherent states are the most classical, and they can be

used to establish a connection between QED and the real
Maxwell fields. Following Cohen-Tannoudji et al. �31� the
complex Fourier transforms of the classical field vectors,

Vk�t� =
 d3r V�r,t�
exp�− ik · r�

�V
,

and the normal variables,

�k�t� = − i� 
0

2
�k
�Ek

��t� − ck̂ � Bk�t�� ,

can be defined. For a coherent state with the photon occu-
pancy of mode �k ,�� described by the complex parameter
�k,�, the average photon number is nk,�= ��k,��2 and the prob-
ability amplitude for n photons is exp�−��k,��2 /2��k,�

n /�n!.
The quasiclassical coherent state is a Gaussian wave packet
that oscillates without deformation and with relative number
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uncertainty �nk,� /nk,�=1/ ��k,��. In the limit of infinite pho-
ton number the electric and magnetic fields oscillate in a well
defined way as do the solutions to the classical MEs. Thus

Acoh
��+��r,t� = ���k,���Âp

��+��r,t����k,��	

= 

k,�

� 


2
0�k
�k,�ek,�

�	� eik·r − i�kt
�V

, �45�

Acoh
� �r,t� = Acoh

��+��r,t� + c · c. �46�

and the fields derived from it behave classically in the large
photon number limit.

It is also possible to derive one photon positive frequency
MEs from QED. We can define the one-particle states

�Vr,�	= V̂r,�
�−� �g ,0	 with V̂�−�= V̂�+�† and V�+�=
�V�

�+� for any

field operator V̂ such that

V�
�+��r,t� = �g,0�V̂r,�

�+���	 . �47�

This can be viewed as the projection of the photon-matter
state vector state onto the n=1 term of number-position-
helicity basis. In the ground state �0	 both the EM field and
any matter present are in their lowest energy configurations.

The operator V̂�−� creates one-particle that can be a photon or
a material excitation. Since the space and time dependence
originates entirely in the field operators, these functions sat-
isfy ME dynamics. The one-photon MEs are, using Eq. �44�,

� · B�+� = 0, � � E�+� = −
�B�+�

�t
,

� · D�+� = ��+�, � � H�+� = j�+� +
�D�+�

�t
. �48�

Projection of the state vector onto a basis of one-photon
position eigenvectors results in intrinsically positive fre-
quency electric and magnetic fields defined by Eq. �47� that
satisfy MEs. They can be manipulated to give any of the
commonly used forms of MEs.

A wave equation can be obtained from Eq. �48� in the
usual way to give

1

c2

�2E�+�

�t2 + � � � � E�+� = − �0
�

�t
� �P�+�

�t
+ � � M�+�

+ j�+�� . �49�

The terms on the right-hand side are the polarization, mag-
netic, and external contributions to the time derivative of the
current density �31�. If there is no magnetization or external
current and the polarization is linear and isotropic we can
write P=
0	�k�E which can be combined with the �2E�+� /�t2

term. Writing 
�k�=
0�1+	�k�� the angular frequency in �18�
is �k=kc�1+	�k�. Analogous to the creation of an excitation

of the electromagnetic field �a photon� by D̂�−�, the polariza-

tion operator P̂�−� creates a matter excitation. Energy can be
transferred between matter and the electromagnetic fields, so
the matter and EM modes are coupled. Self-consistent solu-

tion of the matter-photon dynamical equations gives the po-
lariton frequencies �k that determine time dependence.

The energy, linear momentum, and angular momentum of
the free electromagnetic field are conserved. Their densities
and associated currents satisfy continuity equations of the
form �� /�t+� · j=0. This can be verified using MEs, and
the steps in this derivation are still valid if we replace the
products of classical real fields with Hermitian linear
combinations of products of operators. For example, the

current describing the flow of energy density �D̂�−� · D̂�+� /

2
0+ B̂�−� · B̂�+� /2�0	 is c2 times the linear momentum density

P�r,t� = 1
2 ���D̂�−� � B̂�+� − B̂�−� � D̂�+���	 . �50�

Together with their associated current densities the compo-
nents of P also satisfy continuity equations which implies
that �d3r P�r , t� is a constant of the motion. If ��	 is a one-

photon state �� � D̂�−�� B̂�+� ��	= �� � D̂�−� �0	� �0 � B̂�+� ��	
so that

P�r,t� = 1
2 �D�−��r,t� � B�+��r,t� + c.c.� �51�

with the fields derived using Eqs. �41�, �42�, and �47�. For a
coherent state, the quasiclassical expectation value

���k,�� � D̂� B̂ � ��k,��	�Dcoh�Bcoh for small ��k,��. How-
ever, Eq. �50� can be evaluated exactly using ak,� ��k,�	 to
give

P�r,t� = 1
2 �Dcoh

�−� �r,t� � Bcoh
�+� �r,t� + c.c.� �52�

with Acoh
��+� given by Eq. �45�. In either case the angular mo-

mentum density is

J�r,t� = r � P�r,t� . �53�

We are now in a position to compare the classical and
quantum fields and densities. Equation �46� describes real
fields that are the expectation values for coherent quantum
states. Expectation values do not describe one-photon states
since in this case the expectation values of the field operators
are zero. Instead, it is projection onto a basis of position
eigenvectors that gives one-photon positive frequency fields,
proportional to components of the wave function. For one-
photon and coherent states momentum density can be written
as a cross product of fields as in Eqs. �51� and �52�. Equation
�50� can be used to interpolate between these two extreme
cases.

The density D�−��B�+� can be rewritten as �31�

D�−� � B�+� = D�−� � �� � A�+��

= 

j=1

3

Dj
�−� � Aj

�+� − �D�−� · ��A�+�.

Its first term, equal to



j=1

3

Dj
�−� � Aj

�+� =
1

2

j=1

3

� j
�1/2�*

�i
 � �� j
�−1/2�,

is the integrand in the expectation value of the real space
momentum operator −i
�. The last term, �D�−� ·��A�+�, also
contributes to the flow of energy density and has important
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consequences. It is responsible for the spin term in the AM
�53�. This can be seen by writing

− r � �D�−� · ��A�+� = D�−� � A�+� − �D�−� · ���r � A�+�� ,

where a�b=−i�a ·S�b gives

D�−� � A�+� =
1

2

j=1

3

� j
�1/2�*


S� j
�−1/2�.

Since � ·D�−�=��−�, the last term contributes �d3r r��A�+� to
�d3r J�r , t� after integration by parts which is zero in the
absence of free charge.

VI. PHOTON WAVE MECHANICS

In this section we will discuss first quantized photon
quantum mechanics. For definiteness we will refer to the
Barut-Marlin rules for Schrödinger and Dirac particles stated
in �32� as follows. �a� A basis for the space of wave func-
tions, which describe all the possible states of a particle, is
defined by a wave equation. �b� An inner product is defined
in the space of the wave functions. �c� Expressions for the
probability density and probability current are found. They
should form a four-vector whose divergence vanishes. The
expression for the probability density should be positive
definite. �d� Operators which correspond to measurements
are defined, in particular, momentum and position operators.
�e� The eigenfunction of the operators, normalized to 1 �in
the case of discrete spectrum� or a � function �in the case of
a continuous function�, are found. �f� The position operator,
defined in �d�, and the inner product, defined in �b�, uniquely
determine an expression for the probability density. The
theory is consistent only if this uniquely determined expres-
sion is identical with the one defined in �c� to satisfy a con-
tinuity equation. This is a consistency test.

In brief, these rules apply to the r-space wave mechanics
of a single free photon in free space in the following sense:
�a� Solutions to Eq. �34�,

i � ��
����r,t�/�t = �c � � ��

����r,t� , �54�

include positive and negative frequencies. The negative fre-
quency solution can be eliminated on physical grounds
�19,29�, thus cutting the Hilbert space in half as is done for
solutions to the Dirac equation �32�. �b� The inner product of

the wave functions describing states ��̃	 and ��	,

���̃������−��	 = 

�

 d3r �̃�

���†�r,t� · ��
�−���r,t� , �55�

exists and is invariant under similarity transformations be-
tween �=1/2 and �=0. �c� The real number and current
densities obtained by averaging the � and −� densities

n����r,t� =
1

2

�

��
���*

· ��
�−�� + c.c.,

j����r,t� = −
i�c

2 

�

��
���*

� ��
�−�� + c.c., �56�

satisfy the continuity equation

�n����r,t�
�t

+ � · j����r,t� = 0. �57�

This can be verified using the wave equation. The density
n�0�=
� ���

�0��2 is positive definite, while �n�1/2� , j�1/2�� is a
four-vector that can be written as the contraction of second
rank EM field tensors with four-potentials. �d� The momen-
tum operator is 
k and the position operator is given by Eq.
�4�. �e� The eigenvectors of these operators are � function
normalized according to Eq. �15�. �f� The position operator
and inner product give the density 1

2 ��r,�
��� ��	*��r,�

�−�� ��	
+c.c.. Some of these points will now be discussed in more
detail.

Both positive and negative frequency solutions of the
wave equation are mathematically allowed. The classical so-
lutions are real, and real waves do not satisfy a continuity
equation or allow a probability interpretation �33�. It has
been argued by Inagaki for LP wave functions that the nega-
tive frequency solutions with momentum in opposite direc-
tion to the wave propagation should be discarded from the
physical photon state �29�. A similar case is made by
Bialynicki-Birula for elimination of the negative frequency
fields in fieldlike wave functions �18,19�.

As with MEs the photon wave equations can be written in
a number of equivalent ways, and this will be considered
next to allow comparison with the existing photon wave
function literature. The six component wave function

�hel
��� = ��1

���

�−1
��� � �58�

in the helicity basis and

�lin
��� = �����

���� � �59�

in the linear polarization basis can be defined. The
Schrödinger equation is then, using Eqs. �54� and �31� with
��a=−i�S ·��a,

i
�

�t
��1

���

�−1
��� � = c�− iS · � 0

0 iS · �
���1

���

�−1
��� � �60�

in the helicity basis and

i
�

�t
�����

���� � = c� 0 S · �

− S · � 0
������

���� � �61�

in the linear polarization basis. If �=1/2, Eq. �60� is of the
form considered by Bialynicki-Birula and Sipe �18,20�,
while if �=0 Eq. �61� is the form used by Inagaki �29�.
However, Eqs. �60� and �61� themselves imply that either the
helicity or the linear polarization basis can be used in com-
bination with fieldlike �=1/2 wave functions or LP �=0
wave functions. The operator on the right-hand sides of Eqs.
�60� and �61� is the real space one-photon Hamiltonian.

The density i
0E ·A /
 has appeared before in the classical
context and in applications to beams. Cohen-Tannoudji et al.
�31� transform the classical electromagnetic angular momen-
tum as
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J = 
0
 d3r r � �E � B�

= 
0
 d3r�

i=1

3

Ei�r � ��Ai + E � A� �62�

by requiring that the fields go to zero sufficiently quickly at
infinity. Although this looks like an expectation value, the
fields are classical. In a discussion of optical beams, van Enk
and Nienhuis �34� separate monochromatic fields into their
positive and negative frequency parts using

V = �V�+�exp�− i�t� + V�−�exp�i�t��/�2

and obtain for total field linear momentum and AM

P = − i
 d3r�

i=1

3

Di
�+�*�i��Ai

�+�� , �63�

J = − i
 d3r�

i=1

3

Di
�+ �*

�− r � i� + S�Ai
�+�� . �64�

Here we have assumed the absence of matter in writing D
=
0E, substituted A�+�= i�D�+�, and changed the notation a
bit for consistency with the present work. These are classical
expressions, but terms at frequency 2� do not contribute to
the total momentum and angular momentum, P and J �35�.
They look like the expectations values of the linear and an-
gular momentum operators that would be obtained using the
biorthonormal wave function pair �
0 /
Aphoton

�+�� and

−iD�+� /�
0
. The number operator iD̂�−� · Â�+� /2
+H.c. was
shown previously to be the zeroth component of a four-
vector obtained by contraction of the second rank EM field
tensor with the four-potential �� ,A� �36�. This demonstrates
that the biorthonormal basis is of value for comparison with
the existing literature.

It was noted in Sec. III that the biorthonormal inner prod-
uct is equivalent to the use of a metric operator. Using Eq.

�23� and Ĥ=
kc in k space and substituting Ĥ for i� /�t the
inner product �55� can be written as

���̃��	 = 

�,j

 d3k

kc
�̃�,j

�1/2�*
�k,t���,j

�1/2��k,t�

= 

�,j

 d3r �̃�,j

�1/2�*
�r,t�Ĥ−1��,j

�1/2��r,t�

as in �21,38�.
The number density is the expectation value of the num-

ber density operator �27� as discussed in Sec. IV. The �
= ±1/2 wave function pair gives a real local one-photon den-
sity n�1/2�, but this density is not positive definite. This can be
seen from the following example: If ��	 is a one-photon
state that includes only wave vectors k1 and k2=k1+�k both
with helicity � where ck1,�=ck2,�=1/�2 then

n�1/2� = �1 + 1
2 ��k1/k2 + �k2/k1�cos��k · r − „�k1 − k2�ct…��/V .

The cosine term can exceed the spatially uniform time inde-
pendent term due to the �k factors, leading to negative val-

ues. If k2�k1, n�1/2� is approximately equal to the positive
definite density, n�0�, however only the LP wave function
satisfies the positive definite requirement exactly.

It thus appears that LP wave functions are essential to a
probability interpretation. Fieldlike wave functions can be
obtained from the LP wave function by a similarity transfor-
mation, and thus are equivalent to it for the calculation of
expectation values. The operators given by Eq. �29� in the
�=0 case are identical to the operators examined by Cook.
The equations that they satisfy differ from those for D and B
only in that their relationship to charge and current sources is
nonlocal. The LP number density has been criticized
�18,20,23�, but its scalar analog, obtained by taking Fourier
transforms of the Schmidt modes, has recently been applied
to spontaneous emission of a photon by an atom and spon-
taneous parametric down-conversion �6,37�. For narrowband
superpositions of plane wave states the distinction between
the LP and fieldlike form of the wave function has no ob-
servable consequences �6�.

The operator �21� creates basis states that lead to the or-
thogonal transverse one-photon wave function �hel

����r , t�
= ��1

��� ,�−1
���� in the helicity basis. The wave function com-

ponents ��−1/2� are proportional to the vector potential, while
��1/2� is related to EM fields. Contraction of the second rank
field tensor F��=��A�−��A� with the four-potential as
F��*

A� gives a four-vector �36�. Thus �n�1/2� , j�1/2�� is a four-
vector and photon density is its zeroth component.

In the linear polarization basis the density operators are

n̂����r,t� = 1
2 ��̂r

���† · �̂r
�−�� + �̂r

���† · �̂r
�−�� + H.c.� ,

ĵ����r,t� = 1
2 ��̂r

���† � �̂r
�−�� − �r

ˆ �−��† � �̂r
��� + H.c.� ,

�65�

with �̂r
��� and �̂r

��� given by Eq. �29�. Mandel and Wolf noted
the convenience of a photon number operator, equal to

�̂r
�0�† · �̂r

�0� in the present notation, to the theory of photon
counting for an arbitrary quantum state �39�. Cook sought
detector independent photon density and current operators
that satisfy a continuity equation. His operators are just Eq.
�65� if we take �=0. Inagaki reformulated Cook’s theory in
terms of conventional quantum mechanics �29�. These au-
thors discuss the restrictions imposed by photon nonlocaliz-
ability, but the existence of a basis of position eigenvectors
makes this unnecessary here. Our operators describe micro-
scopic densities, and there is no restriction based on wave
length.

The Lorentz transformation properties of the �=0 photon
annihilation operators in the linear polarization basis were
also considered by Cook �41�. He concluded that their con-
tinuity equation is covariant in the sense that it is related to
the field vectors in the same way in all reference frames. The
Hamiltonian, momentum, angular momentum, and Lorentz
transformation operators must conform to the Poincaré alge-
bra. Since the position operator generates a change in particle
momentum, the boost operator is closely related to the posi-
tion operator. For a free photon in k-space the Lorentz op-
erator corresponding to the �=1/2 case is �38�
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K̂�1/2� = k�i � � + k̂ � S ,

where K̂�−1/2�=K̂�1/2�†. Using Eq. �17� this gives

K̂�0� = k−1/2K̂�1/2�k1/2

for the LP boost operator which incorporates the similarity
transformation. In k space this is simple, but in r space it is
nonlocal as discussed by Cook �41�.

It is stated, in �42� for example, that “the non-Hermitian
formulation is in most cases a mere change of metric of a
well posed Hermitian problem. Nonetheless, it has been suc-
cessfully argued that the non-Hermitian formalism is often
more natural and simplifies calculations.” These comments
apply here. The choice of � does not affect expectation val-
ues, the inner product, and the existence of a wave equation
and a continuity equation. Only the number and current den-
sities themselves are affected. The field and LP bases can be
viewed as alternative descriptions of the photon state. For
most purposes fields are more closely related to the physics,
but the LP basis is needed if the band width is large and
photon number density is required.

According to the general rules of quantum mechanics, for
a one-photon state the probability that a photon with helicity
� will be found at position r at time t is ���

�0��r , t��2. More
generally the photon number density is the expectation value
of the number density operator, n�

�0��r , t��n�
�1/2��r , t�, given

by Eq. �38�. Glauber �28� defined an ideal photodetector to
be of negligible size with a frequency-independent photoab-
sorption probability. An ideal photon counting detector also
has a quantum efficiency of �=1, that is any photon reaching
the detector is counted. A detector with all of these charac-
teristics measures photon position. Consider a one-photon
pulse traveling in the z direction that is normally incident on
a detector of thickness �z and area �A. The probability that
a photon is present in this detector, and hence that it is
counted, is n�

����r , t��A�z. In Glauber theory the count rate is

dnG /dt� �� � Ê�−��r , t� · Ê�+��r , t� ��	 where �dnG /dt��z /c is
the probability the photon is counted during the time that it
takes to traverse the detector. Since n�

�1/2�= i
0E�
�−� ·A�

�+� /


+c.c., where A�
�+��−iE�

�+� /� for most beams available in the
laboratory, the predictions of the present photon number
based theory and Glauber photodetection theory are usually
indistinguishable.

The number based theory has the advantage that the prob-
ability is normalizable, for example the probability to count
one photon in a one-photon state in the whole of space using
an array of detectors with �=1 is unity. The Glauber form of
the count rate is based on the transition probability, however
there are advocates for a photon number density approach,
even within conventional photon counting theory. Mandel
noted that “there are many problems in quantum optics, par-
ticularly those concerned with photoelectric measurements
of the field, which are most conveniently treated with the
help of an operator representing the number of photons”
�39�. Mandel and Wolf based their general photon counting
theory on a photon number operator �40�. Cook observed
that there is no universal proportionality constant that relates

photon flux to pG, and thus the prevailing theory of photo-
electron counting fails to provide a complete description of
photon transport �24�. He proposed a modified photodetec-
tion theory based on photon number. A photon density n�

�0�

��r , t�, equal to the probability density to count a photon at
r at time t, is consistent with Cook’s arguments and with the
rules of quantum mechanics.

VII. ANGULAR MOMENTUM AND BEAMS

The physical interpretation of the position eigenvectors in
�13� involving AM was motivated by the recent experimental
and theoretical work on optical vortices. These vortices are
spiral phase ramps described by fields that go as exp�ilz��
and in experiments appear as annular rings around a dark
center. It can be seen by inspection of Eq. �9� that the local-
ized states must have orbital AM, and this implies a vortex
structure that is affected by the choice of 	. Taking helicity
�=1 to give a concrete example, we can first take m=0 in

Eq. �9� to give the spherical polar vectors ��̂+ i��̂� /�2 with
total AM 0. At �=0 there is spin AM 
 and the orbital AM is
−
, while at �=� the spin and orbital AM are −
 and 
,
respectively. If instead we choose m=1, the �=0 orbital AM
is 0, but at �=� it is 2
. For a localized state the vortex has
not been eliminated, it has just been moved. Thus an under-
standing of optical AM is essential to the physical picture of
the localized basis states that are used here to obtain the
photon wave function.

Theoretically, the simplest beams with orbital AM are the
nondiffracting Bessel beams �BBs�, and these beams are
closely related to our localized states. They satisfy MEs and
have definite frequency, ck0, and a definite wave vector, kz,
along the propagation direction. It then follows that the
k-space transverse wave vector magnitude k�=�k0

2−kz
2, and

the angle �=tan−1�k� /kz� also have definite values for BBs.
Cylindrical symmetry is achieved by weighting all � equally
with a phase factor exp�im��. When Fourier transformed to r
space the modes go as exp�−ik0ct+ ilz�+ ikzz�Jlz

�k�r� where
lz=m and m±1 in Eq. �9�, Jlz

are Bessel functions, � the real
space azimuthal angle, and r is the perpendicular distance
from the beam axis �43�. If we select 	=0 so that the k-space

unit vectors are �̂ and �̂ in the linear polarization basis, B is

transverse to ẑ for the �̂ mode, and E is transverse for the �̂
mode and the linearly polarized modes can be called trans-
verse magnetic �TM� and transverse electric �TE�, respec-
tively.

The Bessel functions have a sinusoidal dependence on
k�r, and this implies that the BBs are standing waves that are
a sum of incoming and outgoing waves. If integrated over k�

the resulting wave is localized on the z axis at some instant
in time that can be defined as t=0. Localization of beams in
this way is discussed in �44,45�. If the BBs are then inte-
grated over kz, the result is equivalent to a sum over all wave
vectors, and states localized in three dimensions are ob-
tained. But note that this kz sum includes waves traveling in
the positive and negative ẑ directions. According to the
Paley-Weiner theorem, �0

�dkz does not allow exact localiza-
tion, but this restriction does not apply to an integral over all
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positive and negative values. Position is not a constant of the
motion, and localized states can exist only for an instant in
time. Exactly localized states in free space are not physically
possible because they require infinite energy. However, our
primary concern here is with the use of localized basis states
for calculation of the photon wave function, and we do not
require that these basis states have a physical realization.

The real space mathematical description of beams used to
interpret the AM experiments is usually based on the classi-
cal energy, linear momentum, and angular momentum densi-
ties. Here, with a basis of position eigenvectors in hand that
leads to a wave function for a photon in an arbitrary state, we
are in a position to consider the real space description of the
AM of beams from a quantum mechanical perspective. The
�=1/2 wave function is a solution to MEs, and any deriva-
tion based on MEs can be adapted to the one-photon case.
The expansion of vector potential in �44� that leads to
paraxial fields to a first approximation can be applied to al-
low application of our formalism to the paraxial beams that
are used in most optical experiments. Localized states do not
exist within the paraxial approximation, and the paraxial ap-
proximation cannot be applied to the position eigenvectors.

A paraxial beam propagating in the ẑ direction with fre-
quency �, helicity �, and z component of orbital AM 
lz can
be described in cylindrical polar coordinates by the vector
potential �46�

A�+��r,t� = 1
2 �x̂ + i�ŷ�u�r�exp�ilz� + ikz�z − ct�� . �66�

This vector potential is equivalent to the wave function
����r , t�=��,��

�2
0 /
A�+��r , t�. The z component of the
time average of the classical AM density, equal to 1

2r� �D*

�B+D�B*�, is then found to be

Jz�r� = 
0��lz�u�r��2 −
1

2
��r

� �u2�r��
�r

� . �67�

It equals the z component of the AM density �53� with mo-
mentum density given in Eq. �51� or �52� without the need
for time averaging. Thus Eq. �67� can be interpreted as a
quantum mechanical AM density that is valid for coherent
and one-photon states, while Eq. �50� interpolates between
these two cases.

The first term of Eq. �67� is consistent with orbital AM 
lz
per photon since the photon density given by Eq. �39� re-
duces to n�1/2��r , t�=
0� �u�r��2 /
. The last term of Eq. �67�
does not look like photon spin density. The most paradoxical
case is a plane wave, as discussed in �47�. For example a
wave function proportional to �x̂+ i�ŷ�exp�ikz− i�t� implies
linear momentum 
kẑ per photon and hence no z component
of AM. But we know that such a beam describes a stream of
photons each with spin AM 
�. It was observed in 1936 by
Beth �48� that a circularly polarized beam can cause a disk to
rotate, so the beam really does carry AM that it can transfer
to the disk. The AM of this beam resides in its edges, as can
be seen from Eq. �67�. A new edge is created if the disk
intercepts part of the beam and this reduces the AM of the
beam, allowing the conservation of total AM �35�. This is
analogous to the continuum description of a dielectric where
it is know that the medium is composed of atoms, but a

continuum description of a uniformly polarized dielectric re-
sults only is a surface charge. An even closer analogy exists
between spin AM and a continuous magnetic medium where
a current in individual molecules reduces to a macroscopic
current at the edges of the medium.

In quantum mechanics operators describe observables and
their eigenvalues are the possible results of a measurement.
While spin and orbital AM are in general not separable, the
choice 	=−� in Eq. �7� gives unit vectors �x̂+ i�ŷ� /�2 in the
paraxial limit which implies spin quantum number sz= ±1.

The wave function �66� is an eigenvector of Ŝz with eigen-

value sz and of L̂z=−i
� /�� with eigenvalue 
lz where � the
real space azimuthal angle. The latter orbital AM is equiva-
lent to linear momentum 
lz /r. For this definite helicity state
only one term in the photon density �56� contributes. The
probability density to detect this photon is n�0��r , t��n�1/2�

��r , t�, where these field potential and LP densities are es-
sentially equal for a paraxial beam. For a coherent state the
expansion coefficients ck,� in the one-photon wave function
�33� are replaced with the amplitudes �k,�. Small absorbing
particles placed in these beams are essentially photodetectors
that conserve AM by spinning about their centers of mass
and rotating around the beam axis while they absorb photons
�49�. The photon number density gives the probability to
absorb a photon which carries with it spin AM 
sz and or-
bital AM 
lz. For transparent particles the situation is more
complicated, since reemission should also be considered.

VIII. CONCLUSION

We have derived one and two photon wave functions from
QED by projecting the state vector onto the eigenvectors of a
photon position operator. Largely because it is still widely
believed that there is no position operator, this is the first
time that a photon wave function has been obtained in this
way. The two photon wave function is symmetric, in agree-
ment with �1,2�. While only the LP wave function gives a
positive definite photon density, fieldlike wave functions are
widely used and are more convenient in many applications.
Also, they given energy momentum and angular momentum
density as in Eq. �51� for example. In the fieldlike helicity
basis the wave function pair is

��
�−1/2��r,t� =�2
0



A�

�+��r,t� ,

��
�1/2��r,t� = − i� 2



0
D�

�+��r,t� . �68�

The wave function components ��
��� are given by Eq. �33�.

For definite helicity fields in free space, B�+� and the
Reimann-Silberstein field vector are just proportional to D�+�,
and thus are equivalent to it. The linear polarization basis of
TM and TE fields can be obtained by taking the sum and
difference of the definite helicity modes as in Eq. �29�. The
photon density is Eq. �56�
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n�
����r,t� = 1

2��
���*

· ��
�−�� + c.c., �69�

where n�
�1/2� is essentially equal to n�

�0� except for very broad
band signals. The one-photon density can be generalized to
describe the photon density in an arbitrary pure state using
the expectation value of the number operator, Eq. �38�.

Systematic investigation of photon position operators and
their eigenvectors clarifies the role of the photon wave func-
tion in classical and quantum optics. The LP wave function
defines a positive definite photon number density and results
in photon wave mechanics equivalent to Inagaki’s single
photon wave mechanics �29�. It is related to field based wave
functions through a similarity transformation that preserves
eigenvalues and scalar products. In free space the field �68�
is proportional to the RS wave function investigated in
�1,18–20�. The field D�+��r , t� is proportional to the Glauber
wave function �2,5,28� which gives the photodetection am-
plitude for a detector that responds to the electric field �1�.
While only fields and potentials are locally related to charge
and current sources, Fourier transformation of k-space prob-
ability amplitudes naturally leads to the LP form �6,37�. The
similarity transformation between the field-potential and LP
wave functions makes the choice a matter of convenience for
most purposes.

By the general rules of quantum mechanics the LP wave
function is the probability amplitude to detect a photon at a

point in space. It and the closely related field-potential wave
function pair obtained by solution of MEs are ideally suited
to the interpretation of photon counting experiments using a
detector that is small in comparison with the spatial varia-
tions of photon density. It is not subject to limitations based
on nonlocalizability, and coarse graining or restriction to
length scales smaller than a wave length is not required.
Exact localization in vacuum requires infinite energy and is
not physically possible, but position eigenvectors provide a
useful mathematical description of photon density. Photon
number density is equivalent to integration over undetected
photons in a multiphoton beam. In an experiment where ab-
sorbing particles are placed in a beam, the particles act as
photodetectors which can sense the spin and orbital angular
momentum of the photons. Our formalism justifies the use of
positive frequency Laguerre-Gaussian fields as photon wave
functions and gives a rigorous theoretical basis for extrapo-
lation of their range of applicability from the many photon to
the one-photon regime.
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