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We quantitatively analyze the dynamics of the quantum phase distribution associated with the reduced
density matrix of a system, as the system evolves under the influence of its environment with an energy-
preserving quantum nondemolition �QND� type of coupling. We take the system to be either an oscillator
�harmonic or anharmonic� or a two-level atom �or equivalently, a spin-1/2 system�, and model the environment
as a bath of harmonic oscillators, initially in a general squeezed thermal state. The impact of the different
environmental parameters is explicitly brought out as the system starts out in various initial states. The results
are applicable to a variety of physical systems now studied experimentally with QND measurements.
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I. INTRODUCTION

The theory of open quantum systems addresses the prob-
lems of damping and dephasing in quantum systems by its
assertion that all real systems of interest are in fact “open”
systems, each surrounded by its environment. Quantum op-
tics provided one of the first testing grounds for the applica-
tion of the formalism of open quantum systems �1�. The
application of open system ideas to other areas of physics
was intensified by the works of Caldeira and Leggett �2�, and
Zurek �3� among others. Most such studies are based on a
model describing quantum Brownian motion of a simple har-
monic oscillator in a harmonic oscillator environment. In
such a model studied by Caldeira and Leggett �2�, the coor-
dinate of the particle was coupled linearly to the harmonic
oscillator reservoir, and it was also assumed that the system
and the environment were initially separable. The treatment
of the quantum Brownian motion has since been generalized
to the physically reasonable initial condition of a mixed state
of the system and its environment by Hakim and Ambe-
gaokar �4�, Smith and Caldeira �5�, Grabert, Schramm, and
Ingold �6�, and by us for the case of a system in a Stern-
Gerlach potential �7�, and also for the quantum Brownian
motion with nonlinear system-environment couplings �8�.

The recent upsurge of interest in the problem of open
quantum systems is because of the spectacular progress in
manipulation of quantum states of matter �atoms, or bosonic
or fermionic gases or molecules�, encoding, transmission,
and processing of quantum information, for all of which un-
derstanding and control of the environmental impact are es-
sential. For such open quantum systems, there exists an im-
portant class of energy-preserving measurements in which
dephasing occurs without damping of the system. This may
be achieved with a particular type of coupling between the
system and its environment, viz., when the Hamiltonian HS
of the system commutes with the Hamiltonian HSR describ-

ing the system-reservoir interaction, i.e., HSR is a constant of
motion generated by HS �9–11�. This condition describes a
particular type of quantum-nondemolition �QND� measure-
ment scheme.

In general, a class of observables that may be measured
repeatedly with arbitrary precision, with the influence of the
measurement apparatus on the system being confined strictly
to the conjugate observables, is called QND or back-action
evasive observables �12,13�. Such a measurement scheme
was originally introduced in the context of the detection of
gravitational waves �14–20�. The experimental progress on
QND measurements has since been summarized in a review
by Bocko and Onofrio �21�. The dynamics of decoherence in
continuous atom-optical QND measurements has been stud-
ied by Onofrio and Viola �22�. In addition to its relevance in
ultrasensitive measurements, a QND scheme provides a way
to prepare quantum mechanical states which may otherwise
be difficult to create, such as Fock states with a specific
number of particles. It has been shown that the accuracy of
atomic interferometry can be improved by using QND mea-
surements of the atomic populations at the inputs to the in-
terferometer �23�. QND systems have also been proposed for
engineering quantum dynamical evolution of a system with
the help of a quantum meter �24�. We have recently studied
such QND open system Hamiltonians for two different mod-
els of the environment describable as baths of either oscilla-
tors or spins, and found an interesting connection between
the energy-preserving QND Hamiltonians and the phase
space area-preserving canonical transformations �25�.

As stated above, in the context of energy-preserving QND
systems, the only effect of the environment on the system is
dephasing and it is a natural question to ask about the pattern
of diffusion of “phases” in such a situation. Such a question
is particularly relevant in the context of a number of practical
phase measurement schemes �23,26�.

What is the precise meaning of the quantum mechanical
phase? The quantum description of phases �27� has a long
history �28–32�. Pegg and Barnett �31�, following Dirac �28�,
carried out a polar decomposition of the annihilation opera-
tor and defined a Hermitian phase operator in a finite-
dimensional Hilbert space. In their scheme, the expectation
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value of a function of the phase operator is first carried out in
a finite-dimensional Hilbert space, and then the dimension is
taken to the limit of infinity. However, it is not possible to
interpret this expectation value as that of a function of a
Hermitian phase operator in an infinite-dimensional Hilbert
space �33,34�. To circumvent this problem, the concept of
phase distribution for the quantum phase has been introduced
�33,35�. In this scheme, one associates a phase distribution to
a given state such that the average of a function of the phase
operator in the state, computed with the phase distribution,
reproduces the results of Pegg and Barnett.

In this paper we address the problem of quantum phase
diffusion and study the dynamics of the quantum phase dis-
tribution associated with the reduced density matrix of the
system for a number of situations of practical importance, as
the system evolves under the influence of its environment
with an energy-preserving QND coupling. One may take the
system to be either an oscillator �harmonic or anharmonic� or
a two-level atom �or equivalently, a spin-1/2 system�. The
phase distributions associated with the quantum state for the
two cases are defined. The environment is modeled as a bath
of harmonic oscillators, and the impact of the environmental
parameters is quantified for different initial states of the sys-
tem.

The plan of the paper is as follows. In Sec. II, we briefly
discuss a generic energy-preserving QND system in the con-
text of open systems �36�. The bath is taken to be initially in
a squeezed thermal state, from which the common thermal
bath results may be easily extracted by setting the squeezing
parameters to zero. In Sec. III, we define the phase distribu-
tion for an oscillator system, following Agarwal et al. �35�.
In Sec. III A in particular, we consider a harmonic oscillator
system in QND interaction with its environment �26�. We
study two different initial conditions of the system starting
�1� in a coherent state and �2� in a squeezed coherent state. In
Sec. III B, we study the case where the system is an anhar-
monic oscillator, which could arise, for example, from the
interaction of a single mode of the quantized electromagnetic
field with a Kerr medium �37,38�. The Hamiltonian in this
case can be expressed in terms of the generators of the group
SU�1,1�. Using the positive discrete series representation of
this group, we construct its phase distribution and study it for
two different situations: �1� when the system is initially in a
Kerr state, and �2� when it is initially in a squeezed Kerr state
�37�. In Sec. IV we consider the phase distribution for a
two-level atom, extensively used as a model system in quan-
tum computation �39–41�. Following the phase distribution
of angular momentum systems introduced by Agarwal and
Singh �42�, we construct and study the phase distribution of
the system for three different initial conditions of the system,
starting �1� in a Wigner-Dicke state �43�, which is the atomic
analogue of the standard Fock state �44�, �2� in an atomic
coherent state, which is the atomic analogue of the Glauber
coherent state �44�, and �3� in an atomic squeezed state
�42,45�. In Sec. V we present our conclusions.

II. GENERIC QND OPEN SYSTEMS

We consider the following Hamiltonian describing the in-
teraction of a system with its environment, modeled as a

reservoir of harmonic oscillators, via a QND type of cou-
pling �36�:

H = HS + HR + HSR = HS + �
k

��kbk
†bk + HS�

k

gk�bk + bk
†�

+ HS
2�

k

gk
2

��k
. �1�

Here HS, HR, and HSR stand for the Hamiltonians of the
system, reservoir, and system-reservoir interaction, respec-
tively. HS is a generic system Hamiltonian which we will
specify in the subsequent sections to model different physical
situations. bk

†, bk denote the creation and annihilation opera-
tors for the reservoir oscillator of frequency �k; gk stands for
the coupling constant �assumed real� for the interaction of
the oscillator field with the system. The last term on the
right-hand side of Eq. �1� is a renormalization inducing
“counter term.” Since �HS ,HSR�=0, the Hamiltonian �1� is of
QND type. The system plus reservoir composite is closed,
obeying a unitary evolution given by

��t� = e−iHt/���0�eiHt/�, �2�

where

��0� = �s�0��R�0� , �3�

i.e., we assume separable initial conditions. The reservoir is
assumed to be initially in a squeezed thermal state, i.e., it is
a squeezed thermal bath, with an initial density matrix �R�0�
given by

�R�0� = S�r,���thS†�r,�� , �4�

where

�th = �
k

�1 − e−���k�e−���kbk
†bk �5�

is the density matrix of the thermal bath, and

S�rk,�k� = exp�rk�bk
2

2
e−2i�k −

bk
†2

2
e2i�k	
 �6�

is the squeezing operator with rk, �k being the squeezing
parameters �46�. We are interested in the reduced dynamics
of the “open” system of interest S, which is obtained by
tracing over the bath degrees of freedom. Using Eqs. �1� and
�3� in Eq. �2� and tracing over the bath variables, we obtain
the reduced density matrix for S, in the system eigenbasis, as
�36�

�nm
s �t� = e−i�En−Em�t/�e−i�En

2−Em
2 ��kgk

2 sin��kt�/��2�k
2�

� exp�−
1

2
�Em − En�2�

k

gk
2

�2�k
2 coth�����k

2
		

� ��ei�kt − 1�cosh�rk� + �e−i�kt − 1�

� sinh�rk�ei2�k�2
�nm
s �0� . �7�

From Eq. �7� we obtain the master equation as
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�̇nm
s �t� = �−

i

�
�En − Em� + i�̇�t��En

2 − Em
2 �

− �En − Em�2�̇�t�
�nm
s �t� , �8�

where

��t� = − �
k

gk
2

�2�k
2 sin��kt� , �9�

and

��t� =
1

2�
k

gk
2

�2�k
2 coth����k

2
	��ei�kt − 1�cosh�rk�

+ �e−i�kt − 1�sinh�rk�ei2�k�2. �10�

For the case of an ohmic bath with spectral density

I��� =
�0

	
�e−�/�c, �11�

where �0 and �c are bath parameters, ��t� and ��t� can be
evaluated �36�, and we quote the results as follows:

��t� = −
�0

	
tan−1��ct� , �12�

and

��t� =
�0

2	
cosh�2r�ln�1 + �c

2t2�

−
�0

4	
sinh�2r�ln� �1 + 4�c

2�t − a�2�
�1 + �c

2�t − 2a�2�2

−

�0

4	
sinh�2r�ln�1 + 4a2�c

2� , �13�

at T=0, with t
2a,

��t� =
�0kBT

	��c
cosh�2r��2�ct tan−1��ct� + ln� 1

1 + �c
2t2	


−
�0kBT

2	��c
sinh�2r��4�c�t − a�tan−1�2�c�t − a���

− 4�c�t − 2a�tan−1��c�t − 2a�� + 4a�c tan−1�2a�c�

+ ln� �1 + �c
2�t − 2a�2�2

�1 + 4�c
2�t − a�2�

	 + ln� 1

1 + 4a2�c
2	 , �14�

for high T, and again with t
2a. Here we have taken, for
simplicity, the squeezed bath parameters as

cosh�2r���� = cosh�2r�, sinh�2r���� = sinh�2r� ,

���� = a� , �15�

where a is a constant depending upon the squeezed bath. We
will make use of Eqs. �9�, �10�, and �12�–�14� in the subse-
quent analysis. Note that the results pertaining to a thermal
bath can be obtained from the above equations by setting the
squeezing parameters r and � to zero.

III. QUANTUM PHASE DISTRIBUTION
FOR AN OSCILLATOR SYSTEM

As discussed in the Introduction, it is more convenient to
deal with the quantum phase distribution than a Hermitian
quantum phase operator. Following Agarwal et al. �35� we
define a phase distribution P��� for a given density operator
� as

P��� =
1

2	
������, 0 � � � 2	,

=
1

2	
�

m,n=0



�m,nei�n−m��, �16�

where the states �� are the eigenstates of the Susskind-
Glogower �29� phase operator corresponding to eigenvalues
of unit magnitude and are defined in terms of the number
states �n as

�� = �
n=0



ein��n . �17�

The sum in Eq. �16� is assumed to converge. The phase
distribution is positive definite and normalized to unity.

A. System of a harmonic oscillator

For the case where the system S is a harmonic oscillator
with the Hamiltonian

HS = ���a†a +
1

2
	 , �18�

the number states serve as an appropriate basis for the system
Hamiltonian and the system energy eigenvalue in this basis
is

En = ���n +
1

2
	 . �19�

Using this in Eq. �7� we obtain

�n,m
s �t� = e−i��n−m�tei����2�n−m��n+m+1���t�e−����2�n − m�2��t��n,m

s �0� ,

�20�

where ��t� and ��t� are as in Eqs. �9� and �10�, respectively.
The Hamiltonian described here has been used by Tur-

chette et al. �26� to describe an experimental study of the
decoherence and decay of quantum states of a trapped atomic
ion’s harmonic motion interacting with an engineered high-
temperature “phase reservoir,” which is simulated by random
variations in the trap frequency—changing the phase of the
ion oscillation without changing its energy, i.e., adiabatically
modulating the trap frequency. In such a system it would be
interesting to construct the quantum phase distribution asso-
ciated with the reduced density matrix of the system and
obtain the dynamics of the phase distribution as the system
evolves under the influence of its environment. Equation �20�
when substituted in Eq. �16� provides us with the phase dis-
tribution of the harmonic oscillator system interacting with
its environment via a QND type of interaction.
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Now we obtain the phase distributions for some physi-
cally interesting initial conditions of our harmonic oscillator
system S.

1. System initially in a coherent state

The initial density matrix of the system is

�s�0� = ����� , �21�

where

� = ���ei�0 �22�

is a coherent state �47�. Thus the initial density matrix in the
system basis is

�n,m
s �0� = �n�����m . �23�

Now making use of the expansion of the coherent state in
terms of the number states we get

���n =
���n

�n!
e−���2/2e−in�0. �24�

It is to be noted that each of the diagonal elements of the
above density matrix �23� is given by a Poisson distribution.
Using Eq. �24� �and its complex conjugate� in Eq. �23�, sub-
stituting it in Eq. �20�, and then using Eq. �20� in Eq. �16� we
obtain the phase distribution as

P��� =
1

2	
�

m,n=0


���n+m

�n ! m!
e−���2e−i�m−n���−�0�e−i��m−n�t

� ei����2�m−n��n+m+1���t�e−����2�n − m�2��t�. �25�

Figure 1 depicts the behavior of the quantum phase dis-
tribution P��� given by Eq. �25�, as a function of � �in radi-
ans� as it evolves under different environmental conditions.
It can be clearly seen that in comparison with the unitary

evolution �continuous curve�, as the temperature T increases,
the phase distribution broadens thereby indicating increasing
phase diffusion with T. The phase diffusion also increases
with an increase in the value of the squeezing parameter r,
defined by Eq. �15�, as is evident from a comparison of the
large-dashed and the dot-dashed curves. Also by comparing
the dot-dashed and double dot-dashed curves indicating the
same environmental conditions but different evolution times
t, it can be seen that an increase in exposure time to the
environment causes a corresponding increase in phase diffu-
sion. The broadening of the curves in all cases takes place in
such a fashion that the normalization of the phase distribu-
tion function is preserved. For all the figures in this paper, we
have set �=1.0, �c=100, ���2=5, a=0.0, and �0 �Eq. �22��
� 0.

2. System initially in a squeezed coherent state

The initial density matrix of the system is

�s�0� = ��,���,�� , �26�

where the squeezed coherent state is defined as �47�

��,� = S���D����0 . �27�

Here S denotes the standard squeezing operator and D de-
notes the standard displacement operator �47�. The initial
density matrix �26� in the system basis is

-3 -2 -1 0 1 2 3
Θ

0.25

0.5

0.75

1

1.25

1.5

1.75

P�Θ�

FIG. 1. Quantum phase distribution P��� given by Eq. �25�, for
a harmonic oscillator initially in a coherent state, as a function of �
�in radians�, for different environmental conditions and evolution
times. The parameters have been taken as �=1.0, �c=100, ���2
=5, a=0.0, �0=0.0025. The small-dashed and the large-dashed
curves are for temperatures T �in units with ��kB�1� =0 and 300,
respectively, with an environmental squeezing parameter r=2 and
at an evolution time t=0.1. The dot-dashed and the double dot-
dashed curves are at evolution times t=0.1 and 0.2, respectively, for
T=300 and r=1. The continuous curve represents unitary evolution
��0=0�.

-3 -2 -1 0 1 2 3
Θ

0.25

0.5

0.75

1

1.25

1.5

1.75

P�Θ�

FIG. 2. Quantum phase distribution P��� given by Eq. �29�, for
a harmonic oscillator initially in a squeezed coherent state, as a
function of � �in radians�, for different environmental conditions
and evolution times. The parameters have been taken as �=1.0,
���2=5, a=0.0, �0=0.0025; r1=0.5, and �=	 /4 �r1 and � are the
system squeezing parameters �26��. The small-dashed and the large-
dashed curves are for temperatures T �in units with ��kB�1� =0
and 300, respectively, at an environmental squeezing parameter �15�
r=2 and evolution time t=0.1. The dot-dashed and the double dot-
dashed curves are at evolution times t=0.1 and 0.2, respectively,
with T=300 and r=1. The continuous curve represents unitary evo-
lution ��0=0�.
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�m,n
s �0� = �m��s�0��n =

ei��m−n�/2

2�m+n�/2�m ! n!

�tanh�r1���m+n�/2

cosh�r1�
exp�− ���2�1 − tanh�r1�cos�2�0 − ����

� Hm� ���ei��0−�/2�

�sinh�2r1�
	Hn

*� ���ei��0−�/2�

�sinh�2r1�
	 , �28�

where �=r1ei�. Here Hn�z� is a Hermite polynomial. Using Eq. �28� in Eq. �20� and substituting it in Eq. �16� we obtain the
phase distribution as

P��� =
1

2	
�

m,n=0



ei�n−m�� ei��m−n�/2

2�m+n�/2�m ! n!

�tanh�r1���m+n�/2

cosh�r1�
� exp�− ���2�1 − tanh�r1�cos�2�0 − ����

� Hm� ���ei��0−�/2�

�sinh�2r1�

Hn

*� ���ei��0−�/2�

�sinh�2r1�

 � e−i��m−n�tei����2�m−n��n+m+1���t�e−����2�n − m�2��t�. �29�

Figure 2 clearly indicates an increase in phase diffusion,
corresponding to a broadening of the phase distribution
curve, with an increase in T or bath squeezing parameter r or
evolution time t, as was the case in Fig. 1. An interesting
difference can be seen in the phase distribution curves cor-
responding to unitary evolution �continuous curves� in Figs.
1 and 2, viz., the continuous curve in Fig. 2 is more tilted
than that in Fig. 1. This is due to the squeezing inherent in
the initial state of the system �26� which is quantified by the
parameters r1 and �.

B. System of an anharmonic oscillator

Here we take up the case where the system is modeled as
an anharmonic oscillator with the Hamiltonian

HS = ���a†a +
1

2
	 +

��

2
�a†�2a2. �30�

This has been used, for example, in studies related to a non-
absorbing Kerr medium interacting with a single mode of the
quantized electromagnetic field �37,38�. In such a context �
is related to the third-order susceptibility of the Kerr medium
�48�. The above Hamiltonian can be expressed �up to con-
stant factors� in terms of the generators K0, K+, and K− of the
SU�1,1� group. These generators have the following bosonic
representation:

K0 =
1

4
�a†a + aa†�, K+ =

1

2
�a†�2, K− =

1

2
�a�2. �31�

In terms of these generators, Eq. �30� can be expressed as

HS = 2��K0 + 2��K+K−. �32�

We make use of the unitary irreducible representations of the
group SU�1,1� known as the positive discrete series D+�k�,
where k is the so-called Bargmann index �49�, such that the
eigenvalue of the Casimir operator of the group is k�k−1�.
This gives the value of k to be 1

4 or 3
4 �50,51�. The case of

k= 1
4 marks the even sector of the representation with the

vacuum state in this representation coinciding with the
vacuum state of the harmonic oscillator, while the case of
k= 3

4 marks the odd sector of the representation. Thus the
even and the odd sectors of the representation together span
the number states �52�. The basis for this representation
obeys the following properties:

K0�m,k = �m + k��m,k ,

K+�m,k = ���m + 1��m + 2k���m + 1,k ,

K−�m,k = ��m�m + 2k − 1���m − 1,k , �33�

where m=0,1 ,2 , . . . . Using the above properties of the gen-
erators, the action of HS �30� on the basis of this representa-
tion is found to be

HS�m,k = 2����m + k� + �m�m + 2k − 1���m,k = Emk
�m,k .

�34�

We use the above equation in Eq. �7� to obtain the reduced
density matrix of the system S in the system basis �m ,k as

�mk,nk

s �t� = e−2i�m−n���+��m+n+2k−1��t � e4i�2�m−n���+��m+n+2k−1�����n+m+2k�+��n2+m2+�2k−1��m+n�����t�

� e−4�2�m − n�2�� + ��m + n + 2k − 1��2��t��mk,nk

s �0� . �35�
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Now let us consider some physically interesting initial
conditions for our anharmonic oscillator system S.

1. System initially in a Kerr state

An initial Kerr state ��K �37� can be obtained as a result
of an interaction of the usual coherent state of the electro-
magnetic field with a nonlinear Kerr medium mediated by
the Hamiltonian HS given in Eq. �30�. This state is defined in
terms of the number states as

��K = �
n

qn�n , �36�

where

qn =
�n

�n!
e−���2/2e−i�n�n−1�. �37�

Here �n represents the usual number state and �= �L
2v , where

� is as in Eq. �30�, L is the length of the medium, and v is the

speed of light in the Kerr medium in which the interaction
has taken place. Thus the initial system density matrix is

�mk,nk

s �0� = �m,k��K��K�n,k

= q2mq2n
* for k =

1

4

= q2m+1q2n+1
* for k =

3

4
, �38�

because the state �m ,k with k= 1
4 represents an even number

state while the state �m ,k for k= 3
4 represents an odd number

state. The phase distribution is obtained as follows, by sub-
stituting Eq. �38� in Eq. �35� and then in Eq. �16�, making
use of the fact that for the positive discrete series represen-
tation of the group SU�1,1�, the even and the odd sectors
together span the number states:

P��� =
1

2	
�

m,n=0



q2mq2n
* ei2�n−m��e−2i�m−n���+��m+n−1/2��t � e4i�2�m−n���+��m+n−1/2�����n+m+1/2�+��n2+m2−1/2�m+n�����t�

� e−4�2�m − n�2�� + ��m + n − 1/2��2��t� +
1

2	
�

m,n=0



q2m+1q2n+1
* ei2�n−m��e−2i�m−n���+��m+n+1/2��t

� e4i�2�m−n���+��m+n+1/2�����n+m+ 3
2�+��n2+m2+ 1

2
�m+n�����t� � e−4�2�m − n�2�� + ��m + n + 1/2��2��t�. �39�

q2m, q2m+1 can be obtained from Eq. �37�.
Figures 3 and 4 represent the evolution of the quantum

phase distribution P��� given by Eq. �39�, as a function of �
for an anharmonic oscillator system �30� starting from an
initial Kerr state �36�. While Fig. 3 represents the evolution
for a fixed evolution time but different environmental condi-
tions, Fig. 4 represents different evolution times under the
same environmental conditions. From Fig. 3 it is evident that
increasing the temperature T causes a broadening of the
phase distributions. Increased phase diffusion also results
from an increase in environmental squeezing r. Figure 4
clearly shows that with an increase in the evolution time t,
i.e., an increase in exposure to the environment, the quantum
phase distribution shifts as well as diffuses. A similar con-
clusion was obtained by Agarwal et al. �35� for an analogous
situation studied under unitary evolution.

2. System initially in a squeezed Kerr state

A squeezed Kerr state �37� is defined in terms of the num-
ber states as

��SK = �
m

sm�m . �40�

Thus the initial system density matrix in the system basis
�m ,k �34� is

�mk,nk

s �0� = �m,k��SK��SK�n,k = s2ms2n
* for k =

1

4

= s2m+1s2n+1
* for k =

3

4
. �41�

Here

s2m = �
p

q2pG2m2p�z� , �42�

and

s2m+1 = �
p

q2p+1G2m+12p+1�z� , �43�

with z=r1ei�, and Gmp�z�= �m �S�z� � p, where S�z� is the
usual squeezing operator, is given by �53�

G2m2p =
�− 1�p

p ! m!
� �2p� ! �2m�!

cosh�r1� 	1/2

exp�i�m − p���

� � tanh�r1�
2

	�m+p�

F1
2�− p,− m;

1

2
;−

1

�sinh�r1��2	 .

�44�

Similarly, G2m+12p+1�z� is given by
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G2m+12p+1 =
�− 1�p

p ! m!
� �2p + 1� ! �2m + 1�!

cosh3�r1� 	1/2

exp�i�m − p���

� � tanh�r1�
2

	�m+p�

F1
2�− p,− m;

3

2
;−

1

�sinh�r1��2
 .

�45�

Here F1
2 is the Gauss hypergeometric function �54�. We make

use of even p in Eqs. �42� and �44�, and odd p in Eqs. �43�
and �45�, because as has been pointed out in �53�, Gmn is
nonzero only for m ,n either both even or both odd. Since m
is even in Eq. �42�, it follows that p too should be even, and
similarly for Eq. �43� where m is odd. For convenience, it is
sometimes assumed that � is zero and z=r1 is real. Using
Eqs. �42�–�45� in Eq. �41�, substituting it in Eq. �35�, and
then in Eq. �16�, we obtain the phase distribution function as

P��� =
1

2	
�

m,n=0



s2ms2n
* ei2�n−m��e−2i�m−n���+��m+n−1/2��t

� e4i�2�m−n���+��m+n−1/2�����n+m+1/2�+��n2+m2−�m+n�/2����t�

� e−4�2�m − n�2�� + ��m + n − 1/2��2��t�

+
1

2	
�

m,n=0



s2m+1s2n+1
* ei2�n−m��e−2i�m−n���+��m+n+1/2��t

� e4i�2�m−n���+��m+n+1/2�����n+m+3/2�+��n2+m2+�m+n�/2����t�

� e−4�2�m − n�2�� + ��m + n + 1/2��2��t�. �46�

Here s2m is as in Eq. �42� and s2m+1 is as in Eq. �43�.
Figure 5 depicts the evolution of the quantum phase dis-

tribution P��� given by Eq. �46�, as a function of � for an
anharmonic oscillator system �30� starting from an initial
squeezed Kerr state �40�. The environmental effects are
clearly depicted in that an increase in temperature T and
squeezing parameter r results in the broadening of the phase
distribution indicating increased phase diffusion. In the same
figure, a drastic influence of the environment on the unitary
behavior can be seen from the sharp fall in the amplitude of
the phase distribution with the inclusion of environmental
effects. A comparison between the unitary evolutions �con-
tinuous curves� of Figs. 3 and 5 highlights the difference in
the initial conditions of the system depicted in these curves.
The peak amplitude of the unitary evolution �continuous
curve� is greater in case of a system initially in a squeezed
Kerr state �Fig. 5� than that in a Kerr state �Fig. 3�. This is
indicative of the additional squeezing in the initial state for
Fig. 5. The corresponding narrowing of the peaks in Fig. 5 is
due to the fact that the phase distributions are normalized.
Note that the multiple peaks are a common feature of the
quantum phase distributions of the anharmonic oscillator
system �30� as opposed to the single peaks of the harmonic
oscillator system �18�.
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0.8

P�Θ�

FIG. 3. Quantum phase distribution P��� given by Eq. �39�, for
an anharmonic oscillator initially in a Kerr state, as a function of �
�in radians�, for different environmental conditions at a fixed time
of evolution. The parameters have been taken as �0=0.0025, ���2
=5, �=1.0, �=�=0.02, and evolution time t=0.1. The small-
dashed and the large-dashed curves are for the bath squeezing pa-
rameter r=0 and 2, respectively, at T �in units with ��kB�1� =50.
The dotted curve is for T=0 and r=2. The continuous curve repre-
sents unitary evolution ��0=0�.
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FIG. 4. Time evolution of the quantum phase distribution P���
given by Eq. �39�, for an anharmonic oscillator initially in a Kerr
state, as a function of � �in radians�, for different evolution times
under fixed environmental conditions. The parameters have been
taken as �0=0.0025, ���2=5, �=1.0, �=�=0.02 �as in Fig. 3�, T
=0, and r=2. The dotted curve is for an evolution time t=0.1, the
small-dashed curve is for t=0.5, and the large-dashed curve is for
t=1.0.
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FIG. 5. Quantum phase distribution P��� given by Eq. �46�, for
an anharmonic oscillator initially in a squeezed Kerr state, as a
function of � �in radians�, for different environmental conditions.
The parameters have been taken as t=0.1, �=�=0.02, �0=0.025,
r1=0.4, and �=0 �r1, � are the system squeezing parameters�. The
dot-dashed and the dotted curves are for T �in units with ��kB� 1�
=0 and 100, respectively, with the environmental squeezing param-
eter r=1. The large-dashed curve is at T=100 and r=0. The con-
tinuous curve represents the unitary evolution ��0=0�.
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IV. QUANTUM PHASE DISTRIBUTION
OF A TWO-LEVEL ATOMIC SYSTEM

In this section we discuss the case where our system S is
a two-level atom with a representation of the group SU�2�.
The system Hamiltonian, to be substituted in Eq. �1�, is

HS =
��

2
�Z, �47�

where �Z is the usual Pauli matrix �as has been used, for
example, in the quantum computation models in �39–41��.
The Wigner-Dicke states �43,44,55� �j ,m, which are the si-
multaneous eigenstates of the angular momentum operators
J2 and JZ, serve as the basis states for HS and we have

HS�j,m = ��m�j,m = Ej,m�j,m . �48�

Here −j�m� j. Using this basis and the above equation in
Eq. �7� we obtain the reduced density matrix of the system as

� jm,jn
s �t� = e−i��m−n�tei����2�m2−n2���t�

� e−����2�m − n�2��t�� jm,jn
s �0� . �49�

Following Agarwal and Singh �42� we introduce the phase
distribution P���, � being related to the phase of the dipole
moment of the system, as

P��� =
2j + 1

4	
�

0

	

d� sin �Q��,�� , �50�

where P���
0 and is normalized to unity, i.e.,
�0

2	d�P���=1. Here Q�� ,�� is defined as

Q��,�� = ��,���s��,� , �51�

where �� ,� are the atomic coherent states �56,57� given by
an expansion over the Wigner-Dicke states �44� as

��,� = �
m=−j

j � 2j

j + m
	1/2

�sin��/2�� j+m

��cos��/2�� j−m�j,me−i�j+m��. �52�

Using Eq. �51� in Eq. �50�, with insertions of partitions of
unity in terms of the Wigner-Dicke states, we can write the
phase distribution function as

P��� =
2j + 1

4	
�

0

	

d� sin � �
n,m=−j

j

��,��j,n�j,n��s�t��j,m

��j,m��,� . �53�

We make use of Eq. �49� and

�j,m��,� = � 2j

j + m
	1/2

�sin��/2�� j+m�cos��/2�� j−me−i�j+m��,

�54�

and its conjugate in Eq. �53� to obtain the required phase
distribution for specific initial conditions of the system S. Let
us now consider some physically interesting initial condi-
tions for the two-level system S.

A. System initially in a Wigner-Dicke state

A Wigner-Dicke state is the atomic analogue of the Fock
state �44�. The initial density matrix of the system S in this
case is

�s�0� = �j,m̃�j,m̃� , �55�

which gives

�j,n��s�t��j,m = �n,m̃�m̃,m. �56�

Using this, the phase distribution becomes

P��� =
2j + 1

2	
� 2j

j + m̃
	B�j + m̃ + 1, j − m̃ + 1� . �57�

Here B stands for the beta function. It is evident from Eq.
�57� that the phase distribution for the atomic system starting
in a Wigner-Dicke state is uniform and is independent of any
bath dynamics. Here, since we have only one two-level sys-
tem in Eq. �47�, j= 1

2 and P��� can be seen to go over to 1
2	 ,

i.e., a uniform distribution.

B. System initially in an atomic coherent state

An atomic coherent state is the atomic analogue of the
Glauber coherent state �44�. The initial density matrix of the
system S in this case is

�s�0� = ��,���,�� , �58�

yielding the following matrix element in the �j ,m basis:

�j,n��s�t��j,m = e−i��n−m�tei����2�n2−m2���t�e−����2�n − m�2��t�

��j,n��,���,��j,m . �59�
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Φ
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FIG. 6. Quantum phase distribution P��� given by Eq. �62�, for
a two-level atom initially in an atomic coherent state, as a function
of � �in radians�, for different environmental conditions and evolu-
tion times. The parameters have been taken as �=�=	 /4 �Eq.
�58��, and �0=0.025. The continuous curve and the dotted curve are
for the bath squeezing parameter r=0 and 2, respectively, at a tem-
perature T=0 and an evolution time t=0.1. The small-dashed and
the large-dashed curves correspond to evolution times t=0.1 and
0.02, respectively, at T �in units with ��kB�1� =300 and r=2.
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Using Eqs. �59� and �54� in Eq. �53� we obtain the phase distribution as

P��� =
2j + 1

4	
�

0

	

d� sin � �
n,m=−j

j � 2j

j + n
	� 2j

j + m
	�sin��/2��2j+n+m

��cos��/2��2j−n−me−i�n−m���sin��/2��2j+n+m�cos��/2��2j−n−me−i��n−m�tei����2�n2−m2���t�e−����2�n − m�2��t�ei�n−m��. �60�

In the above equation, the � integral can be carried out to yield

P��� =
2j + 1

2	
�

n,m=−j

j � 2j

j + n
	� 2j

j + m
	�� j +

1

2
�n + m� + 1��� j −

1

2
�n + m� + 1�

��2j + 2�
e−i�n−m���sin��/2��2j+n+m�cos��/2��2j−n−me−i��n−m�t

�ei����2�n2−m2���t�e−����2�n − m�2��t�ei�n−m��. �61�

Here � is the standard gamma function. Since HS given by
Eq. �47� represents a single two-level atom, j= 1

2 . Eq. �61� is
thus considerably simplified and we obtain the phase distri-
bution as

P��� =
1

2	
�1 +

	

4
sin � cos�� + �t − ��e−����2��t�
 .

�62�

It can be easily checked that this P��� is normalized to unity.
As can be seen from Eq. �62�, only ��t� plays a role in
carrying the effect of the environment on the phase distribu-
tion. For a generic QND open quantum system described by
Eq. �1�, it can be shown that �̇�t� is the decoherence causing
term �36�. Thus Eq. �62� is a simple and neat formula clearly
illustrating the effect of the environment on phase diffusion.
By making use of ��t� from Eqs. �13� and �14� for T=0 and
for high T, respectively, we find that the second term on the
right-hand side of Eq. �62� has a power-law decay at zero T
and an exponential decay at high T, and eventually the phase
distribution tends to the uniform limit of 1

2	 . Thus the effect
of the environment stays for a longer time at zero T as com-
pared to that at high T.

Figure 6 depicts the evolution of the quantum phase dis-
tribution P��� given by Eq. �62�, as a function of � �in
radians� for different environmental conditions. It is clearly
seen that increasing the temperature T, the bath squeezing
parameter r, and the environment exposure time t cause a
broadening of the phase distribution curve, indicating an in-
crease of phase diffusion. The broadening of the curves pre-
serves the normalization of the phase distribution.

C. System initially in an atomic squeezed state

An atomic squeezed state �45,56–58� is expressed in
terms of the Wigner-Dicke states as

��,p = Ap exp��JZ�exp�− i
	

2
JY	�j,p , �63�

where

e2� = tanh�2���� , �64�

with � indicating the initial squeezing of the system. The
initial density matrix of the system S in this case is

�s�0� = ��,p��,p� . �65�

Using Eq. �53� along with the expressions

�j,n��s�t��j,m = e−i��n−m�tei����2�n2−m2���t�e−����2�n − m�2��t�

��j,n��,p��,p�j,m , �66�

and

�j,n��,p = Apen�dnp
j �	

2
	 , �67�

�56�, where dnp
j � 	

2
� is the standard Wigner symbol for the

rotation operator �59� as follows:

dnp
j �	

2
	 = �j,n�e−i	/2JY�j,p , �68�

and

�Ap�2 = ��
r

�− 1�r�2j − r� ! �cosh ��2j−2r

r ! �j + p − r� ! �j − p − r�! 	−1

, �69�

we obtain the phase distribution function as

P��� =
2j + 1

4	
�Ap�2�

0

	

d� sin � �
n,m=−j

j � 2j

j + n
	1/2� 2j

j + m
	1/2

� �sin��/2��2j+n+m�cos��/2��2j−n−mei�n−m��

� e−i��n−m�tei����2�n2−m2���t�

� e−����2�n − m�2��t�e�n+m��dnp
j �	

2
	dmp

*j �	

2
	 . �70�

In Eq. �70� the � integral can be carried out to yield
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P��� =
2j + 1

2	
�Ap�2 �

n,m=−j

j � 2j

j + n
	1/2� 2j

j + m
	1/2�� j +

1

2
�n + m� + 1��� j −

1

2
�n + m� + 1�

��2j + 2�

� ei�n−m��e−i��n−m�tei����2�n2−m2���t�e−����2�n − m�2��t�e�n+m��dnp
j �	

2
	dmp

*j �	

2
	 . �71�

As discussed in Sec. IV B above, for a single two-level sys-
tem j= 1

2 . We take up two cases for the two values of p
appearing in Eq. �63�: p=− 1

2 called the south pole of the
phase space of the two-level system, and p= 1

2 called the
north pole of the phase space �45�.

�a� South pole �p=− 1
2

�. The phase distribution in Eq. �71�
is considerably simplified to give

P��� =
1

2	
�1 −

	

4 cosh �
cos�� − �t�e−����2��t�
 . �72�

�b� North pole �p= 1
2

�. Equation �71� is simplified to give

P��� =
1

2	
�1 +

	

4 cosh �
cos�� − �t�e−����2��t�
 . �73�

Ap is defined by Eqs. �63� and �67� and is usually fixed by
normalization as in the above equations, where �Ap�2
= �cosh ��−1 which is equal to 1 for �=0 �56�, implying an
infinite initial squeezing � of the system �64�. The expression
in Eq. �72� for the south pole in the phase space and that in
Eq. �73� for the north pole in the phase space differ from
each other by a sign in the second part of the expressions.
The contrast between them can be seen clearly from Figs. 7
and 8. As seen from the figures, with the increase in tempera-
ture T or the exposure time to the environment t, the phase
distribution curves flatten out indicating increased phase dif-

fusion. These curves bring out another notable feature, viz.,
with the increase in bath exposure time t or temperature T,
the effect of squeezing, indicated by the parameter r, is
washed out. This behavior is analogous to the effect of
squeezing in oscillator systems, where with the increase in
bath exposure time t and temperature T, the nonstationary
effects introduced by the squeezed bath are washed out �60�.

Equations �72� and �73� are easily seen to be normalized
to unity. As in Sec. IV B above, the effect of the environment
shows up in the above equations only in the function ��t�,
responsible for decoherence. As was the case in the previous
Sec. IV B, from the forms of the function ��t�, for an ohmic
bath, given by Eqs. �13� and �14� for T=0 and for high T,
respectively, we find that the second term on the right-hand
side of Eqs. �72� and �73� has a power-law decay at zero T
and an exponential decay at high T, and eventually the phase
distribution tends to the uniform limit of 1

2	 seen in the case
in Sec. IV A. Thus the effect of the environment stays for a
longer time at zero T as compared to high T, and eventually
the distribution tends to the same uniform value irrespective
of the initial state being a coherent or a squeezed state. As
pointed out in �42,45,57�, the state �� , p in Eq. �63� has an
inherent squeezing which is represented by � in Eq. �64� and
the environmental squeezing r is encapsulated in the function
��t� given by Eq. �10�. Thus the results �72� and �73� bring
out the relative importance of the different squeezing sources
and hence are applicable in the context of the experiment of
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FIG. 7. Quantum phase distribution P��� given by Eq. �72�, at
the south pole of the phase space for a two-level atom initially in an
atomic squeezed state, as a function of � �in radians�, for different
environmental conditions. The system squeezing parameter �64� �
is taken as =−0.5494, the bath squeezing parameter r=1, and �0

=0.025. The continuous curve corresponds to a temperature T=0
and an evolution time t=0.1, while the small-dashed and large-
dashed curves correspond to evolution times t=0.1 and 0.05, re-
spectively, at T �in units with ��kB� 1� =300.
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FIG. 8. Quantum phase distribution P��� given by Eq. �73�, at
the north pole of the phase space for a two-level atom initially in an
atomic squeezed state, as a function of � �in radians�, for different
environmental conditions. The system squeezing parameter �64� �
has been taken as =−0.5494, the bath squeezing parameter r=1, and
�0=0.025. The continuous curve corresponds to a temperature T
=0 and an evolution time t=0.1, while the small-dashed and large-
dashed curves correspond to evolution times t=0.1 and 0.05, re-
spectively, at T �in units with ��kB�1� =300.
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Kuzmich et al. �23� concerning the role of the environment
on the atomic quantum nondemolition measurements and
squeezing.

V. CONCLUSIONS

In this paper we have analyzed the quantum phase distri-
bution of a number of physically interesting systems inter-
acting with their environment via a QND type of coupling.
We have taken our system to be either an oscillator �har-
monic or anharmonic� or a two-level atom �or equivalently, a
spin-1/2 system�, and modeled the environment as a bath of
harmonic oscillators, initially in a general squeezed thermal
state, from which the common thermal bath results may be
easily extracted by setting the squeezing parameters to zero.
We have explicitly evaluated the phase distribution and
worked out the effects of different environmental parameters
on the dynamics of the system starting with various initial
states.

In particular, for a harmonic oscillator system in QND
interaction with its environment �Sec. III A�, we have con-
sidered two different initial conditions of the system, starting
�1� in a coherent state, and �2� in a squeezed coherent state.
The phase distribution corresponding to the unitary evolution
in the second case is more tilted than that in the first case,
which is a signature of the squeezing inherent in the initial
state of the system. We have next taken an anharmonic os-
cillator �Sec. III B�, which could arise, for example, from the
interaction of a single mode of the quantized electromagnetic
field with a Kerr medium, and constructed its phase distribu-
tion, again for different initial conditions: �1� the system
starting in a Kerr state, and �2� the system starting in a
squeezed Kerr state. With an increase in the evolution time t,
indicating an increase in exposure to the environment, the

quantum phase distribution in the first case shifts as well as
diffuses.

We have then studied the phase distribution for a discrete
two-level atom �Sec. IV�, for different initial conditions of
the system, starting �1� in a Wigner-Dicke state, which is the
atomic analog of the standard Fock state, �2� in an atomic
coherent state, which is the atomic analogue of the Glauber
coherent state, and �3� in an atomic squeezed state. In the
first test case, the phase distribution is uniform and is inde-
pendent of any bath dynamics. In the other two cases, it is
seen that the effect of the environment stays for a longer time
at zero temperature than that at high temperature, and even-
tually the distribution tends to the uniform value of the first
case, irrespective of the initial state of the system.

In all the cases considered, a broadening of the phase
distribution curve, indicating an increase in phase diffusion,
results with an increase in the bath temperature T or bath
squeezing parameter r or evolution time t. The broadening of
the curves, of course, preserves the normalization of the
phase distribution. Even though each system considered is an
“open” system, we could make use of the underlying group
symmetries of the system Hamiltonians, because of the QND
nature of the system-environment coupling. Our quantitative
results are of potential use in the analysis of a broad class of
relevant experimental situations dealing with quantum non-
demolition measurements and squeezing.
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