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We analyze photon scattering by a harmonically trapped ion using two-port interferometry of the scattered
photon and coherent-state measurement of the ion’s external recoil motion. We examine how the coherent-state
measurement could be used to mimick both momentum and position ion measurements and thus a modern
realization of Wootters and Zurek’s pioneering analysis of Einstein’s historic recoiling-slit gedanken experi-
ment. To quantify the photon-path which-port information cached in the recoiling ion and the underlying
wave-particle duality, we evaluate the ion-state trace distance and distinguishability.
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I. INTRODUCTION

Some time ago, Wootters and Zurek �1� revisited the Ein-
stein recoiling-slit gedanken experiment to analyze Young’s
double-slit interferometry to include in detail the photon
which-path information stored in the recoiling entrance slit.
They assumed an entrance slit cut into a spring-mounted
plate that could be treated as a quantum oscillator under the
action of a passing photon. They then considered alternative
position and momentum measurements of the plate and the
effect of the measurements on the photon interference. Woot-
ters and Zurek thus exploited the underlying photon-plate
entanglement to formulate quantitative statements about
wave-particle duality, and their work became one of the first
major publications on the subject.

Here, we consider photon scattering by a trapped ion as a
modern realization of Wootters and Zurek’s quantum analy-
sis of the recoiling-slit experiment. While a harmonically
trapped ion provides a perfect quantum realization of a
spring-mounted plate and entrance slit, we find that a
coherent-state measurement of the recoiling ion, besides
likely having experimental advantages, can mimic both po-
sition and momentum measurements of the ion in full anal-
ogy with Wootters and Zurek. One readily identifies the re-
sulting photon fringe visibility as the overlap of recoil-ion
marker states describing a photon scattered towards one or
the other slit. When the overlap vanishes, the direction of the
scattered photon can in principle be determined via the
photon-ion entanglement by a measurement of the recoil ion,
blocking an interference effect. On the other hand, when the
overlap is perfect the interference is as well, and neither the
direction of the recoiling ion nor of the scattered photon is
discernible. The intermediate stage of duality characterized
by moderate overlap continues to warrant further study.

Trapped-ion interferometry has advanced extraordinarily
in recent years. Young’s fringes formed by photons scattered
by a pair of harmonically trapped 198Hg+ ions have been
observed and analyzed in detail by Wineland, Itano, and co-
workers at NIST-Boulder �2�: Coherent and squeezed states
�3� as well as double-humped superpositions of displaced
coherent states �4� of �external� motion of a harmonically

trapped 9Be+ ion have been engineered by Monroe,
Meekhof, Wineland, and co-workers. Entanglement analo-
gous to the photon-ion external-motion entanglement we
consider here has been observed between the internal states
of a trapped ion and a polarization-analyzed fluorescence
photon by Blinov, Monroe, and co-workers at Michigan �5�.
In a recent tour de force, quantum teleportation between
three trapped ions has been achieved by Wineland, Itano, and
co-workers at NIST �7� and independently by Blatt and co-
workers at the Universität Innsbruck �6�.

We introduce an impulse approximation to separate the
internal states of the ion that scatter the photon from the ion’s
external c.m. motion and to ensure momentum conservation
explicitly. Our description is based on photon-ion momentum
entanglement and is readily linked to the Wootters and Zurek
analysis. Because of the improved detection efficiency, we
consider basic two-port photon interferometry with a sym-
metric beam splitter in place of the Young’s double-slit in-
terferometry that Wootters and Zurek considered. The work
we describe here is an outgrowth of our related consider-
ations of reaction and fragmentation interferometry �8,9�. We
have found �10� the impulse approximation to be a useful
tool in describing and analyzing a variety of decoherence
effects involving double-humped center-of-mass �c.m.� states
of a single atom or ion inside an atom or trapped-ion inter-
ferometer, including a particularly compact derivation of the
ion-pair Young’s interference observed at NIST �2�.

We have organized the paper as follows. In the next sec-
tion, we apply the impulse approximation to describe the
photon scattering and ion recoil and thus to describe the
photon-ion entanglement when the photon is detected by
two-port interferometry. In Sec. III, we derive photon-ion
joint detection probabilities generally but in a form that fa-
cilitates comparison with Wootters and Zurek. In Sec. IV, we
specialize to position and momentum measurements of the
ion to connect explicitly with Wootters and Zurek’s discus-
sion, and in Sec. V we derive form identical results using
coherent-state measurement of the recoiling ion. In Sec. VI,
we examine quantitatively how reliably the photon path can
be predicted for a given fringe visibility by evaluating the
trace distance and the distinguishability. We conclude with a
short summary in Sec. VII.*Electronic address: jfeagin@fullerton.edu
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II. PHOTON-ION ENTANGLEMENT

We consider an incident photon k� resonantly scattered by
a single trapped-ion target, as depicted in Fig. 1. We assume
for simplicity the photon encounter is impulsive and that the
ion’s external center-of-mass �c.m.� motion is described
throughout the collision by the initial wave function g0�C�
with C the c.m. position. Then, the asymptotic photon-ion
scattered wave in the impulse approximation is given by �11�
�see also �10��

� �
eikr

r
f��k�eiq·Cg0�C� , �1�

where k�kr̂, q�k�−k, and f��k� is the resonance fluores-
cence amplitude. Thus, �q is the momentum transfer to the
target by the scattered photon and eiq·C the corresponding
momentum boost of the target external state once a photon
detection direction r̂ has been selected �12�. The impulse
approximation disconnects the target’s external motion dur-
ing the scattering and allows the photon scattering amplitude
involving the ion’s internal states to be factored from the full
scattering amplitude. Therefore, �f��k��2 is the resonance
fluorescence cross section for free-atom scattering.

As also depicted in Fig. 1, we consider two-port detection
interferometry of the scattered photon. We thus select a su-
perposition of asymptotic waves from Eq. �1� corresponding
to photon scatter towards one or the other entrance ports
along k+ or k−. If for simplicity we consider only dipole
transitions and photons linearly polarized perpendicular to
the plane of the interferometer, we can write this superposi-
tion as the photon-ion momentum entangled state

��� = 2−1/2��k+��q+� + �k−��q−�� , �2�

where we have renormalized to a single photon entering the
interferometer in state �k+� or �k−� with the ion recoiling in
the corresponding motional state �q+� or �q−�. Thus, 	r �k±�
=eik±·r=eikr are the asymptotic photon plane waves, while
	C �q±��eiq±·Cg0�C� are the corresponding wave functions
of the recoiling ion in the impulse approximation and thus
define the scattering form factors

Fm± � 	gm�q±� = 	gm�eiq±·C�g0� , �3�

where the states 	gm� describe the measurement of the ion’s
external c.m. motion. If one can measure �q+� or �q−� cleanly,
one can determine with certainty which port A or B the pho-

ton enters, and one also refers to the ion-recoil marker states
�q±�.

We thus mostly ignore in our analysis the internal elec-
tronic states of the ion and simply assume they constitute a
two-level system with an upper �resonant� state and a single
lower state, for example, the pair of states used in the Dop-
pler cooling and for the quantum-jump measurements of
trapped ions. The scattered photon momentum �k and there-
fore the ion momentum transfer �q depend in principle on
the final c.m. energy of the ion Em via energy conservation.
However, �Em=Em−E0��2q2 /2M with M the ion mass, so
that we can assume k=k� to good approximation. This as-
sumption is not unrelated to the validity of the impulse ap-
proximation which assumes the time development of the ex-
ternal motion is switched off or frozen during the
fluorescence scattering, so that a rough criterion for the va-
lidity of Eq. �1� is to require the fluorescence lifetime to
remain small compared to the excitation time of the external
motion so that, say, �Em /��r�1, where �r is the decay rate
of the resonance.

For example, in the case of the ion-pair Young’s fringes
observed at NIST �2�, the �single-ion� recoil energy from the
��=194 nm scattered photons is approximately �Em�h
�26.7 kHz compared to a resonance width of ��r
h
�70 MHz, so that �Em /��r	0.001. By comparison, the
trap frequency was 
x /2�
1 MHz corresponding to a pe-
riod of oscillation a few hundred times longer than the reso-
nance lifetime, viz. 2� /
x
440/�r. Likewise, the natural
linewidth of the 9Be+ fluorescence used to observe various
nonclassical states of ion motion �3,4� is ��r
h
�19.4 MHz and therefore �86 photon recoils wide so that
�Em /��r�0.01. By comparison, the trap frequency was

x /2�
11.2 MHz corresponding to a period of oscillation
�=2� /
x some 11 times longer than the resonance lifetime,
viz. �
10.9/�r.

III. PHOTON-ION JOINT PROBABILITIES

We assume our photon interferometer consists of a pair of
phase shifters and a symmetrical beam splitter, as depicted in
Fig. 1, and thus with sufficient generality represent our pho-
ton measurements with the states

	kL,R� = 2−1/2�e−i/2	k+� ± e+i/2	k−�� , �4�

where  is a phase angle set by the phase shifters, which we
shall assume can be varied. As also depicted in Fig. 1, kL,R
represent left �L� and right �R� exit ports of the beam splitter
as viewed from the ion out along the axis of the interferom-
eter. Then, assuming a coincidence measurement of the ion’s
external c.m. motion described by 	gm�, we thus calculate
joint photon-ion detection probabilities according to

ImL,R�� = �	kL,R,gm����2 =
1

2
�Im ± 2Im+

1/2Im−
1/2 cos� − ��m�� ,

�5�

where we have introduced the joint which-port probabilities
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FIG. 1. �Color online� Incident photon with momentum �k�

scattered by a linearly trapped ion towards the entrance ports A and
B of an interferometer with beam splitter �BS� and phase shifters
�PS�.
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Im± = �	k±,gm����2 =
1

2
�Fm±�2 �6�

that determine the likelihood via the form factors from Eq.
�3� that the photon scatters towards port A �k+� or port B �k−�
along with finding the ion’s c.m. described by 	gm�, so that
Im= Im++ Im− is the joint probability that the photon enters the
interferometer �13�. Also, ��m=�m+−�m− is the phase dif-
ference from Fm±= �Fm±�ei�m±.

To facilitate comparison with Wootters and Zurek, it is
convenient to take this a step further and introduce condi-
tional probabilities

pm± = Im±/Im, �7�

for hitting port A or port B given the ion c.m. measurement
result 	gm� so that pm++ pm−=1 �14�. Then, the photon-ion
joint probability Eq. �5� can be expressed as

ImL,R�� =
1

2
Im�1 ± 2pm+

1/2pm−
1/2 cos� − ��m�� . �8�

Note, ImL��+ ImR��= Im, the probability the photon enters
the interferometer, independent of .

Equation �8� generalizes the Einstein recoiling-slit experi-
ment to arbitrary ion measurement states 	gm�. These joint
probabilities describe partial interference patterns of en-
sembles of photons correlated to particular measurements
performed on the ion. What particular partial interference
pattern is observed depends on what measurement is per-
formed on the ion. We nevertheless readily obtain the total
photon interference pattern when the ion c.m. measurement
results are ignored by summing Eq. �8� over all 	gm�. Invok-
ing closure, one sees that �m�Fm±�2=1 so that �mIm±=1/2
and �mIm=1. On the other hand, the interference terms �cross
terms� that contribute to Eq. �5� define a fringe sharpness �or
contrast� factor �cf. Eq. �3��

�
m

Fm+
* Fm− = 	q+�q−� = 	g0�e−i�q·C�g0� � S , �9�

where �q=q+−q− is the momentum fuzziness transferred to
the ion by a photon entering one or the other port. Taking
S��S�ei�S, we thus obtain

IL,R�� = �
m

ImL,R�� =
1

2
�1 ± V cos� + �S�� , �10�

with a fringe visibility

V � �S� = �	q+�q−�� . �11�

If g0 has definite parity, S is real valued and �S�0.
We thus extend to arbitrary ion measurements Wootters

and Zurek’s observation that the total interference pattern
�the sum of the partial interference patterns� when the ion
c.m. motion is ignored is always the same and characterized
by the overlap S= 	q+ �q−� of the kicked-ion states. Note now
IL��+ IR��=1.

IV. WOOTTERS AND ZUREK

To connect with Wootters and Zurek, we consider a lin-
early trapped ion oscillating along the x axis in a harmonic
oscillator ground state 	x �g0�=�0�x� with width parameter
�x=�� /2M
x, the rms size of the wave packet, for an ion of
mass M and a trap with frequency 
x. We also assume an
incident photon propagation direction aligned along the axis
of the interferometer and perpendicular to the trap axis, as
depicted in Fig. 1, so that qx±= ± 1

2�qx.
If, following Wootters and Zurek, we now consider a po-

sition measurement of the ion described by 	gm��	x�, the
scattering form factor from Eq. �3� evaluates trivially to
Fx±=e±i�qxx/2�0�x� and the results of the previous section are
readily applied. Since �0 is real valued, the phase shift in Eq.
�8� is given by �x=−�qxx, and the joint which-port prob-
abilities from Eq. �6� for the photon to enter one or the other
port are seen to be equal,

Ix± =
1

2
�Fx±�2 =

1

2�2��x

e−x2/2�x
2
, �12�

so that the conditional which-port probabilities from Eq. �7�
are also equal, namely, px±=1/2. Thus, the joint photon-ion
intensity from Eq. �8� becomes

IxL,R�� =
1

2
Ix�1 ± cos� − �qxx�� , �13�

which predicts perfect fringes with unit fringe visibility but
shifted in phase by −�qxx, as deduced by Wootters and
Zurek �15�. Here, Ix= Ix++ Ix− is the probability that the pho-
ton enters the interferometer when the ion c.m. is found at
position x. It amounts to a Gaussian modulation factor de-
fined by Eq. �12� that derives from the finite width of the ion
c.m. initial wave packet and is analogous to a single-slit
diffraction contribution to the two-slit interference.

If, following Einstein’s suggestion, we consider instead a
measurement of the ion’s recoil momentum �K described by
	gm��	K� to track the photon’s path, we readily evaluate the

scattering form factor from Eq. �3� as FK±= �̃0�K�
1
2�qx�,

where �̃0�K� designates the ion’s ground-state momentum
wave function �Fourier transform of �0� and is also real val-
ued. One then finds the joint which-port probabilities from
Eq. �6� to be

IK± =
1

2
�FK±�2 =

�x

�2�
e−2�K � �qx/2�2�x

2
, �14�

so that the conditional probabilities from Eq. �7� are now
given by

pK± =
1

2
�1 ± tanh�2K�qx�x

2�� . �15�

The joint photon-ion intensity from Eq. �8� thus becomes
instead
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IKL,R�� =
1

2
IK�1 ± sech�2K�qx�x

2�cos � , �16�

which is again equivalent to Wootters and Zurek’s momen-
tum measurement result and predicts smeared but unshifted
fringes �16�. Here, IK= IK++ IK−.

One thus verifies that the partial interference patterns de-
fined by the joint photon-ion probabilities Eqs. �13� and �16�
correspond to particular ensembles of photons correlated to
either position or momentum measurements performed on
the ion. Nevertheless, the total interference pattern ignoring
ion measurement results is always the same. One finds from
Eq. �9� that

S = 	q+�q−� = e−�qx
2
�x

2/2 �17�

is real valued �the ground state has definite parity� so that the
photon interference from Eq. �10� becomes

IL,R�� = dx IxL,R�� = dK IKL,R�� =
1

2
�1 ± V cos � ,

�18�

with fringe visibility V=e−�qx
2
�x

2/2, again in agreement with
Wootters and Zurek.

We note in passing that �qx=2k� sin 1
2� with � the angular

separation of the two entrance ports �the angle between k+
and k−� in the plane of the interferometer �see Fig. 1�. Also,
�x�k��x defines the trap’s Lamb-Dicke parameter, so that
the fringe visibility

V = e−2�x
2 sin2 ��/2� �19�

is essentially unity in the Lamb-Dicke limit �x�1.

V. WOOTTERS AND ZUREK VIA COHERENT-STATE
MEASUREMENT

We consider now a more general coherent-state measure-
ment of the ion c.m. described by 	gm��	�� with � complex
valued and therefore by a displaced and kicked oscillator
ground state with nonvanishing coordinate and momentum
�wave number� expectation values

x̄� � 2�x Re�, K̄� � Im�/�x, �20�

respectively, and with the same ground-state rms size �x

=�� /2M
x introduced in the previous section �17�. Coherent
states of trapped ions as well as unitary phase-space dis-
placement of coherent states have been realized in the labo-
ratory �3,4�, and coherent-state measurements of the ion’s
recoil motion may have experimental advantages �18� over
the position and momentum measurements analyzed by
Wootters and Zurek.

For generality, we will assume the initial state of the
trapped ion is also a coherent state �g0�= ��� with nonvanish-
ing coordinate and momentum �wave number� expectation
values

x̄� � 2�x Re�, K̄� � Im�/�x, �21�

respectively, so that when �=0 then 	x �g0�=�0�x� is just the
oscillator ground state we assumed for the Wootters and
Zurek analysis in the previous section. Coherent states are
remarkably robust and remain coherent not only as they os-
cillate in time but also under the impulsive momentum kicks
we consider here. Assuming the photon scattering takes place
suddenly at t=0, a straightforward calculation thus gives for
the kicked initial state

�q±� = eiqx±x��� = e+iqx±�xRe ��� + iqx±�x� . �22�

Because of the underlying Gaussian nature of coherent-state
wave functions, the form factors from Eq. �3� can be reduced
to Gaussian expressions. We thus obtain �dropping an inci-
dental phase�

F�± = eiqx±�x�Re �+Re ��e−�Re � − Re ��2/2e−�Im � − Im � − qx±�x�2/2.

�23�

Taking as before the incident photon propagation direc-
tion along the axis of the interferometer so that qx±

= ± 1
2�qx, we thus evaluate the joint which-port probabilities

from Eq. �6� as

I�± =
1

2�
�F�±�2 =

1

2�
e−�Re � − Re ��2

e−�Im � − Im � � �qx�x/2�2
,

�24�

where we have introduced an additional factor of 1 /� to
compensate for the overcompleteness of coherent states �19�.
We thus ensure that �d2� I�±=1/2, viz. equal which-port
probabilities when the ion c.m. recoil is ignored �cf. discus-
sion above Eq. �9��.

Then, the conditional which-port probabilities from Eq.
�7� are given by

p�± =
1

2
�1 ± tanh��qx�x�Im� − Im���� , �25�

independent of Re � and Re � and, in light of the expectation

value K̄�� Im� /�x from Eq. �20�, are form identical with
the Wootters and Zurek momentum-measurement results Eq.
�15�. The missing factor of two here is an artifact of the
underlying Gaussian overlap integrals of the coherent-state
wave functions.

Thus, the joint photon-ion intensity from Eq. �8� becomes

I�L,R�� =
1

2
I��1 ± sech��qx�x�Im � − Im ���

� cos� − �qx�x�Re � + Re ���� , �26�

where I�= I�++ I�−.
One therefore mimicks with this result Wootters and

Zurek’s position measurement of the ion’s ground state by
taking Im��0 and ��0 and introducing the coherent-state
expectation value x̄� from Eq. �20� to give
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Ix̄�L,R�� =
1

2
Ix̄�
�1 ± cos� −

1

2
�qxx̄��� , �27�

which is form identical with Eq. �13� except for the extra
factor 1 /2 here in the phase shift and the modified overall
intensity

Ix̄�
=

1

�
e−x̄�

2
�x

2/4e−�qx
2
�x

2/4. �28�

Likewise, one mimicks Wootters and Zurek’s momentum-
measurement result by taking Re ��0 and ��0 in Eq. �26�
and introducing K̄� from Eq. �20� to give

IK̄�L,R�� =
1

2
IK̄�

�1 ± sech�K̄��qx�x
2�cos � , �29�

which is also form identical with Eq. �16� except for the
missing factor of 2 here in the fringe visibility function

sech�K̄��qx�x
2� and again a modified overall intensity

IK̄�
=

1

2�
�e−�K̄� − �qx/2�2�x

2
+ e−�K̄� + �qx/2�2�x

2� . �30�

While these joint photon-ion probabilities mimick well
enough those of Wootters and Zurek �Eqs. �13� and �16��,
neither Eq. �27� nor Eq. �29� integrates to the photon inter-
ference result Eq. �18�. �20� When ion c.m. measurements
are ignored, one must instead integrate over the entire �

plane �x̄� and K̄� together�. Thus, the photon interference
pattern from Eq. �26� integrated over the ion coherent-state
measurement results, in analogy with Eq. �18�, is given by

IL,R�� = d2� I�L,R�� =
1

2
�1 ± V cos� − 2�qx�x Re��� ,

�31�

with V=e−�qx
2
�x

2/2 and is therefore identical for �=0 to the
photon-interference result Eq. �18�. Equation �31� also fol-
lows directly from Eq. �10� by noting that the fringe sharp-
ness factor from Eq. �9� is given with Eq. �22� by

S� = 	��e−i�qxx��� = Ve−2i�qx�xRe �, �32�

which reduces to Eq. �17� when �=0.
The more general ��0 initial-state dependence included

in Eqs. �31� and �32� instead facilitates averaging over a
thermal distribution of initial states, appropriate if the trap is
operated in thermal equilibrium at a finite temperature T. The
reason being, the density operator describing an initial en-
semble of linearly oscillating ions in thermal equilibrium can
be represented equivalently in coherent states according to
�17,21�

�T = d2�

�

e−���2/	n�

	n�
���	�� , �33�

with 	n�=1/ �e�
x/kBT−1� the average oscillator-state occu-
pancy �Planck distribution� at temperature T. It then follows,
the photon interference pattern Eq. �31� averaged over a ther-
mal distribution of ion initial states ��� is given by

	IL,R��� �  d2�

�

e−���2/	n�

	n�
IL,R�� =

1

2
�1 ± VT cos � ,

�34�

with VT=Vcoth��
x/2kBT� and V the visibility obtained in Eqs.
�18� and �31�. In a similar fashion �see also �22��, the fringe
sharpness factor from Eq. �32� thermally averaged is found
to be 	S��=VT and thus defines a Debye-Waller factor �21�
for the linearly trapped ion which when inserted into Eq. �10�
verifies Eq. �34�. Thus, a thermal distribution with kBT
��
x further reduces the fringe visibility, and in the high
temperature limit coth��
x /2kBT��2kBT /�
x. Analogous re-
sults have been obtained and observed by Wineland, Itano,
and co-workers in Ref. �2� in their experiments with Young’s
fringes formed by light scattered from a trapped-ion pair in
thermal equilibrium.

VI. WHICH-PORT DISTINGUISHABILITY

In order for the photon phase relations characterizing the
system entanglement ��� in Eq. �2� to remain accessible for
local observation and interference, the ion-recoil marker
states �q±� must overlap. Otherwise, the ion recoil could be
cleanly measured and the photon path �which port entered, A
or B� determined unambiguously. If the overlap is perfect the
fringes will be perfect with V=1, and if the overlap vanishes
the fringes will as well with V=0. The ion recoil thus stores
information on the port and path taken by the scattered pho-
ton. As articulated originally by Wootters and Zurek, the
question becomes what goes on between these two extremes.
For a given fringe visibility, how reliably can the photon path
be predicted?

Although there is no definitive answer to this question, a
straightforward estimate is simply to evaluate the difference
between our two which-port probabilities from Eq. �6�
summed over all possible measurement outcomes, the so-
called classical trace distance �23�, or what Englert has re-
ferred to as the which-path knowledge �24�,

D � �
m

�Im+ − Im−� , �35�

where we have omitted the usual overall factor 1 /2 since
recall that our which-port probabilities are normalized such
that �mIm±=1/2. �25�

The value of this measure depends on the ion state ob-
served. For example, we have seen in Eq. �12� if ion position
	gm�= 	x� is measured, Ix+= Ix− for all x so that Dx=0 no mat-
ter what the fringe visibility V is in Eq. �18�. One could just
as well coordinate which-port guesses with water drop inter-
vals from a lab faucet.

A better choice would be to follow Einstein’s suggestion
and measure the ion-recoil momentum instead. Noting from
Eq. �14� that �IK+− IK−�K�0= �IK+− IK−�K�0, one readily finds
that
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DK = 2
0

�

dK�IK+ − IK−� = erf��qx�x

�2
� , �36�

with values in the range 0�DK�1 corresponding to 1�V
�0 in Eq. �18�. In a similar fashion, noting from Eq. �24�
that �I�+− I�−�Im ��Im �= �I�+− I�−�Im ��Im �, one finds for a
coherent-state measurement that

D� = 2
−�

�

d Re�
Im �

�

d Im� �I�+ − I�−� = erf��qx�x

2
� ,

�37�

also with values in the range 0�D��1 and independent of
the ion-c.m. initial state ���. We plot these quantities in Fig.
2 as a function of �qx�x as well as a function of the fringe

visibility V=e−�qx
2
�x

2/2. The resulting curves are quite similar,
although D� remains smaller than DK for a given fringe vis-
ibility V �note the extra factor 1 /�2 in the argument of D�

compared to that of DK�. With respect to trace distance, a
coherent-state measurement is somewhat inferior to the mo-
mentum measurement.

The independence of the which-path knowledge Eq. �37�
on ion initial state ��� can be traced to the impulsive nature
of the light scattering and the Gaussian form of coherent-
state overlaps embodied in the which-port probabilities from
Eq. �24�. Consequently, and perhaps somewhat surprisingly,
the distinguishability of the path taken by the scattered pho-
ton survives thermal averaging and is independent of the
temperature of the target ion, unlike the temperature-
dependent reduction in the fringe visibility we established in
Eq. �34�.

One readily establishes an upper limit on the which-path
knowledge for a given fringe visibility V. First, we note that
our joint which-port probabilities from Eq. �6� can be reex-
pressed as

Im± =
1

2
�Fm±�2 =

1

2
tr�Pm�±� , �38�

where we have introduced the density operators �±
��q±�	q±� describing the ion-recoil marking along with the
projection operators Pm��gm�	gm� describing the ion mea-

surements. The marker states �± also define from Eq. �2� the
reduced density operator of the ion traced over the photon
states �k±� according to �q=trk����	���= ��++�−� /2. The Pm

are positive, orthogonal operators and satisfy the complete-
ness relation �mPm=1.

With no extra effort, we can generalize our which-port
probabilities in Eq. �38� to include nonorthogonal operators
Em which are nevertheless positive and satisfy �mEm=1. The
resulting positive operator-valued measure �POVM� includes
the usual projection �von Neumann� measurements as well as
our nonorthogonal coherent-state measurements. For ex-
ample, defining E�����	�� /� �cf. Ref. �19��, we thus have

I�± =
1

2
tr�E��±� =

1

2�
�F�±�2, �39�

which we evaluated in Eq. �24�. One can thereby reexpress
and generalize the trace distance in Eq. �35� as

D =
1

2�
m

�tr�Em��+ − �−��� . �40�

An upper bound is now directly accessible by invoking
the inequality �tr�Em��+−�−���� tr�Em��+−�−��, which is
readily established with the spectral decomposition of �+
−�−. �23� Then, with �mEm=1, one has that

D � D �
1

2
tr��+ − �−� , �41�

defining the quantum trace difference D, or what Englert
�24� referred to as the distinguishablility of the ways. �26�
Equality D=D is established in Eq. �41� when the Em are
chosen to project onto the two eigenstates of �+−�−, and a
quick calculation determines the corresponding eigenvalue
pair ±D with

D = �1 − �S��2 = �1 − V2, �42�

using Eq. �32�, which is also independent of the ion’s initial
state ���. This quantity is also plotted in Fig. 2. The resulting
duality relation D2+V2=1 between the distinguishability of
the ways and the fringe visibility derives from the fact we
have implicitly assumed our �± to be pure states. More gen-
erally for mixed initial states, Englert �24� and independently
Jaeger, Shimony, and Vaidman �27� have shown that D2

+V2�1. For example, for an ensemble of initial ions in ther-
mal equilibrium, we obtain the special case D2+VT

2 �1 with
VT defined by Eq. �34�. The duality relation has been verified
by Dürr, Nonn, and Rempe in atom-interferometer experi-
ments that monitored atom path and internal-state entangle-
ment �28� and by Schwindt, Kwiat, and Englert in photon-
interferometer experiments that monitored photon path and
polarization entanglement. �29�

As a follow-on to the eigenvalue determination and Eq.
�42�, one obtains the eigenstates of �+−�− in terms of the
ion-recoil marker states �q±� from Eq. �22� according to

0
0.

5
1

0 1 2 0 0.5 1

(a) (b)

FIG. 2. The which-path knowledge D plotted in �a� as a function
of the Lamb-Dicke parameter �x=k��x �taking �qx�x=2�x for �

=�� �cf. Eq. �19�� and in �b� as a function of V=e−�qx
2
�x

2/2. The
middle dotted curve in both plots is DK from Eq. �36� while the
lower solid curve is D� from Eq. �37�. The upper gray curve in both
plots is the limiting quantum trace distance, or distinguishability D
from Eq. �42�.
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� ± D� = e+i�S/2
�1 ± D
�2D

�q+� − e−i�S/2
�1 � D
�2D

�q−� , �43�

with �S=−2�qx�x Re � the phase of S� from Eq. �32�. One
verifies directly with Eqs. �9� and �32� that ��+−�−��±D�
= ±D�±D�. These states describe, of course, optimal mea-
surements of the ion’s c.m. motion with 	gm��	±D� for dis-
tinguishing which port the photon scattered into. One thus
obtains from Eq. �6�, again with Eqs. �9� and �32�, the opti-
mum probabilities I�±D�+= �1±D� /4 for photon scattering
into port A�k+� and I�±D�−= �1�D� /4 into port B�k−� inde-
pendently of the ion’s initial state ���. As D→1, the ion
marker states become effectively orthogonal, S�= 	q+ �q−�
→0, and by definition fully distinguishable, and Eq. �43�
reduces to simply �±D�→ ±e±i�S/2�q±�. For D=0, Eq. �43� is
not defined, but in that case S�=1 so that the ion marker
states fully overlap and are therefore indistinguishable any-
way.

Although measurement of these states will undoubtedly
prove challenging, similar superpositions of coherent states
of trapped-ion external motion have been engineered and
observed in Ref. �4�. The optimal marker wave functions
	x � ±D� defined by Eq. �43� evolve in time as double-
humped superpositions of the coherent-state wave functions
	x �q±� from Eq. �22� and therefore oscillate with a period
2� /
x. To see this, note that coherent states evolve in time
according to ���→e−i
xt/2��e−i
xt�. �17� At t=0, the instant
the photon is scattered by the ion, the two humps defined by
	x �q±� coalesce at x̄� with relative momentum ��qx. A quar-
ter period later at t=� /2
x, the two humps will have moved
to their maximum relative separation d=2�qx�x

2 with zero
relative momentum �cf. also the discussion in �10��. Aver-
aged over a thermal distribution of initial ion states ���, the
initial relative momentum ��qx and the maximum observed
separation d of the two humps will remain unchanged, while
their average initial position will vanish.

We note in passing that alternative techniques for gener-
ating and observing double-humped superpositions of coher-
ent states have been proposed by Zoller, Cirac, and co-
workers. �30� The proposal presented by Zeng �31� is also
noteworthy in this regard.

VII. DISCUSSION

We have examined photon scattering by a harmonically
trapped ion as a modern prototype for Wootters and Zurek’s
pioneering analysis of Einstein’s recoiling-slit experiment.
We give the trapped ion the role of the oscillating entrance
slit and show how coherent-state measurement could be used
to mimick both momentum and position measurements of
the ion’s external recoil motion and thus to track the which-
path marking of the scattered photon. The key results are
presented in Secs. V and VI.

The simplicity of our results relies on an impulse approxi-
mation to describe the photon scattering and the resulting
momentum kick to the ion’s external c.m. motion. The char-

acteristic scattering form factors from Eq. �3� allow us to link
our approach closely to Wootters and Zurek’s discussion
while providing a fairly rigorous description that can be gen-
eralized to alternative ion-measurement schemes.

To quantify the photon-path which-port information
cached in the recoiling ion, we have evaluated the classical
trace distance, or which-path knowledge, in Eq. �35� between
the joint probabilities from Eq. �6� for scattering the photon
into one or the other port and detecting the recoiling ion. We
connect in this way with ideas introduced by Wootters and
Zurek and refined by Englert to give quantitative meaning to
partial which-port marking by the ion when the photon fringe
visibility is nonvanishing but less than perfect. One is thus
led to consider the quantum trace distance, or distinguish-
ability of the ways, in Eq. �41� as an upper bound on the
classical trace distance, and one thereby recovers Englert’s
duality relation between the distinguishability and the fringe
visibility Eq. �42�.

While our analysis based on the ion’s external c.m. mo-
tion is straightforward, the actual experiments we describe
remain difficult. The joint photon-ion probability in Eq. �8�,
which we have evaluated throughout this paper in various
detection scenarios, describes photon-ion coincidences with
a single trapped-ion target reset to the same initial c.m. state
before each photon collision. Thus, unless this ion-reset
cycle can be significantly accelerated, the time required to
collect meaningful ensembles of scattered photons will likely
remain exceptionally long. At the same time, the which-path
knowledge of the scattered photon we evaluated in Eq. �37�
is seen to be independent of the initial state of the harmoni-
cally trapped target ion. The photon path could therefore be
tracked and compared with predictions without having to
reset the ion’s initial state between collisions.

We have begun to examine various information-transfer
strategies in the context of trapped-ion interferometry. The
ion-recoil state difference �+−�− in Eq. �41� defines an opti-
mum observable of sorts whose eigenstates in Eq. �43� de-
termine optimum ion measurements to maximize the which-
path knowledge for a given fringe visibility if only which-
port probabilities are accessible experimentally. One can also
quantify the photon-path information transfer to the ion’s
external motion by evaluating the decrease in the ion’s Sh-
annon entropy due to the photon scattering for a given fringe
visibility. Alternatively, one might wish to avoid the which-
port probabilities altogether and introduce instead a POVM
to distinguish for a given fringe visibility the state of the ion
�q+� or �q−� some of the time with certainty, but with the
tradeoff that some of the tests will yield no information
�23,32�. We will compare these alternatives elsewhere.

ACKNOWLEDGMENTS

We appreciate useful input from our colleague Heidi
Fearn. This project has been supported by the Chemical Sci-
ences, Geosciences and Biosciences Division of the Office of
Basic Energy Sciences, Office of Science, U.S. Department
of Energy.

TRAPPED-ION REALIZATION OF EINSTEIN’S… PHYSICAL REVIEW A 75, 062105 �2007�

062105-7



�1� W. K. Wootters and W. H. Zurek, Phys. Rev. D 19, 473
�1979�.

�2� U. Eichmann, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan,
W. M. Itano, D. J. Wineland, and M. G. Raizen, Phys. Rev.
Lett. 70, 2359 �1993�; W. M. Itano, J. C. Bergquist, J. J. Bol-
linger, D.J. Wineland, U. Eichmann, and M.G. Raizen, Phys.
Rev. A 57, 4176 �1998�.

�3� D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J.
Wineland, Phys. Rev. Lett. 76, 1796 �1996�.

�4� C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland,
Science 272, 1131 �1996�.

�5� B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe,
Nature �London� 428, 153 �2004�; E. Polzik, ibid. 428,
129�2004�.

�6� M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P.
T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F.
V. James, and R. Blatt, Nature �London� 429, 734 �2004�.

�7� M. D. Barrett, J. Chiaverini, T. Shaetz, J. Britton, W. M. Itano,
J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J.
Wineland, Nature �London� 429, 737 �2004�.

�8� J. M. Feagin and Si-ping Han, Phys. Rev. Lett. 86, 5039
�2001�; J. M. Feagin and Si-ping Han, ibid. 89, 109302
�2002�.

�9� J. M. Feagin, Phys. Rev. A 69, 062103 �2004�.
�10� J. M. Feagin, Phys. Rev. A 73, 022108 �2006�.
�11� M. L. Goldberger and K. M. Watson, Collision Theory, �Wiley,

New York, 1964�, p. 707; N. F. Mott and H. S. W. Massey, The
Theory of Atomic Collisions, 3rd ed. �Oxford University Press,
Oxford, 1965�, Vol. 1, p. 91.

�12� We use MKS units throughout and keep � explicit.
�13� When multiplied by �f��2 from Eq. �1�, ImL,R�� gives the cross

section for scattering a photon into the interferometer and find-
ing the ion’s external c.m. motion described by 	gm�.

�14� Note Im± gives the joint probability for the occurrence of both
	k±� and 	gm� conditioned only on the state being ���.

�15� Wootters and Zurek in Ref. �1� considered double-slit interfer-
ometry with effective momentum kicks ±k0 and thus corre-
sponding entrance-slit recoil kicks qx±= �k0, so that �qx=
−2k0 in their notation. Also, our  in Eq. �13� takes the role of
2k0� in their expressions.

�16� Along with the notation �qx=−2k0 �cf. Ref. �15��, Wootters
and Zurek used a2�2�x

2, so that here our fringe sharpness

sech�2K �qx�x
2�=sech�2a2K k0� is equivalent to theirs. In par-

ticular, our ratio of conditional probabilities pK+ / pK−

=exp�4K �qx�x
2�=exp�−4a2 K k0� from Eq. �15� is equivalent

to Wootters and Zurek’s Eq. �4� in Ref. �1�. See also S. M. Tan
and D. F. Walls, Phys. Rev. A 47, 4663 �1993�.

�17� See, for example, K. Gottfried and T-M. Yan, Quantum Me-
chanics: Fundamentals, 2nd ed. �Springer, New York, 2003�,
and E. Merzbacher, Quantum Mechanics, 3rd ed. �Wiley, New
York, 1998�. We thus take 	x ���=e−i Re � Im �e+ix Im �/�x�0�x
−2�x Re��.

�18� M. Freyberger, Phys. Rev. A 55, 4120 �1997�, and references
therein.

�19� One has that �d2� ���	��=�.
�20� Integration of either Eq. �27� over x̄� or Eq. �29� over K̄� gives

a photon interference pattern with visibility V1/2.
�21� David S. Bateman, Subir K. Bose, Binayak Dutta-Roy, and

Manoranjan Bhattacharyya, Am. J. Phys. 60, 829 �1992�.
�22� N. D. Mermin, J. Math. Phys. 7, 1038 �1966�.
�23� M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information �Cambridge University Press, Cam-
bridge, 2000�.

�24� B.-G. Englert, Phys. Rev. Lett. 77, 2154 �1996�; Zeit. f. Natur-
forschungs 54, 11 �1999�; See also B.-G. Englert and J. A.
Bergou, Opt. Commun. 179, 337 �2000�.

�25� We also connect with Englert’s likelihood for guessing the
right way according to L��m max�Im+ , Im−�= �1+D� /2. See
Ref. �24�.

�26� This result extends Englert’s proof somewhat to include
POVM.

�27� G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A 51, 54
�1995�.

�28� S. Dürr, T. Nonn, and G. Rempe, Nature �London� 395, 33
�1998�; Phys. Rev. Lett. 81, 5705 �1998�.

�29� P. D. D. Schwindt, P. G. Kwiat, and B.-G. Englert, Phys. Rev.
A 60, 4285 �1999�.

�30� J. F. Poyatos, J. I. Cirac, R. Blatt, and P. Zoller, Phys. Rev. A
54, 1532 �1996�; J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys.
Rev. Lett. 77, 4728 �1996�.

�31� H. Zeng, Phys. Rev. A 57, 388 �1998�.
�32� A. Peres, Quantum Theory: Concepts and Methods �Kluwer

Academic Publishers, Dordrecht, 1995�.

ROBERT S. UTTER AND JAMES M. FEAGIN PHYSICAL REVIEW A 75, 062105 �2007�

062105-8


