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Recent results, extending the Schmidt decomposition theorem to wave functions of pairs of identical par-
ticles, are reviewed. They are used to give a definition of reduced density operators in the case of two identical
particles. Next, a method is discussed to calculate time averaged entanglement. It is applied to a pair of
identical electrons in an otherwise empty band, and to a pair of bosons in a quadratic model with infinite range
hopping. The effect of degeneracy of the spectrum of the Hamiltonian on the average entanglement is
emphasized.
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I. INTRODUCTION

Schmidt decomposition

Assume that the wave function ��x1 ,x2� describes two
distinguishable particles. Then there exist orthonormal bases
of wave functions �m�x1� and �m�x2� and coefficients pm

�0 such that � can be written as a single sum

� = �
m

�pm�m � �m. �1�

This result is known as the Schmidt decomposition theorem.
See, for instance �1�, theorem 2.7. The reduced density ma-
trices for each of the particles are then given by

� = �
m

pm��m�	�m� , �2�

� = �
m

pm��m�	�m� . �3�

Indeed, one verifies that for any one-particle operator A

Tr �A = �
m

pm	�m�A��m� = �
m

pm	�m � �m�A � I��m � �m�

= 	��A � I��� , �4�

and similarly

Tr �A = 	��I � A��� . �5�

The knowledge of the coefficients pm suffices to calculate the
von Neumann entropies

E��� = − Tr � ln � = − Tr � ln � = − �
m

pm ln pm. �6�

The latter quantity is a measure for the entanglement of the
two particles.

Identical particles

Recently �2–4�, the previous result was generalized to
pairs of identical particles, described by a wave function � in

a Fock space. Let b†��� and b��� be the creation and anni-
hilation operators for a particle with wave function ��x�. Let
�0� denote the vacuum state. Then for each two-particle wave
function � in a Fock space there exists an orthonormal basis
of wave functions �m�x� in the one-particle Hilbert space
and coefficients pm�0 such that

� =
1
�2

�
m

�pmb†��m�b†��m��0� �bosons� , �7�

� = �2�
m

�p2mb†��2m�b†��2m+1��0� �fermions� . �8�

If the dimension of the one-particle Hilbert space is odd then
the latter expression does not involve all of the basis vectors
�m.

The physical interpretation of this result, in the case of
bosons, is that with probability pm the two particles are both
in the same state with wave function �m. In the fermionic
case, one of the particles is in the state �2m, the other in the
state �2m+1. It is then obvious to define reduced density ma-
trices � and � by

� = � = �
m

pm��m�	�m� �bosons� , �9�

and

� = 2�
m

p2m��2m�	�2m� ,

� = 2�
m

p2m+1��2m+1�	�2m+1� �fermions� . �10�

By convention, p2n+1= p2n in the latter case.
In the fermion case these density matrices are far from

unique since for any pair �2m ,�2m+1 the two basis vectors
may be interchanged. Nevertheless, the resulting values of
the von Neumann entropies of � and � are always the same.
Hence, in all cases, the quantity

E��� = − �
n

pn ln pn �11�

can be used as a measure of entanglement.
In the next sections we reproduce the proofs of Eqs. �9�

and �10� and show that the eigenvalues pn of the reduced
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density matrices can be calculated without actually perform-
ing the generalized Schmidt decomposition. In this way the
quantification of the entanglement of a pair of identical par-
ticles is easier than in the case of distinguishable particles.

Linear entropy

Even the simplified method to obtain the eigenvalues pn
may be too difficult for analytical treatment. For this reason
we will make use of the linear entropy instead of the von
Neumann entropy �11�. It is still a measure of entanglement
�5�, and is given by

E1��� = �
n

pn�1 − pn� = 1 − �
n

pn
2. �12�

For similar reasons the von Neumann entropy has been re-
placed by the linear entropy in other papers as well, for in-
stance in �6–12�.

The simplification arises as follows. Let � be a density
matrix with eigenvalues pn. Then it is often feasible to cal-
culate �2 by matrix multiplication while the calculation of
� ln � usually requires diagonalization of �. Also calculating
the trace of �2 is usually a feasible task. The linear entropy
E1��� is then obtained as 1−Tr �2. Note that the quantity
Tr �2 is called the purity of the density matrix �.

Average entanglement

A final simplification comes from averaging the linear en-
tanglement. In principle, the entanglement of two particles
depends on time. Rapid fluctuations of entanglement have
been reported to occur in vibrational modes of triatomic mol-
ecules �13�, and between electrons of Rydberg molecules
�14�. They have been studied in theoretical models such as
the Dicke model �15�, a model of coupled kicked tops �16�,
the Harper Hamiltonian �17�, a dimer model �18�, Bose-
Einstein condensates �19�, and random two-qubit interactions
�20,21�. Hence it is obvious to study the time average of the
entanglement. In �22� it is shown how to replace the time
average of nonlinear quantities such as the entanglement by
ensemble averages. This was applied by the present authors
to study the entanglement of distinguishable particles �23�.

Overview of the paper

The next section recalls known results about symmetric
and antisymmetric matrices. Proofs are given in the Appen-
dictes. The theorems of �2–4� are reproduced and the calcu-
lation of the average entanglement is explained. Section III
discusses the entanglement of a pair of identical electrons in
an otherwise empty band. Section IV demonstrates the im-
portance of degeneracy of the spectrum of the Hamiltonian
for a two-boson model. The paper ends with a discussion in
Sec. V, followed by two Appendices.

II. SCHMIDT DECOMPOSITION IN FOCK SPACE

Known results on symmetric and antisymmetric matrices

Remember that a matrix M is normal if it commutes with
its Hermitian conjugate M†. The transpose MT of M has ma-

trix elements �MT�mn=Mnm. The matrix M is symmetric if
MT=M; it is antisymmetric if MT+M =0. Any matrix with
complex entries M can be written as M =V†DU with D diag-
onal and with U and V unitary. This is the singular value
decomposition of M. A similar result for symmetric matrices
is the following theorem. It is known as Takagi’s factoriza-
tion theorem—see �24�, or �3�, theorem 3.4. See �25�, theo-
rem 5.5.1, for the first claim of the theorem.

Theorem 1. Let there be given a square matrix M with
complex entries. Then M is symmetric if and only if it can be
written as

M = UTDU , �13�

with D diagonal and U arbitrary. The matrix U can be chosen
unitary.

Consider for example the matrix M, given by

M = 
 i i

i 1
� . �14�

It is not normal. Still, there exists a unitary matrix U, namely

U =
1

2

1 + i − �2

1 + i �2
� , �15�

and a diagonal matrix D= �1,1�− �1+ i��1,−1� /�2 such that
M =UTDU. The method to find U is based on the observation
that U diagonalizes M†M. Indeed, one has

M†M = U†D†DU . �16�

This observation is essential for the calculations that follow.
The analogous result for antisymmetric matrices is usu-

ally formulated for matrices with real entries only. For ma-
trices with complex entries it follows from lemma 1 of �2�.
As noted in �26�, the theorem below has been known in
physics literature for a long time—see �27,28�.

Theorem 2. Let there be given an antisymmetric matrix M
with complex entries. Then there exists a unitary matrix U
such that M can be written as M =UTDU, where D has on
each row and each column at most one nonvanishing ele-
ment.

If M is antisymmetric then also D= �UT�†MU† is antisym-
metric. Hence, if D has at most one nonvanishing element on
each row and each column, then it can be brought into block-
diagonal form with blocks of size at most two, simply by
swapping the order of rows and of columns. That is, D is a
block matrix of the form

D = �Z1,Z2, . . . ,Zx,0,0, . . . � , �17�

with Zj of the form

Zj = 
 0 z1

− z1 0
� . �18�

Application to wave functions in Fock space

Take an arbitrary orthonormal basis of wave functions
	n�x� in a finite dimensional one-particle Hilbert space. Any
two-particle wave function � can be written as
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� = �
mn


mn	m � 	n. �19�

The matrix of coefficients 
mn is denoted �. In the boson
case � is symmetric; in the fermion case it is antisymmetric.
Hence, by the previous theorems there exists a unitary matrix
U and a matrix D, with at most one nonvanishing element on
each row and each column, such that �=UTDU. Then one
can write

� = �
mnrs

UrmDrsUsn 	m � 	n = �
rs

Drs�r � �s, �20�

with

�r = �
m

Urm	m. �21�

Because the matrix D has at most one nonvanishing element
on each row and each column, the double sum in Eq. �20�
reduces to a single sum. This yields Eqs. �7�–�10�.

Next observe that

�†� = �UTDU�†UTDU = U†D†DU . �22�

Hence the matrices �†� and D†D have the same eigenval-
ues. But the eigenvalues of D†D are precisely the coefficients
pn appearing in the expression �11� for the entanglement.
Hence, in order to calculate the entanglement of two identi-
cal systems, it suffices to expand the wave function � in an
arbitrary basis, as done in Eq. �19�. Next, the matrix of ex-
pansion coefficients � is used to form �†�. Finally, the ei-
genvalues pn of the latter matrix are calculated.

Average entanglement using the linear entropy functional

If now the linear entropy is used to quantify the entangle-
ment instead of the von Neumann entropy then one finds

E1��� = 1 − Tr��†��2. �23�

Next assume that the basis of eigenvectors �n diagonalizes
the Hamiltonian H. One can expand an arbitrary wave func-
tion � in this basis

� = �
n

�pnei�n�n, �24�

with real phases �n and positive coefficients pn satisfying
�npn=1. With each basis vector �n corresponds an antisym-
metric matrix ��n� via Eq. �19�. One then obtains

E1��� = 1 − �
mnrs

�pmpnprpse
i��n−�m�ei��s−�r�

� Tr ��m�†
��n���r�†

��s�. �25�

Assume now that the spectrum of H is nondegenerate. Then
the time-average entanglement of � may be calculated as an
ensemble average, by integrating over the phase factors in
the above expression. The result is

E1��� = 1 − �
m,r

pmprTr ��m�†
��m���r�†

��r�

− �
m,n

pmpnTr ��m�†
��n���n�†

��m�

+ �
m

pm
2 Tr���m�†

��m��2 = S1��� + S1��� − 
 ,

�26�

with

� = �
m

pm��m�†
��m�, �27�

� = �
n

pn��n���n�†
, �28�


 = 1 − �
m

pm
2 Tr���m�†

��m��2. �29�

Note that ��m�†
��m� and ��m���m�†

have the same eigenval-
ues. Hence one has always S1���=S1���.

The entanglement E1��� calculated above depends on the
choice of the basis of eigenfunctions of the Hamiltonian.
When the spectrum is nondegenerate then these eigenfunc-
tions are unique up to a complex phase factor, which has no
influence on the entanglement. Hence the problem of nonu-
niqueness occurs only when the spectrum is degenerate. In
that case the decomposition �24� of � into eigenfunctions
should be replaced by

� = �
n

�pn�n� �30�

with

�n� =
Fn�

�Fn��
and pn = �	�n����2. �31�

Here, the Fn are the orthogonal projections onto the degen-
erate eigenspaces of the two-particle Hamiltonian.

Examples of degeneracy are discussed below.

III. FERMION MODEL

As a first application of our method we consider the av-
erage entanglement of a pair of identical electrons in an oth-
erwise empty conduction band. A suitable description is
given by the one-dimensional Hubbard model. There is an
extended literature about this model. Its study accelerated
after Lieb and Wu �29,30� showed that its spectrum can be
calculated using the Bethe ansatz. For a review paper see
�31�. In our treatment here both electrons have the same spin.
Hence the Hamiltonian can be simplified to

H = − �
j,k=1

N

tjkbj
†bk, �32�

where bk is the annihilation operator for an electron at site k
and the conjugate bk

† is the creation operator. The coefficients
tjk satisfy
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tj,j+1 = tj,j−1 = 1 and tj,k = 0 otherwise. �33�

Periodic boundary conditions are assumed, identifying site N
with site 0.

We will show that the average entanglement of the two
electrons is a nontrivial conserved quantity of this model.

Entanglement of the eigenvectors

Consider a wave function � describing two identical elec-
trons, say, both with spin up, in an otherwise empty band.
Then � is an eigenvector of H, with eigenvalue �, if and only
if the antisymmetric matrix � of coefficients 
mn satisfies the
matrix equation

T� + �T = − �� . �34�

In the one-dimensional model with nearest neighbor interac-
tions �i.e., tmn=A��m,n+1+�m+1,n�� and with periodic bound-
ary conditions �i.e., tN−1,0= t0,N−1=A� the solutions are param-
etrized with two integers r and s, with r�s, and are given by


mn
�rs� =

1

N�2
���mr + ns� − ��nr + ms�� �35�

with ��m�=exp�2�im /N�. The corresponding eigenvalue is
then

E�rs� = − 2 Re ��r� − 2 Re ��s� . �36�

Note that ��rs�=−��sr�.
With the explicit expression �35� it is straightforward to

calculate

���rs�†
��rs��mn =

1

2N2�
t

���tr + ms� − ��mr + ts��

����tr + ns� − ��nr + ts��

=
1

2N
���ms���ns� + ��mr���nr�� . �37�

Hence, one obtains

Tr���rs�†
��rs��2 =

1

4N2�
mn

���ms���ns� + ��mr���nr��

����ns���ms� + ��nr���mr�� =
1

2
. �38�

One concludes that all two-particle eigenvectors ��rs� are en-
tangled, with E1���rs��=1/2.

One can do even more. The vectors u± with components

um
± = ��mr� ± ��ms� �39�

are eigenvectors of the matrix ��rs�†
��rs� with eigenvalue

1/2. All other eigenvectors have eigenvalue 0. Hence, with
the notations of previous sections, the only nonvanishing ei-
genvalues are p0= p1=1/2. The entanglement of the two-
particle eigenvectors ��rs�, using the von Neumann entropy,
is therefore

E���rs�� = 2
−
1

2
ln

1

2
� = ln 2. �40�

Average entanglement

Let us now calculate the average entanglement of an ar-
bitrary two-particle wave function. One has


 = 1 −
1

2�
rs

prs
2 . �41�

Similarly,

Tr���rs�†
��rs�����r�s��†

��r�s���

=
1

4N2�
mn

���ms���ns� + ��mr���nr�����ns����ms��

+ ��nr����mr��� =
1

4
��ss� + �rr� + �rs� + �sr�� . �42�

Hence

S��� = S��� = 1 −
1

4 �
rr�ss�

prspr�s���ss� + �rr� + �rs� + �sr�� .

�43�

Using Eq. �26� and the normalization condition

�
r�s

prs = 1 �44�

one calculates

E1��� =
1

2
+

1

2
�r�s

prs�2
+

1

2�
rs

prs
2 −

1

2 �
rr�ss�

prspr�s�

���ss� + �rr� + �rs� + �sr��

=
1

2
+ �

rr�ss�

�prspr�s�, �45�

where the summation �� is restricted to the sets of indices
rr�ss� satisfying r�r�, s�s�, r�s, r�s�, r��s, and r�
�s�.

In the above calculation the degeneracy of the spectrum
has been neglected. As a consequence, the result is only valid
when the projection of � on any of the degenerate subspaces
is always parallel to one of the basis vectors ��rs�. This is not
the case in general. The calculation of the entanglement of an
arbitrary wave function is therefore more complicated. We
will not treat this general case but end this section with an
example where degeneracy does not play a role. The compli-
cations due to degeneracy will be discussed in the bosonic
example of the next section.

Example with N=4

Take N=4. This means that the two electrons occupy four
sites on a ring. The eigenvalues are −2, 0, 2, each twofold
degenerate. The corresponding eigenvectors are ��1,4� and
��3,4�, ��1,3� and ��2,4�, and ��1,2� and ��2,3�. We neglect the
effect of the degeneracy on the average entanglement with
the argument that it can be lifted by adding a small pertur-
bation to the model. For instance, a weak repulsion between
nearest neighbor sites has the desired effect.
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Let

� = �p��1,4� + �1 − p��2,3�. �46�

Projection of � onto the eigenspace with eigenvalue −2 gives
the former term, onto the eigenspace with eigenvalue +2 the
latter term. The average linear entanglement is

E1��� =
1

2
+ p1,4p2,3 = 1/2 + p�1 − p� . �47�

IV. BOSONIC MODEL

As an example of the bosonic case we consider a model
which is similar to the boson-Hubbard model �32–34�.

The bosonic creation and annihilation operators satisfy
the commutation relations �bj ,bk

†�=� jk. The Hamiltonian is
given by

H = + �
j,k=1

N

tjkbj
†bk. �48�

However, unlike in the boson-Hubbard model, the hopping
coefficients are not restricted to nearest neighbor. They rather
satisfy

tjk = �1 − �N − 1���� jk + ��1 − � jk� . �49�

This model is known as the Bose-Hubbard model with infi-
nite range hopping �35�.

Degeneracy is very important in this model. Indeed, as-
sume ��0. Then the ground state of the one-particle Hamil-
tonian is �N−1� fold degenerate. Hence the two-particle sys-
tem has only three energy levels. We will consider the state
�1,1 ,0 ,0 , . . . ,0�, in which the bosons are not entangled.
Next we calculate the average entanglement and show that it
tends to 1/2 when the size N of the system becomes large.

Projection onto invariant subspaces

The one-particle ground state is �N−1� fold degenerate
with energy 1−N�. Indeed, one calculates for m�n

H�bm
† − bn

†��0� = �
j

�tjm − tjn�bj
†�0� = �1 − N���bm

† − bn
†��0� .

�50�

N−1 of these vectors �bm
† −bn

†� �0� are linearly independent.
The remaining eigenstate, orthogonal to the ground states,
has eigenvalue 1. Its wave function is

1
�N

�
j=1

N

bj
†�0� = b†���0���0� , �51�

with

��0� =
1

�N
�

j

	 j �52�

and 	 j the one-particle basis formed by 	 j =bj
† �0�. Each of

these basis vectors can be projected onto this eigenvector

	 j =
1

�N
��0� + � j . �53�

The vectors � j are orthogonal to ��0� and hence belong to the
degenerate space of eigenvectors.

The one-particle eigenfunction �0 determines an eigen-
state ��00� of the two-particle Hamiltonian by

��00� =
1
�2

b†���0��b†���0���0� . �54�

The initial state

� = �1,1,0,0, . . . � = b1
†b2

†�0� �55�

is now projected onto the three invariant subspaces by writ-
ing it into the form

�1,1,0,0, . . . � =
1

N
b†���0��b†���0���0�

+
1

�N
b†���0��b†��1 + �2��0� + b†��1�b†��2��0�

� �p�00���00� + �p�11���11� + �p�01���01�, �56�

with normalized eigenfunctions ���,�� and normalization con-
stants p��,��. It is straightforward to find that �see Appendix
B�

p�00� =
2

N2 , p�11� = 
1 −
1

N
�2

+
1

N2 ,

p�01� =
2

N

1 −

2

N
� . �57�

Entanglement

Next, one should decompose the eigenfunctions
��00� ,��11� ,��01� into the basis vectors

���,�� = �
jk


 jk
��,��	 j � 	k. �58�

The calculation of the matrices ��00� ,��11� ,��01� is found in
Appendix B—see Eqs. �B11�–�B13�. These are used to cal-
culate the density matrices � �, and the average entangle-
ments

E��� = E��� =
1

2
+

1

N
−

2

N2 �59�

and


 =
1

2
+

2

N
−

8

N2 +
16

N3 −
16

N4 . �60�

See Appendix B. The final result is

E1��� =
1

2
+

4

N2
1 −
2

N
�2

. �61�

The average entanglement is always larger than 1/2, is maxi-
mal at N=4 with a value of 9/16, and converges as 1/N2

towards 1/2 for large N.
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V. DISCUSSION

In a rather long Introduction we have summed up a num-
ber of results that appeared in the literature. We have re-
viewed known properties of symmetric and antisymmetric
matrices, with proofs in Appendix A. When applied to wave
functions in a Fock space they lead to the definition of re-
duced density operators for systems consisting of two iden-
tical particles. These results are known. They generalize the
Schmidt decomposition theorem to pairs of identical par-
ticles. We propose to take this generalized decomposition
theorem as the basis for defining a measure of entanglement
of two identical particles. Up to now, many authors have
used for identical particles the same expressions as for dis-
tinguishable particles. This leads to the artificial result that
the entanglement of two identical fermions is always larger
than 1. Subtracting this constant 1 is not needed when using
the definition �6�.

In Sec. III, the technique to calculate the time-average
entanglement is explained. The linear entropy is used instead
of the von Neumann entropy in order to simplify the calcu-
lations. The extension of this technique to systems of two
identical particles is straightforward, using the generalized
Schmidt decomposition.

Two applications have been considered: One for fermions,
the other for bosons. In the fermion model the average en-
tanglement of two identical electrons can be calculated for
arbitrary initial conditions. However, in this calculation, we
have neglected the effect of degeneracy of the spectrum of
the Hamiltonian. This can be justified with the argument that
small perturbations would lift the degeneracy. The average
entanglement obtained in this way is always larger than one-
half and is a nontrivial conserved quantity. In the boson
model the degeneracy is much worse, leaving only three dis-
tinct energy levels. For one particular initial state we have
shown that the average entanglement can be calculated, tak-
ing degeneracy into account. The resulting value tends to 1/2
when the size of the system becomes large.

Related results have been obtained by other authors.
Lévay et al. �26� consider two fermions in combination with
a one-particle Hilbert space of dimension 4. Wang and Sand-
ers �36� use the generalized decomposition theorem to de-
compose the state of the system into qubit states. Next they
calculate the entanglement of one qubit with the others and
average over the choice of qubits. Plenio et al. �11,37,38�
have considered the typical entanglement in ensembles of
Gaussian states. These states differ considerably from the
two-particle states considered here. Nevertheless, the matrix
decomposition theorems might be relevant for their context
as well.

Only bipartite entanglement has been considered in the
present paper. Multipartite entanglement is more complicated
and requires additional investigation. See for instance
�39–41�. Neither did we study spatial entanglement of iden-
tical particles �42–44�, or other measures of entanglement,
like concurrence �44�. Finally, note that we assume that the
time evolution is unitary. One expects that, due to interac-
tions with the environment, entanglement will fade away.
See the review paper �45�.

APPENDIX A

For the sake of completeness, we give here a proof of
theorems 1 and 2. First assume normal matrices.

Proposition 1. If M is normal and symmetric then there
exists an orthogonal matrix V and a diagonal matrix D such
that M =VTDV.

Proof. Let �E�n��n be a spectral family in a finite dimen-
sional Hilbert space. Then there exists a unitary matrix V and
two-by-two disjunct sets In such that

E�n� = V†I�n�V , �A1�

where

Ipq
�n� = 1 if p = q � In, = 0 otherwise. �A2�

Note that

Epq
�n� = �r�In

VrpVrq. �A3�

Hence, if E�n� is symmetric then all elements Epq
�n� are real.

This implies that, if all E�n� are symmetric, then V can be
chosen orthogonal, i.e., V†=VT.

Let M =�n
nE�n� be the spectral decomposition of M with
all 
n two by two distinct. Then also the E�n� are symmetric
because of the uniqueness of the spectral decomposition and
because the transpose of an orthogonal projection operator is
again an orthogonal projection operator. Hence there exists
an orthogonal matrix V such that

M = VTDV with D = �
n


nI
�n�. �A4�

If M is antisymmetric then

0 = �
n


n�E�n� + �E�n��T� . �A5�

This does not imply that the E�n� are antisymmetric �which is
impossible for a nonvanishing orthogonal projection operator
anyway� Hence a different line of reasoning is needed.

Proposition 2. If M is normal and antisymmetric then
there exists a unitary matrix U such that UTMU has on each
row and each column at most one nonvanishing element.

Proof. Let M =�n
nE�n� be the spectral decomposition of
M with all 
n two by two distinct. Now assume � is an
eigenvector of M with eigenvalue 
n�0, satisfying E�n��
=�. Define � by �r=�r. Then one has

�M��r = �
s

Mrs�s = − �
s

Msr�s

= − �
s

�M†�rs�s = − �M†��r = − 
n�r.

�A6�

Hence � is an eigenvector of M with eigenvalue −
n. This
implies that either 
n=0 or there exists m�n such that 
m
=−
n. In the latter case, m and n are matching indices and
E�m� projects on all vectors � obtained by taking element
wise complex conjugation of all vectors in the range of E�n�.

Now choose an orthonormal basis ��1� ,��2� , . . . ,��q� in the
range of E�n� and a corresponding basis ��1� ,��2� , . . . ,��q� in
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the range of E�m�, with �s
�j�=�s

�j�. Do this for all nonvanishing
pairs of eigenvalues 
m=−
n. Complement this with an or-
thonormal basis in the nullspace of M, if present. Collect all
these basis vectors as columns of a unitary matrix U. For a
given ��j� in the range of E�n� is, with some abuse of notation,

�UTMU� j�p = �UTMU�rj

= �
s

�UTM�rs�s
�j� = 
 j�

s

�UT�rs�s
�j�

= 
 j�
s

�s
�r��s

�j� = 
 j	��r����j�� . �A7�

By construction, the latter vanishes for all but at most one
value of r. This ends the proof.

Finally, the above results are generalized to arbitrary
square matrices. The argument is that found in the proof of
�2�, lemma 1.

Let there be given a matrix M which is either symmetric
or antisymmetric. The matrix MM† is Hermitian and can be
diagonalized by means of a unitary matrix U, i.e., U†MM†U
is diagonal. Let C=U†M�U†�T. Then C, like M, is either
symmetric or antisymmetric. In addition it satisfies �using
that U†MM†U is diagonal and that MT= ±M�

CC† = U†MM†U = �U†MM†U�T = UTM†M�UT�† = C†C .

�A8�

This means that C is normal and that, by the previous propo-
sitions, there exists a unitary matrix V such that VTCV has on
each row and each column at most one nonvanishing ele-
ment. The proof of the two theorems then follows easily.

APPENDIX B

Here we present the calculation of the time average en-
tanglement of the initial boson state

� = �1,1,0, . . . ,0� = b1
†b2

†�0� . �B1�

See Sec. IV.
The nondegenerate eigenvector of the two-particle Hamil-

tonian is

��00� =
1
�2

b†���0��b†���0���0� =
1

N�2
�
j,k

bj
†bk

†�0� . �B2�

It has eigenvalue 2. The projection of �1,1 ,0 ,0 , . . . � onto this
eigenvector is �p�00���00� with p�00�=2/N2.

Introduce vectors � j, orthogonal to ��0�, determined by

	 j = 	��0��	 j���0� + � j =
1

�N
��0� + � j . �B3�

Then one can write

�1,1,0,0, . . . � =
1

N
b†���0��b†���0���0� + b†��1�b†��2��0�

+
1

�N
b†���0��b†��1 + �2��0� . �B4�

The projection of �1,1 ,0 ,0 , . . . � onto the �N−1�2-fold degen-

erate subspace equals b†��1�b†��2� �0�. It is written as
�p�11���11� with

p�11� = �b†��1�b†��2��0��2 = 	�1��1�	�2��2� + �	�1��2��2

= 
1 −
1

N
�2

+
1

N2 . �B5�

The projection of �1,1 ,0 ,0 , . . . � onto the remaining subspace
equals

1
�N

b†���0��b†��1 + �2��0� . �B6�

It is written as �p�01���01� with

p�01� =
1

N
�b†���0��b†��1 + �2��0��2 =

1

N
��1 + �2�2 =

2

N

1 −

2

N
� .

�B7�

Explicit expressions for the three eigenstates are

��00� = ��0�
� ��0� =

1

N
�
jk

	 j � 	k, �B8�

��11� =
1

�p�11�

1
�2

��1 � �2 + �2 � �1�

=
1

�p�11�

1
�2

	1 � 	2 + 	2 � 	1 +

2N

��0� � ��0�

−
1

�N
��0�

� 	1 −
1

�N
	1 � ��0� −

1
�N

��0�

� 	2 −
1

�N
	2 � ��0�� , �B9�

��01� =
1

�p�01�

1
�2N

���0�
� ��1 + �2� + ��1 + �2� � ��0��

=
1

�p�01�

1
�2N


��0�
� �	1 + 	2� + �	1 + 	2� � ��0�

−
4

�N
��0�

� ��0�� . �B10�

The coefficients of the expansion of each of the vectors
��00�, ��11�, and ��01� into the basis vectors 	 j � 	k can be
written as


 jk
�00� =

1

2
xjk

�1�, �B11�


 jk
�11� =

1

2N�2p�11�
�2xjk

�1� − 2xjk
�3� + Nxjk

�2� − Nyjk� , �B12�


 jk
�01� =

1

N�2p�01�
�xjk

�3� − 2xjk
�1�� , �B13�

with
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xjk
�1� =

2

N
, �B14�

xjk
�2� = �� j1 + � j2���k1 + �k2� , �B15�

xjk
�3� = � j1 + �k1 + � j2 + �k2, �B16�

yjk = �� j1 − � j2���k1 − �k2� . �B17�

The matrices X�1�, X�2�, X�3� span a simple Jordan algebra of
the spin factor type �see �46�, Sec. 2.9.7�. The Jordan product
is defined by

A * B =
1

2
�AB + BA� . �B18�

One verifies that

X�1� * X�1� = 2X�1�, �B19�

X�2� * X�2� = 2X�2�, �B20�

X�3� * X�3� = 2X�3� + NX�2� + NX�1�, �B21�

X�1� * X�2� =
2

N
X�3�, �B22�

X�1� * X�3� = 2X�1� + X�3�, �B23�

X�2� * X�3� = X�3� + 2X�2�, �B24�

Y * Y = 2Y , �B25�

Y * X�j� = 0, j = 1,2,3. �B26�

There exists a representation of the Jordan algebra with
the above product rules in R2+R+R, with the product rule

�u,a,
� * �v,b,�� = �av + bu,	u�v� + ab,
�� . �B27�

Let u�1� and u�2� be two unit vectors satisfying 	u�1� �u�2��=
−1+4/N. Then one can identify

X�1� = �u�1�,1,0� , �B28�

X�2� = �u�2�,1,0� , �B29�

X�3� =
1

2
„N�u�1� + u�2��,4,0… , �B30�

Y = �0,0,2� . �B31�

With this representation is

�p�00���00� =
1

N�2
�u�1�,1,0� , �B32�

�p�11���11� =
1

2N�2
�2X�1� − 2X�3� + NX�2� − NY�

=
1

2N�2
�− �N − 2�u�1�,N − 2,− 2N� , �B33�

�p�01���01� =
1

N�2
�X�3� − 2X�1��

=
1

2N�2
„�N − 4�u�1� + Nu�2�,0,0… . �B34�

It is now straightforward to calculate the squares

p�00����00��2 =
1

N2 �u�1�,1,0� �B35�

p�11����11��2 =
1

4N2„− �N − 2�2u�1�,�N − 2�2,2N2
… ,

�B36�

p�01����01��2 =
1

N2 �0,N − 2,0� . �B37�

Summing these relations gives

� = � =
1

4N
„− �N − 4�u�1�,N,2N… . �B38�

Squaring again gives

�2 = �2 =
1

16N2„− 2N�N − 4�u�1�,N2 + �N − 4�2,4N2
… .

�B39�

The trace of the matrix represented by �u ,a ,
� equals 2a
+
. Hence one finds Eq. �59�.

Let us finally calculate 
. Squaring again gives

�p�00����00��2�2 =
2

N4 �u�1�,1,0� , �B40�

�p�11����11��2�2 =
1

8N4„− �N − 2�4u�1�,�N − 2�4,2N4
… ,

�B41�

�p�01����01��2�2 =
1

N4„0,�N − 2�2,0… . �B42�

This gives


 = 1 − Tr�p�00����00��2�2 − Tr�p�11����11��2�2 − Tr�p�01�

����01��2�2 =
1

2
+

2

N
−

8

N2 +
16

N3 −
16

N4 . �B43�
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