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Based on a two-qubit one-dimensional isotropic spin-1 /2 Heisenberg spin chain in a constant external
magnetic field, we construct a four-level entangled quantum heat engine �QHE� and investigate the influence of
entanglement between two qubits on basic thermodynamic quantities, i.e., the heat transferred and the work
done in a cycle, and the efficiency of the QHE. The validity of the second law of thermodynamics is confirmed
in the entangled system. We also find several interesting features of the variation of the efficiency with the
entanglement of two different thermal equilibrium states in a work cycle in zero and finite magnetic field. An
abrupt transition of efficiency is found in zero field.
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I. INTRODUCTION

Carnot showed that every heat engine that operates be-
tween two heat baths has an efficiency less than or equal to
the Carnot efficiency �c=1−Tl /Th, where Th and Tl are the
temperature of the high-temperature energy source and the
low-temperature energy sink, respectively. It is equivalent to
the second law of thermodynamics and supported by numer-
ous experimental evidences without exception so far in clas-
sical systems �1,2�.

Recently, many investigations have been carried out to
explore various possible improvement of the heat engine by
virtue of rapidly developing quantum mechanics, and many
surprising properties �3–14� are reported. Scully and collabo-
rators proposed quantum heat engines �QHEs� that can ex-
tract work from a single thermal bath via quantum negent-
ropy �8� or vanishing quantum coherence �9,10�. They also
obtained laser action in hot exhaust gases of an Otto heat
engine by using a laser and maser in tandem �6,7�. Kieu �5�
constructed a QHE which is a two-level quantum system and
undergoes quantum adiabatic process and energy exchanges
with heat baths at different stages in a work cycle. Armed
with this class of QHE and the interpretations of heat trans-
ferred and work performed at the quantum level, he clarified
some important aspects of the second law of thermodynam-
ics.

However, none of the QHEs mentioned above involve the
most extraordinary phenomenon in quantum mechanics, i.e.,
quantum entanglement �15,16�. To enrich research in QHEs,
we introduce an entangled QHE and investigate the influence
of entanglement on its thermodynamic characteristics. The
second law of thermodynamics is first shown to be valid in
an entangled system. Some interesting connections between
entanglement and basic thermodynamic quantities, i.e., the
heat transferred and the work done in a work cycle, and the
efficiency of the QHE, are also given analytically or graphi-
cally.

II. ENTANGLED QHE MODEL

Our QHE is a two-qubit one-dimensional �1D� isotropic
spin-1 /2 Heisenberg model �17–19�. The Hamiltonian for

the system in a constant external magnetic field B is given by

H = J��� 1 · �� 2 + �� 2 · �� 1� + B��z
1 + �z

2� , �1�

where �� i= ��x
i ,�y

i ,�z
i� are the Pauli matrices for the ith �i

=1,2� spin. J is the exchange constant while J�0 and J
�0 correspond to the antiferromagnetic and the ferromag-
netic cases, respectively. The four eigenvalues of Eq. �1� are
�20�

E1 = − 6J ,

E2 = 2J − 2B ,

E3 = 2J ,

E4 = 2J + 2B . �2�

When the system is in the thermal equilibrium state �tem-
perature T�, it is described by ��T�=e−H/kT /Z, where Z
=Tr�e−H/kT� is the partition function and k is Boltzmann’s
constant. The entanglement of formation between two qubits
is already known as �20�

E = − �1 + �1 − c2

2
�log2�1 + �1 − c2

2
�

− �1 − �1 − c2

2
�log2�1 − �1 − c2

2
� , �3�

where c is the concurrence �21� given by

c = �0 if e8J/kT � 3,

e8J/kT − 3

1 + e−2B/kT + e2B/kT + e8J/kT if e8J/kT � 3. 	 �4�

The concurrence or entanglement apparently vanishes when
J�0 from the above expressions; therefore we focus on J
�0 in the paper. In addition, we use concurrence directly as
the measurement of entanglement in the following discussion
for simplicity, since there is a one-to-one correspondence
between the entanglement of formation and concurrence.
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We adopt Kieu’s explanations of heat transferred and
work performed at the quantum level �5� in this paper. The

infinitesimal heat transferred d̄Q and work done d̄W are iden-
tified as

d̄Q ª 

i

Eidpi,

d̄W ª 

i

pidEi. �5�

Mathematically speaking, these are not total differentials but
are path dependent. These expressions interpret heat as a
change in the occupation probabilities but not in the distri-
bution of the energy eigenvalues themselves; and work done
as the redistribution of the energy eigenvalues but not of the
occupation probabilities of each energy level �22�.

A cycle of the QHE has four stages which are presented
below and sketched in Fig. 1. It is supposed that the external
magnetic field is kept constant throughout.

(1) Stage 1. The system has the probability pi0 �i
=1,2 ,3 ,4� to be in each of its four eigenstates, respectively.
By contacting with a heat bath at temperature T1 for some
time, the occupation probability of each eigenstate becomes
pi1. Only heat is transferred in this stage due to the change in
the occupation probability.

(2) Stage 2. The system is then isolated from the heat bath
and undergoes a quantum adiabatic process �provided the
process is sufficiently slow� while the exchange constant
changes from J1 to J2. The probability of each eigenstate is
maintained as pi1 throughout according to the quantum adia-
batic theorem �23�. An amount of work is thus performed
and no heat is transferred.

(3) Stage 3. The system, with the probability pi1 to be in
each eigenstate, is brought into some contact with another
heat bath at temperature T2 until the occupation probability
becomes pi2. Still only heat is transferred.

(4) Stage 4. The system is removed from the heat bath and
again undergoes a quantum adiabatic process. The exchange
constant changes from J2 back to J1 and the occupation prob-

ability of each eigenstate is maintained, that is, pi2= pi0.
Some work is then performed.

If the system contacts with two heat baths sufficiently in
stage 1 and stage 3 to arrive at thermal equilibrium with
them, then the occupation probabilities pi1 and pi2 depend
only on the temperatures of the heat baths and the energy
levels of the system, i.e.,

pij =
eEij/kTj



i

eEij/kTj

for i = 1,2,3,4

and j = 1,2, �6�

where Ei1 and Ei2 are defined in Eq. �2� by taking J=J1 and
J=J2, respectively.

According to the quantum interpretations of heat trans-
ferred and work done in Eq. �5�, the heat transferred in stage
1 �Q1� and in stage 3 �Q2� is given by

Q1 = 

i

Ei1�pi1 − pi2� , �7a�

Q2 = 

i

Ei2�pi2 − pi1� . �7b�

Q�0 and Q�0 correspond to absorbption and release of
heat from and to the heat baths, respectively. From the law of
conservation of energy, the net work done by the QHE in two
quantum adiabatic processes, i.e., stage 2 and stage 4, is

W = Q1 + Q2 = 

i

�Ei1 − Ei2��pi1 − pi2� . �8�

W�0 and Q�0 correspond to work performed by and on
the QHE, respectively.

It is worthy of mention that for a qualified heat engine

T1 � T2, �9a�

W = Q1 + Q2 � 0 �9b�

must be satisfied. Equation �9a� is actually our presupposi-
tion and �9b� means some work done by the heat engine.
Equation �9b� straightforwardly indicates three possible
cases, i.e., �i� Q1�−Q2�0, �ii� Q2�−Q1�0, and �iii� Q1
�0 and Q2�0. �i� is physically acceptable while �ii� and
�iii� apparently violate the second law of thermodynamics. In
the latter part of the paper, we will prove �ii� and �iii� impos-
sible analytically for null magnetic fields and graphically for
finite fields. Now the efficiency of the QHE can be defined as

� =
W

Q1
= 1 +

Q2

Q1
. �10�

The entanglement under our consideration is that of two
thermal equilibrium states at the end of stage 1 and stage 3,
denoted by c1 and c2, respectively. They are

1 2

1

1 2

2

FIG. 1. �Color online� Sketch of the entangled four-level quan-
tum heat engine. Two spin-1 /2 qubits together play the role of
working fluid.
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c1 = �0 if e8J1/kT1 � 3,

e8J1/kT1 − 3

1 + e−2B/kT1 + e2B/kT1 + e8J1/kT1
if e8J1/kT1 � 3. 	

�11a�

c2 = �0 if e8J2/kT2 � 3,

e8J2/kT2 − 3

1 + e−2B/kT2 + e2B/kT2 + e8J2/kT2
if e8J2/kT2 � 3. 	

�11b�

III. QHE AND ENTANGLEMENT

Now we start to explore the relation between entangle-
ment and basic thermodynamics quantities and the efficiency
of the QHE. From Eq. �11� we find

J1 =
1

8
kT1 ln� c1�1 + e−2B/kT1 + e2B/kT1� + 3

1 − c1
� ,

J2 =
1

8
kT2 ln� c2�1 + e−2B/kT2 + e2B/kT2� + 3

1 − c2
� , �12�

when e8Ji/kTi �3 �i=1,2� are satisfied. Substituting Eq. �12�
into Eqs. �7�, �8�, and �10�, we obtain the expressions for Q1,
Q2, W, and � as functions of c1, c2, T1, T2, and B. We first
investigate the simplest case of a vanishing field. When B
=0, Eq. �12� becomes

J1 =
1

8
kT1 ln� 6

1 − c1
− 3� ,

J2 =
1

8
kT2 ln� 6

1 − c2
− 3� . �13�

By simple deduction, Eq. �7� becomes

Q1 = 8J1�p12 − p11� =
1

2
kT1�c2 − c1�ln� 6

1 − c1
− 3� ,

�14a�

Q2 = − 8J2�p12 − p11� = −
1

2
kT2�c2 − c1�ln� 6

1 − c2
− 3� .

�14b�

Q1 and Q2 obviously have contrary signs, so case �iii� is
excluded. The net work done in a cycle now is given by

W = �8J1 − 8J2��p12 − p11�

=
1

2
k�c2 − c1��T1 ln� 6

1 − c1
− 3� − T2 ln� 6

1 − c2
− 3�� .

�15�

Therefore the positive net work condition �9b� indicates two
possible situations, i.e.,

c2 � c1 and T1 ln� 6

1 − c1
− 3� − T2 ln� 6

1 − c2
− 3� � 0

�16a�

or

c2 � c1 and T1 ln� 6

1 − c1
− 3� − T2 ln� 6

1 − c2
− 3� � 0.

�16b�

Equation �16b� can be easily proved incompatible with Eq.
�9a�, that is, case �ii� is impossible. So far we have clarified
case �i�, i.e., Q1�−Q2�0 is the only possible case. The
efficiency is now given by

�0 = 1 −
J2

J1
= 1 −

ln� 6

1 − c2
− 3�

ln� 6

1 − c1
− 3�

T2

T1
for c2 � c1. �17�

When c2=c1, �0=0 since Q1=Q2=W=0 from Eqs. �14� and
�15�. Equations �14�, �15�, and �17� analytically give the ex-
pressions for basic thermodynamic quantities and the effi-
ciency in terms of two concurrences, respectively.

In order to intuitively investigate how entanglement af-
fects �0, we sketch the variation of �0 with c1 and c2 in Fig.
2 where an isoline map is used. We define �=c1 /c2 as a
measurement of the difference of c1 and c2. Three features of
the isolines of efficiency can be found from Fig. 2. First, the
Carnot efficiency defined as �c=1−T2 /T1 is never achiev-
able. Combined with the above explanations where neither
case �ii� nor �iii� is possible, the second law of thermody-
namics is proved to hold all the time even when entangle-
ment is indeed involved. Second, �0 increases almost mono-
tonically with �, approaching unity when either c1 or c2 is
fixed. Finally, Fig. 2 shows that �→1 leads to �0→�c.
However, a unit � yields zero � as mentioned before, i.e., an
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FIG. 2. �Color online� Variation of the efficiency of the quantum
heat engine with the entanglement of two different thermal equilib-
rium states at the end ofstage 1 and stage 3 in an isoline map of
efficiency for kT1=2, kT2=1, and B=0.
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abrupt transition of the efficiency occurs. In fact, both the
heat exchanged with two heat baths �Q1 ,Q2� and the net
work done by the QHE �W� in Eqs. �14� and �15� vanish at
the critical point �=1, i.e., the heat engine undergoes a
trivial cycle.

Next we study the case of nonzero magnetic field. The
analytical expressions for basic thermodynamic quantities
and the efficiency of the QHE now are too complicated to
give clear results directly, so they are shown graphically. The
Carnot efficiency is also appointed as �c=1−T2 /T1=1/2 in
advance for simplicity. We choose three representative B val-
ues to plot the variation of basic thermodynamic quantities
and the efficiency with c1 and c2 in Figs. 3–5. The curves are
discontinuous because those situations when condition �9b�
is not satisfied are excluded.

We find some intriguing features of these figures. First,
Q1�−Q2�0 is always true as long as condition �9b� is sat-

isfied. Although analytical evidence is absent, we have tested
this for many randomly chosen B values and found complete
agreement. Furthermore, we find that �c=1/2 is not achiev-
able in these three figures. Therefore the second law of ther-
modynamics holds all the while. Second, each isoline of ef-
ficiency becomes a loop instead of an open curve in
vanishing field. This indicates that � no longer increases
monotonically with � when either c1 or c2 is fixed. This is
understandable since � is doubtlessly affected by nonzero B.
Third, the physically acceptable range of two entanglements
varies for different magnetic fields. In a high enough mag-
netic field, the loops also appear when c1�c2 whereas in a
small field it seems that only c2�c1 is relevant. This can be
roughly explained as follows. Consider the extreme case J1
=J2; since T1�T2 and entanglement generally decreases
with the increase of temperature �21�, c2 should often be
greater that c1. However, it also was shown in Ref. �21� that
entanglement could increase with the increase of temperature
in certain magnetic fields. Thereby c2�c1 would possibly
occur for some B values.

IV. POSITIVE WORK CONDITION OF THE QHE

Finally, we discuss the positive net work condition �9b� in
more detail. When the external magnetic field vanishes, Eq.
�9b� becomes

J1

T1
�

J2

T2
⇔ T1 � T2� J1

J2
� , �18�

or in terms of concurrence

c1 � c2 �19�

for J1�J2. When J1�J2, condition �9b� demands J1 /T1
�J2 /T2 which is apparently incompatible with condition
�9a�. Equation �18� is just the same as the condition �6� in
Ref. �5�, also in contradistinction to the classical requirement
that T1 only needs to be larger than T2.
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FIG. 3. �Color online� Variation of Q1, Q2, W, and � with c1 and
c2 in an isoline map of efficiency for kT1=2, kT2=1, and B=1.
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FIG. 4. �Color online� Variation of Q1, Q2, W, and � with c1 and
c2 in an isoline map of efficiency for kT1=2, kT2=1, and B=3.
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FIG. 5. �Color online� Variation of Q1, Q2, W, and � with c1 and
c2 in an isoline map of efficiency for kT1=2, kT2=1, and B=5.
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When the QHE operates in nonzero magnetic field, con-
dition �9b� demands

e8J2/kT2

e8J1/kT1
�

1 + e−2B/kT2 + e2B/kT2

1 + e−2B/kT1 + e2B/kT1
� 1 for J1 � J2,

�20a�

e8J2/kT2

e8J1/kT1
�

1 + e−2B/kT2 + e2B/kT2

1 + e−2B/kT1 + e2B/kT1
for J1 � J2. �20b�

The second inequality in Eq. �20a� results from the mono-
tonic increase of the function f�x�=1+ex+e−x with increase
of x. The lower bound of T1 /T2 given by Eq. �20a� is higher
than that given by Eq. �18� since Eq. �18� equals
e8J2/kT2 /e8J1/kT1 �1.

Moreover, we investigate Eq. �20� in terms of concur-
rence. Recalling Eq. �12�, Eq. �20� becomes

c2 +
3

Z2
� c1 +

3

Z1
for J1 � J2, �21a�

c2 +
3

Z2
� c1 +

3

Z1
for J1 � J2, �21b�

where

Z1 = 1 + e−2B/kT1 + e2B/kT1 + e8J/kT1 =
4 + e−2B/kT1 + e2B/kT1

1 − c1
,

Z2 = 1 + e−2B/kT2 + e2B/kT2 + e8J/kT2 =
4 + e−2B/kT2 + e2B/kT2

1 − c2
.

�22�

Notice that Z2�Z1 always holds, whatever is the relation
between J1 and J2 from Eqs. �9a� and �20�, so in order to
make the heat engine be qualified, the condition �21a� at B

�0 is stronger than the condition �19� at B=0. Equation
�21b� or Eq. �20b� provides an extra area of physical param-
eters of the QHE which does not exist in Ref. �5�.

V. CONCLUSION

In conclusion, by introducing an entangled QHE and
quoting the quantum interpretations of heat and work from
Ref. �5�, we have broadened the investigations of quantum
heat engine by involving entanglement in the QHE. Based on
a two-qubit 1D isotropic spin-1 /2 Heisenberg chain in a con-
stant external magnetic field, we construct a four-level en-
tangled QHE and deduce the expressions of Q1, Q2, W, and
� as functions of concurrences c1 and c2. To guarantee that
the QHE is qualified, we use a preassumption and a positive
net work condition. These conditions are compared with Eq.
�6� in Ref. �5� and also expressed in terms of concurrence. Is
is shown that the second law of thermodynamics is valid all
the time. We investigate the influence of entanglement on the
heat transferred �Q1 ,Q2�, the net work done �W�, and the
efficiency ��� for vanishing and finite magnetic field. For
zero field, we obtain the analytical expressions for Q1, Q2
�Eq. �14��, W �Eq. �15��, and � �Eq. �17�� and find three
properties. An interesting phenomenon is the occurrence of
an abrupt transition at c1=c2, which can be explained from
the expressions of Q1, Q2, and W. For nonzero field, we
graphically explore the variation of three thermodynamic
quantities and the efficiency with c1 and c2, respectively.
Some intriguing features and their qualitative explanations
are given.
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