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Given a single copy of a mixed state of the form �=��1+ �1−���2, what is the optimal measurement to
estimate the parameter � if �1 and �2 are known? We present a general strategy to obtain the optimal mea-
surements employing a Bayesian estimator. The measurements are chosen to minimize the deviation between
the estimated value and the true value of �. We explicitly determine the optimal measurements for a general
two-dimensional system and for important higher dimensional cases.
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I. INTRODUCTION

The estimation of quantum states is one of the basic
primitives in quantum theory. This general task appears in
several modifications and situations. When many copies of
the state are available, one may try to obtain maximal infor-
mation on the quantum state by employing state tomography
�1�, although the effort may become overwhelming if the
dimension of the system increases. Furthermore, tomography
is clearly not a viable way, if only a few or even only a single
copy of the state are available.

Nevertheless, if some a priori information about the state
is given, there are several estimation problems which can be
meaningfully posed and solved even on the single copy
level. The most prominent is state discrimination, where one
knows that the system is in one of several given states, and
one needs to decide in which one. This problem has been
discussed in several variations, either one aims for an unam-
biguous discrimination, or for a discrimination with a mini-
mal error probability �1,2�. Moreover, programmable state
discriminators have been proposed �3�. Other problems con-
sidered are state estimation from several copies with collec-
tive or separable measurements �4�, the estimation of certain
state parameters �like the time in a unitary evolution� �5�, as
well as estimation of the state after a generalized measure-
ment when the premeasurement state is unknown �6�.

In this paper, we consider the following problem: Let us
assume that an apparatus is given, which produces for a
given input � the state

���� = ��1 + �1 − ���2, �1�

where �1 and �2 are known. Let us further assume that � is
determined by some well characterized random number gen-
erator, but we do not know its actual value. The task is now
to estimate � from a single copy of ����.

Such estimation problems can occur in several realistic
situations. For instance, one may consider some process of
decoherence, where the single copy of ���� describes the
state of a single atom coupled to its environment, and the
task is to estimate the rate of decoherence. In this case �1
represents an initial state, while �2 is the state of thermal
equilibrium, which the system assumes eventually. Another

example may be that ���� is the reduced state of some mul-
tipartite pure state ������, where one tries to estimate �. We
will discuss the decoherence example later in more detail.

For the estimation one has to perform some measurement.
The most general measurement is described by a positive
operator valued measure �POVM� and we ask for the POVM
that minimizes the expected deviation between the true value
of � and the estimated one. Here we take the viewpoint that
the value of � is not exactly known beforehand but we may
have information about it in the form of a prior probability
distribution. After a measurement this prior probability dis-
tribution can be updated according to Bayes theorem. Mini-
mizing the deviation of the estimate from � expected from
the posterior probability distribution leads to the so-called
Bayesian estimator �see, for example, �7��.

Bayesian estimators have been successfully applied in
state discrimination problems. They are also appropriate in
situations where a sequence of consecutive measurements is
carried out and the estimate has to be updated after each
measurement. This is, for example, the case in real-time
monitoring of the dynamics of quantum systems. Using a
Bayesian estimator it is possible to monitor oscillations of
single qubits in real-time with high accuracy by means of a
sequence of weak measurements �8,9�. The Bayesian estima-
tor is also intimately related to the continuous estimation of
the wave function of a system with arbitrary-dimensional
Hilbert space by means of continuous measurement �10�. Al-
though the search for the best measurement in connection
with a Bayesian estimator is performed in this paper for the
particular task to estimate the parameter � in Eq. �1�, it may
be carried out in an analogous way in different setups.

For the case when � is a two-level system, i.e., a qubit, we
determine the optimal measurement strategy for arbitrary �1
and �2. Interestingly, for the case of completely unknown �,
it turns out that if �1 and �2 do not have the same purity, the
optimal measurement does not commute with �1−�2, and
hence does not coincide with the intuitive guess which one
would make from the Bloch sphere picture. Finally, we dis-
cuss how the results from the qubit case can readily be used
to solve this problem for important higher dimensional cases.

As already mentioned, similar parameter estimation prob-
lems have in generality been studied in Ref. �5� and general
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conditions on the information which can be obtained about
the parameter have been formulated. Our aim, however, is to
explicitly construct the optimal measurements. The knowl-
edge of these explicit measurements may further be used to
improve schemes for the observation of oscillations with
small disturbance �8,9�.

Our paper is organized as follows: In Sec. II we pose the
problem in mathematical terms and derive a general condi-
tion on the optimal POVM. In Sec. III we show how this
general condition can already reduce the set of POVMs
which have to be considered. In Sec. IV we solve the prob-
lem for qubits. We first derive the optimal measurement, if �1
and �2 are pure, then we consider the general case. We also
discuss how one can apply the results for estimating deco-
herence rates. Finally, in Sec. V we derive some results for
higher dimensional systems.

II. BAYESIAN ESTIMATOR AND CONDITION
FOR OPTIMAL MEASUREMENT

In this paper, we consider the following task. Let us as-
sume that we have a single quantum system with
d-dimensional Hilbert space H. Its state is known to be a
mixture of two states �1 and �2, i.e.,

�� = ��1 + �1 − ���2, �2�

where for the parameter � only some probability distribution
is known. What is the measurement which leads to an opti-
mal estimation of the unknown parameter �?

The estimation of � has to proceed in two steps: First, a
measurement is carried out on the system. The statistics of a
general measurement can be characterized by a POVM and
throughout this paper we denote by P= �Em� a POVM with
the effects Em. In a second step the parameter � is estimated
by a number gm �the estimate� which depends on the result of
the measurement m.

Let us first discuss the construction of the optimal esti-
mate gm for a given outcome m. A criterion for the optimality
of the estimate gm can be formulated as follows: gm is opti-
mal iff the cost function

c��,gm� = �� − gm�2 �3�

is expected to assume its minimum:

Em„�� − gm�2
… ª	 �� − gm�2p���m�d�=

!

min. �4�

Here the expectation value E is taken with respect to the
posterior probability distribution of �, which includes the
information contained in the occurrence of the measurement
result m:

p���m� =
p�m���p���

p�m�
, �5�

where p�m�=
p�m ���p���d� is the probability to obtain the
measurement result m averaged over all possible occurring
states.

Taking into account the linearity of the expectation value,
one can directly verify that the optimal estimator gm is equal
to the expected value of �:

Em„�� − gm�2
… = Em„���2

… − 2gmEm��� + gm
2

= „Em��� − gm…
2 + Varm��� , �6�

where

Varm��� = Em��2� − Em���2 �7�

represents the variance of �. The right-hand side of Eq. �6�
assumes a minimum for gm=Em���. Such a value gm is also
called a Bayesian estimate.

Having derived the optimal estimate gm for a certain out-
come m we can consider the optimal choice of the POVM.
Now, the optimal measurement is the one which leads to the
smallest expected costs averaged over all outcomes m:

�
m

p�m�Em„�� − gm�2
…=

!

min. �8�

Hence the effects �Em� have to minimize the mean variance
�mp�m�Varm���. Note that this variance, just as the expecta-
tion of the costs, is defined with respect to the posterior
probability density p�� �m�.

For the sake of simplicity we choose in the following an
equally distributed prior density p���=1. We will see later in
an example that this does not impose a big restriction. Using
p�m ���=tr�Em��� and the probability to obtain measurement
result m,

p�m� = 	
0

1

p�m���p���d� = 	
0

1

tr�Em���1 + �1 − ���2��d�

= tr�Em
1

2
��1 + �2�
 , �9�

we obtain for the posterior probability density in Eq. �5�

p���m� =
tr�Em���

tr�Em
1

2
��1 + �2�
 . �10�

In order to minimize the mean variance of � we have to first
compute the expectation value of � and �2 with respect to the
posterior probability density:

Em��� = 	
0

1

�p���m�d� =

	
0

1

� tr�Em���d�

tr�Em
1

2
��1 + �2�


=

tr�Em�2

3
�1 +

1

3
�2�


2 tr�Em
1

2
��1 + �2�
 �11�

and in a similar calculation
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Em��2� = 	
0

1

�2p���m�d� =

tr�Em�3

4
�1 +

1

4
�2�


3 tr�Em
1

2
��1 + �2�
 .

The mean variance thus amounts to �see Eqs. �7� and �9��:

�
m

p�m�Varm��� =
1

3
−

1

4�
m

�tr�Em�2

3
�1 +

1

3
�2�
�2

tr�Em
1

2
��1 + �2�
 .

�12�

We can thus summarize the main result of this section.
Proposition 1. The optimal POVM P= �Em� is the one

which maximizes

Q�P� ª
1

4�
m

�tr�Em�2

3
�1 +

1

3
�2�
�2

tr�Em
1

2
��1 + �2�
 . �13�

Note that using the fact that 2
3�1+ 1

3�2= 1
2 ��1+�2�+ 1

6 ��1

−�2� the quantity Q�P� may be rewritten as

Q�P� ª
1

4�1 + �
m

�tr�Em��1 − �2���2

3 tr�Em��1 + �2�� � , �14�

which is manifestly invariant under the permutation of �1
and �2. Further note that Eq. �11� allows us to calculate the
Bayesian estimate gm of �, given a measurement outcome
associated with the effect operator Em, since gm=Em���.

The condition for an optimal measurement in the case of a
general prior probability distribution p��� can be determined
from the corresponding mean variance, which is of similar
form as Eq. �12�. It can be derived as in Eqs. �9�–�12� with a
general p��� and reads

�
m

p�m�Varm��� = �2 − ��̄�2�
m

�tr�Em��2

�̄
�1 + �1 −

�2

�̄
��2
��2

tr�Em��̄�1 + �1 − �̄��2��
, �15�

where �n is the nth moment of p���, i.e., �n=
0
1�np���d�.

Again, this may be rewritten in a way similar to Eq. �14�
which is invariant under permutation of �1 and �2. Although
we consider in the following an equidistributed �, thus
p���=1, we illustrate by an example in Sec. IV that the re-
sults we obtain can readily be transcribed for the general
case.

III. PROPERTIES OF OPTIMAL MEASUREMENTS

Now we show two facts about the POVM which mini-
mizes the expression of Eq. �12�: We first show that this
POVM can be chosen to have pure effects, i.e., effects which
are of rank one. Then, we show that this POVM must be a
so-called extremal POVM.

To show that the POVM which minimizes the expression
of Eq. �12� has pure effects Ei, assume that we have a POVM
where one effect, say E1, is not pure. Then we can decom-
pose E1 as E1=E1

A+E1
B where E1

A and E1
B are linearly inde-

pendent positive operators, which can serve as new effects.
The new POVM with the effects E1

A ,E1
B ,E2 ,E3 , . . .. gives the

same or a smaller value for the cost function. Indeed, from
Eq. �12� it follows that it suffices to show

�Z1�2

N1
�

�Z1
A�2

N1
A +

�Z1
B�2

N1
B , �16�

where Z�
�=tr�E�

�� 2
3�1+ 1

3�2�� and N�
�=tr�E�

� 1
2 ��1+�2��. Equa-

tion �16� can be straightforwardly verified, using the facts

that Z1=Z1
A+Z1

B and N1=N1
A+N1

B. Thus for our search for
optimal measurement strategies, it suffices to consider
POVMs with pure effects.

There are further constraints on the optimal POVM P.
These follow from the fact that the set of all POVMs is a
convex set. Given two POVMs P�1�= �Em

�1�� and P�2�= �Em
�2��

with K outcomes, the convex combination P= pP�1�+ �1
− p�P�2�= �pEm

�1�+ �1− p�Em
�2�� is again a POVM with K out-

comes. On the other hand there are POVMs which cannot be
expressed as a convex combination of two different POVMs,
these are called extremal �11�. For our purpose, it is impor-
tant to note that for convex combinations

Q�P� � pQ�P�1�� + �1 − p�Q�P�2�� �17�

holds. This follows because it is true for each of the sum-
mands of Q. This can be verified, e.g., for the summand with
the effect E1= pE1

�1�+ �1− p�E1
�2� by replacing the effects E1

A

and E1
B in inequality �16� by pE1

�1� and �1− p�E1
�2�, respec-

tively. Since a generic convex combination on the right-hand
side of Eq. �17� assumes only values less than
max�Q�P�1�� ,Q�P�2���, only extremal POVMs can maximize
Q and thus minimize the expected costs. We can summarize.

Proposition 2. When maximizing Q in Eq. �13� it suffices
to consider extremal POVMs with pure effects.

Indeed, we can require both conditions at the same time,
since POVMs with pure effects, which are not extremal, can
be written as a convex combination of extremal POVMs with
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pure effects. The two conditions on the POVMs are a priori
independent. However, for special cases, certain relations are
known. For instance, it has been shown that all extremal
POVMs for qubits have pure effects and maximally four out-
comes �11�. This fact we will exploit in the following.

IV. OPTIMAL POVM FOR QUBITS

In this section we consider the problem for qubits, that is,
�1 and �2 are qubit states. The representation of these states
on the Bloch sphere will enable us to determine the optimal
POVM. We will first derive some general formulation of the
optimization problem in terms of Bloch vectors. Then we
will solve the problem for the case where �1 and �2 are pure
and finally for general �1 and �2.

We know already that the effects Em of an optimal mea-
surement are pure, i.e.,

Em = �m�0m��0m� . �18�

Here, the states �0m� span the whole Hilbert space but they
are in general not mutually orthogonal. Since we are dealing
with qubits the projectors �0m��0m� can be expressed by
means of Bloch vectors r�m= �0m��� �0m�:

�0m��0m� =
1

2
�1 + r�m · �� � , �19�

where the components of the vector �� are the Pauli operators
�x, �y, and �z. Thus the effects read

Em = pm�1 + r�m · �� � �20�

with pmª�m /2. From the completeness of the effects
�mEm=1 we obtain the following constraints for the weights
pm and the vectors r�m:

�
m

pm = 1 and �
m

pmr�m = 0� . �21�

The optimal POVM maximizes Q in Eq. �13�. Expressing
the states �aª �2�1+�2� /3 and �bª ��1+�2� /2 in terms of
Bloch vectors r�i=tr��� �i�,

�a =
1

2
�1 + r�a · �� �, �b =

1

2
�1 + r�b · �� � , �22�

Q reads

Q =
1

4�
m

pm
�1 + r�m · r�a�2

1 + r�m · r�b

. �23�

The quantity Q can be further simplified by expanding it in
powers of the difference vector 	r�=r�a−r�b,

Q =
1

4�
m

pm
�1 + r�m · �r�b + 	r���2

1 + r�m · r�b

=
1

4�
m

pm�1 + r�m · �r�b + 2	r�� +
�r�m · 	r��2

1 + r�m · r�b
�

=
1

4�1 + �
m

pm
�r�m · 	r��2

1 + r�m · r�b
� , �24�

where we have employed conditions �21� to obtain the last
line from the second. Starting with this representation of Q,
we can further reduce the set of interesting POVMs for our
task.

Proposition 3. When determining the optimal POVM for
qubits it suffices to consider POVMs with pure effects and
maximally three outcomes where the vectors r�m lie in the

plane spanned by r�a ,r�b, and 0� in the Bloch sphere.
Proof. In fact the effects Em of any qubit-POVM P can be

represented by means of Bloch vectors r�m:

Em = pm�1 + r�m · �� � , �25�

where the pm, r�m satisfy condition �21�. Positivity of Em im-
plies 0� �r�m��1 with �r�m�=1 iff Em is pure.

Now, let us assume without restriction of generality that

the plane spanned by r�a ,r�b and 0� is the x-z plane. Starting
from the vectors r�m which describe the effects Em of the
POVM P we consider their projection q�m= �r�m�xz on the x-z

plane. This results in a new POVM P̃ with the effects

Ẽm = pm�1 + q�m · �� � . �26�

This POVM possesses in general not only pure effects, since
the q�m are in the generic case not normalized. However, Eqs.
�23� and �24� are still valid, which implies that Q�P�
=Q�P̃�. To proceed, we can now decompose the nonpure

effects Ẽm into pure ones. This can, for example, be done by
means of spectral decomposition:

Ẽm = pm
A 1 + q�̂m · ��

2
+ pm

B 1 − q�̂m · ��

2
¬ Ẽm

A + Ẽm
B , �27�

where the eigenvalues are given by pm
A/B= pm�1± �q�m��. Please

observe that the Bloch vectors ±q�̂mª ±q�m / �q�m� of the pure

effects Ẽm
A/B point into the x-z plane. Thus it suffices to con-

sider POVMs with pure effects �but maybe many outcomes�
in the x-z plane. Finally, we can choose extremal POVMs. If
the POVM with many pure effects in the x-z plane is not
extremal, we can write it as a convex combination of ex-
tremal ones, which obviously have to have pure effects in the
x-z plane again. The point is, that it is known that for ex-
tremal POVMs with four outcomes the projectors cannot lie
in one plane �11�. This proves the claim. �

In the following we study the problem of optimal mea-
surements beginning with the simplest case, the optimal von
Neumann measurement for pure states �1 and �2. Then we
attempt to show that this von Neumann measurement leads
to the least mean variance compared to all generalized qubit
measurements. We increase the level of generality by study-
ing the case of mixed states �1 and �2.

A. Optimal PVM for mixtures of pure qubit states

Let us first consider pure states �1 and �2 of a qubit, and
find the optimal von Neumann measurement, i.e., the PVM
�P+= ������, P−=1− ������� for which the expected variance
of � is least. The projectors �P+ , P−� can be expressed by
means of normalized Bloch vectors r�+= ����� ����r� and r�−

=−r�,
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P± =
1

2
�1 ± r��� � . �28�

This implies that the weights which appear in the parametri-
zation of the pure effects �20� are given by p±=1/2.

Inserting the weights p± and the Bloch vectors r�± into Q
as given by Eq. �24� yields

Q =
1

4
�1 +

�r� · 	r��2

1 − �r� · r�b�2� . �29�

Without losing generality we assume that �1 and �2 are rep-
resented by the Bloch vectors r�1= �0,0 ,1� and r�2

= �sin 
 ,0 ,cos 
�, respectively. In this case r�b= �r�1+r�2� /2
= �sin 
e�x+ �1+cos 
�e�z� /2 and 	r�= �−sin 
e�x+ �1
−cos 
�e�z� /6 are perpendicular, see Fig. 1. Because of this
orthogonality Q in Eq. �29� reduces to

Q =
1

4
�1 +

�	r�2 cos2 �

1 − rb
2 sin2 �

� , �30�

where � is the angle between r� and 	r�, 	r= �	r�� and rb
= �r�b��1. Q assumes its maximum value

Qmax =
1

4
�1 + �	r�2� �31�

at �=k� with k=0,1 ,2 , . . ., i.e., if the Bloch vectors r± of
the projectors point into the same �opposite� direction as 	r�.
This is the case for measurements of nondegenerated observ-
ables O which commute with �1−�2.

It remains to show that this von Neumann measurement is
also optimal among all possible POVM. This we will do in
the next section, where we solve the problem for general
�1 ,�2.

B. Mixtures of mixed states

Which is the optimal measurement if �1 and �2 are mixed
qubit states? In order to answer this question, we first deter-
mine the optimal projector-valued measure and then show
that this leads also to a maximal value of Q for all POVMs.
According to Eq. �29�, Q for a given PVM can be written as

Q��� =
1

4
�1 +

�	r�2 cos2���
1 − rb

2 cos2 �
� , �32�

where � is the angle between the Bloch vector r� which rep-
resents one projector of the PVM and 	r� and � is the angle
between r� and r�b. Introducing the angle � between 	r� and r�b
and taking into account that �=�+�, one can directly verify
that Q assumes its maximum at

�0 = ± arccos� cos �

�rb
2

2
�rb

2 − 2��1 − cos�2��� + 1� − �

+ k� with k = 0,1, . . . , �33�

where the positive sign is for 0��
�, and the negative
sign has to be taken for −���
0 �as it is in Fig. 2�. If both
states were pure �as in the previous section�, we had �
=� /2 and hence �0=k�. For mixed states, however, this is
in general not the case, hence the projectors of the optimal
PVM measurement do not correspond to the eigenvectors of
�1−�2 �see Fig. 2�. Only if both states �1 and �2 have the
same purity �that is, tr��1

2�=tr��2
2� which implies r1=r2⇔�

=0� the best measurement is again that of a nontrivial ob-
servable O which commutes with �1−�2.

The deviation from the pure state case �=k� is shown in
Fig. 3. Physically, this deviation may be explained as fol-
lows. If �2 is relatively mixed compared to �1, then no ob-

�
Π
�����
2

�
Π
�����
4

0 Π
�����
4

Π
�����
2

�
Π
�����
8

0

Π
�����
8

�
Π
�����
8

Π
�����
8

Γ

Α0

FIG. 3. �Color online� Deviation of optimal measurement direc-
tion r� from direction of r�1−r�2 specified by the angle �0 as a func-
tion of angle � between 	r� and r�b for rb=0.8. For states �1 ,�2 with
the same entropy ��= ±� /2� the deviation is zero. If, say, state �1

corresponds to less entropy r� is tilted towards the Bloch vector of
�1. For example, compare the case depicted in Fig. 2, where � /2

�
0 and thus 0
�0
� /2, indicating the named tilting.

�r1

�r2

�r1 − �r2

�ra

�rb

∆�r

�r

FIG. 1. �Color online� Schematic figure of the Bloch represen-
tation for the case where �1 and �2 are pure. The Bloch vectors r�b

and 	r��r�1−r�2 are orthogonal because of the circle of Thales. r�
denotes the direction of the considered measurement. In the calcu-
lation, it turns out that for the optimal measurement r� is parallel to
r�1−r�2. See text for further details.
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servable does efficiently resolve the value of � for small �.
This is simply due to the fact that the possible states with a
small � are close to the maximally mixed state. So it is
favorable to measure in the direction of �1 which gives at
least a high resolution for high values of �.

Finally, we have to show that the optimal projection mea-
surement is also the optimal POVM measurement. To do so,
we prove that the Q-value for all POVMs is less than or
equal to its maximum value Qmax

PVM for PVMs. For a general
qubit-POVM �see Eq. �24��, Q is given by

Q =
1

4�1 + �
m

pm
�	r�2 cos2 �m

1 + rb cos��m + ��� , �34�

whereas the maximum Q for projection measurements is of
the form

Qmax
PVM =

1

4
�1 +

�	r�2 cos2 �0

1 − rb
2 cos2��0 + ��� �35�

with �0 given by Eq. �33�. We can formulate.
Proposition 4. For qubits POVMs cannot improve the op-

timal projective measurement, with �0 given in Eq. �33�.
That is, we have for all POVMs Q�Qmax

PVM.
Proof. We introduce the positive function

� → f��� =
cos2���

1 − rb
2 cos2�� + ��

, �36�

then the claim can be expressed as follows:

Q � Qmax
PVM ⇔ �

m

pmf��m��1 − rb cos �m�

� f��0� ⇔ �
m

pm
f��m�
f��0�

�1 − rb cos �m� � 1, �37�

where �mª�m+�. Since f���� f��0� for all �� �0,2��, it
follows that

�
m

pm
f��m�
f��0�

�1 − rb cos �m� � �
m

pm�1 − rb cos �m� = 1,

�38�

which proves the claim. The right-hand side is equal to unity
because of the constraints on weights pm and the Bloch vec-
tors r�m of the effects �21�, i.e., �mpm=1 and �mpm cos �m
=0.�

C. Decoherence as an example

As an example, let us discuss the following problem. We
consider a two-level atom under the influence of decoher-
ence. The task is to estimate the decay rate from one copy of
the state. The evolution of the density matrix may be de-
scribed by the master equation

�

�t
� =

1

i�
�H,�� + L� , �39�

where H=���z /2 is the Hamiltonian of the atom, and the
incoherent evolution is of the Lindblad form �12�

L� = −
B

2
�1 − s���+�−� + ��+�− − 2�−��+�

−
B

2
s��−�+� + ��−�+ − 2�+��−� −

2C − B

4
�� − �z��z� .

�40�

Here, s= �0����0� denotes the population of the exited state in
thermal equilibrium, �±=�x± i�y, and B and C are the decay
rates of the expectation values of �z and �±.

It can be straightforwardly shown that for the case C=B
the time dependent density matrix is given by

��t� = U�̃�t�U†,

�̃�t� = e−Bt��0� + �1 − e−Bt��s 0

0 1 − s
� , �41�

with U=e−iHt/�. Note that this form is independent from the
starting density matrix ��0�. Now we can ask: assuming we
know s, t, and ��0�, how can we estimate the decay param-
eter B from a single copy of ��t�?

Let us assume that we know that at least B� �0,Bmax�.
Then the state under consideration is, in the rotating frame,
of the form

���� = ��1 + �1 − ���2, � = e−Bt � �e−tBmax
,1� . �42�

While B� �0,Bmax� is equidistributed �i.e., p�B�=1/Bmax for
all B�, the parameter � is not. Its probability density is given
by

�r1

�r2

�r1 − �r2

�ra

�rb

�r

∆�r

FIG. 2. �Color online� Schematic figure of the Bloch represen-
tation for the case where �1 is pure, but �2 is not. Now, the optimal
measurement is a measurement in the direction of r� which is tilted
towards r�1.
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q��� =
1

�tBmax , �43�

as can be checked by direct calculation. Employing the density q��� we can calculate the mean variance using Eq. �15�:

�
m

p�m�Varm��� =
1 − e−2tBmax

2tBmax − x2�
m

�tr�Em��1 −
xtBmax

2
��1 + � xtBmax

2
��2
��2

tr�Em�x�1 + �1 − x��2��
;

x =
1 − e−tBmax

tBmax . �44�

The remaining optimization problem is essentially the same
as in the previous case. The only difference is that the
weights of �1 and �2 in the previous case ��2/3 ,1 /3� and
�1/2 ,1 /2�� are now replaced by more complicated expres-
sions. Due to that, the discussion from above for the case
where �1 and �2 are pure, is no longer valid, since the or-
thogonality of r�b and 	r� is not guaranteed anymore. How-
ever, the solution of the general case is directly applicable,
the only difference is the new definition of r�a and r�b. Hence
the calculations of Sec. IV can be applied, and finally Eq.
�33� solves the problem of the estimation of the decay pa-
rameter.

V. OPTIMAL MEASUREMENT FOR HIGHER
DIMENSIONAL SYSTEMS

Let us now discuss the case of higher dimensional sys-
tems. That is, we consider a single copy of the state ��

=��1+ �1−���2 where the �i are density matrices acting on a
d-dimensional complex Hilbert space Hd.

A general solution for this case is quite complicated.
However, for many important cases the problem can be
solved as follows. Let us choose d2 operators Gi, i
=0, . . . ,d2−1 such that they form an orthonormal basis of
the operator space. This means they are Hermitian and fulfill
tr�GiGj�=�ij. We can choose them in such a way that �1 as
well as �2 can be written as linear combinations of G0
=1 /�d, G1, and G2. Any Hermitian operator with trace one
can be written as

O =
1

d
�1 + �d2 − d �

i=1

d2−1

riGi� �45�

and if O denotes a pure state we have Tr�O2�=1 which is
equivalent to �iri

2=1.
Now one can apply the results of the qubit case: First, one

can argue as in Proposition 3 that the effects of the optimal
POVM are linear combinations of G0, G1, and G2. Then, the
previous section allows one to compute the optimal �0 and
the corresponding vectors. Note that the normalizations 1/d
and �d2−d in Eq. �45� are chosen in such a way that all the
formulas of the qubit case can be applied without modifica-
tion.

The drawback of this ansatz is that the obtained optimal
vectors are not guaranteed to correspond to valid POVMs.
Namely, in contrast to qubits, for higher dimensional systems
the condition �iri

2=1 does only imply that tr�O2�=1, but not
that O is positive. The conditions for positivity for Bloch
vectors in higher dimensional systems are quite involved
�13,14�. However, if the resulting solution yields positive
effects, the obtained solution is clearly the optimal one. We
will discuss now important examples when this is the case.

Let us first consider the case when �1 and �2 have support
on the same two-dimensional subspace of Hd. This is, for
instance, the case if �1= ��1���1� and �2= ��2���2� are pure
states. Then, by choosing an appropriate basis of the two-
dimensional subspace, we can assume that �1 and �2 are real.
Hence G1 and G2 can be chosen as the Pauli matrices on the
subspace, and the solution of the two qubit case can directly
be applied. Moreover, if �1= ��1���1� and �2= ��2���2� the
optimal measurement consists of a von Neumann measure-
ment of an observable commuting with ��1���1�− ��2���2�.

The other important case occurs if the first state is a pure
state, �1= ������, mixed with white noise �2=1 /d. Then we
have to choose G1= �1−d������� /�d2−1 and G2 arbitrary.
The optimal measurement is then a von Neumann-Lüders
measurement with two effects: P1= ������ and P2=1
− ������.

A. Verifying production of entangled states

The last example is similar to a task often occurring in
experiments. Namely, one aims to produce an entangled state
���, however, noise is added during the preparation process.
This situation may be modeled by writing the actual prepared
state as

���� = ������� + �1 − ��
1

d
1 . �46�

Now one would like to know whether the state is entangled
or not. Our results deliver now a possible strategy for this
decision: one may estimate � with the methods outlined
above and then apply separability criteria to the state ���est�.
However, since only one copy is available, this does not
allow one to detect the entanglement unambiguously. It is
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interesting to see that this method is different from the stan-
dard method for many copies. Then, entanglement witnesses
allow the unambiguous detection, since for them a negative
mean value guarantees entanglement �15,16�. Indeed, these
are different observables: Taking the two-qubit case and
���=��01�+��10� the optimal witness is W= �00��00�+ �01�
��10�+ �10��01�+ �11��11� �17� which is different from the
observable which leads to the best estimate of �.

B. Optimal measurement for commuting states

Another case where we can determine the optimal mea-
surement to estimate the qudit state �� in Eq. �2� is given
when �1 and �2 are commuting states,

��1,�2� = 0. �47�

It turns out that measurements leading to the least mean vari-
ance are von Neumann measurements of observables O
which commute with �1 and �2, that is, they have the same
eigenvectors as �1, �2. The proof can be accomplished in two
steps. First we prove that we can restrict the search for opti-
mal measurements to the class of POVMs with effects com-
muting with �1 and �2, then we argue that among these mea-
surements the projection measurements yield the best
estimation of ��.

Proposition 5. Let �1 and �2 be commuting, ��1 ,�2�=0
and let the POVM P= �Em� represent a measurement to esti-
mate the state ��=��1+ �1−���2. Then there is a projective

measurement P̃= �Fm� with �Fm ,�1�=0 for all m which sat-

isfies Q�P�=Q�P̃�.
Proof. The commuting states �1 and �2 are simultaneously

diagonalizable,

�1 = �
i

ti�i��i� and �2 = �
i

si�i��i� . �48�

Thus Q�P�, see Eq. �13�, can be expressed as

Q�P̃� =
1

4�
m

��
i

emi�2

3
ti +

1

3
si�
2

�
i

emi
1

2
��1 + �2�

�49�

with emiª �i�Em�i�. Now, the positive operators Fm

ª�iemi�i��i� form a POVM, i.e., they satisfy the complete-
ness relation:

�
m

Fm = �
m,i

�i��i�Em�i��i� = 1 . �50�

It is easy to see that the commutative POVM P̃= �Fm� leads
to the same value of Q as P. Hence we have only to consider
POVMs which commute with �1 and �2 to find a measure-
ment which maximizes Q. In addition we already learned in
Sec. III that an optimal POVM is distinguished by pure ef-
fects. Together with the commutativity of the effects it fol-
lows that the optimal measurement is a projective one. �

VI. CONCLUSION

In conclusion, we have studied parameter estimation for
quantum states, when only one copy of the state is available.
For one qubit, we solved the problem by explicitly construct-
ing the measurement that minimizes the deviation between
the true value of the parameter and the estimated one, using
a Bayesian estimator. Furthermore, we showed how the re-
sults from the qubit case can readily be used to solve this
problem for important higher dimensional cases.

Our work can be extended into several directions. First,
one may look at higher dimensional systems, trying to find
general solutions for this case. Here, it would be of great
interest to find cases where, contrary to the qubit case, gen-
eral POVMs allow for a better parameter estimation than von
Neumann measurements. For practical purposes, it may also
be relevant to develop optimal measurement strategies for
several but a finite number of copies.
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