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In order to meet experimental conditions, the generation, evolution, and self-stabilization of optical dissipa-
tive light bullets from non-spherically-symmetric input pulses is studied. Steady-state solutions of the
�3+1�-dimensional complex cubic-quintic Ginzburg-Landau equation are computed using the variational ap-
proach with a trial function asymmetric with respect to three transverse coordinates. The analytical stability
criterion is extended to systems without spherical symmetry, allowing determination of the domain of dissi-
pative parameters for stable solitonic solutions. The analytical predictions are confirmed by numerical evolu-
tion of the asymmetric input pulses toward stable dissipative light bullets. Once established, the dissipative
light bullet remains surprisingly robust.
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Complex nonlinear dissipative systems are now a subject
of very broad interest �1�. A wide class of such systems,
ranging from nonlinear optics, plasma physics, and fluid dy-
namics to superfluidity, superconductivity, and Bose-Einstein
condensates, can be modeled by complex Ginzburg-Landau
equations �2�. Stable exact analytical solutions of multidi-
mensional complex cubic-quintic Ginzburg-Landau equa-
tions �CQGLEs� do not exist �3�. Such nonintegrable systems
can be solved only numerically. The domains of parameters
where the solutions are stable, giving fully localized spa-
tiotemporal dissipative solitons, have been obtained only by
numerical simulations �4,5�. However, an analytical ap-
proach, even though approximate, is needed in order to guide
simulations and to avoid the tedious numerical computations
necessary to determine the stability domain point by point
�6�. In a recent publication �7� we used the variational
method extended to dissipative systems, to establish this sta-
bility domain of parameters for a spherically symmetric
CQGLE. Indeed, an analytical stability criterion for dissipa-
tive one-, two-, and three-dimensional solitons was estab-
lished and confirmed by exhaustive numerical simulations.
Such a criterion provides analytically a broad domain of in-
put parameters for generation of stable �3+1�-dimensional
solitons called dissipative light bullets.

The objective of the present work is to extend the synergy
of our analytical and numerical approach in order to study a
much broader class of Ginzburg-Landau systems involving
no spherical symmetry. In spherically symmetric CQGLEs,
second-order derivatives are made with respect to the light
bullet radius r=�x2+y2+ t2, imposing constraints on the in-
dependent transverse space �x and y� and time �t� variables
�see Eq. �1� in Refs. �6,7��. Such a constraint on input pulses
seriously limits the class of considered systems and their
experimental realization �8,9�. Therefore, here we study the
�3+1�-dimensional complex cubic-quintic Ginzburg-Landau
equations for the normalized field envelope E, describing
separately the diffractions along the x and y coordinates and
the anomalous group velocity dispersion in time t without
such a constraint,
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In order to prevent wave collapse a saturating nonlinearity is
required �6�. As a consequence, cubic and quintic nonlineari-
ties have to have opposite signs, i.e., the parameter � is posi-
tive. Terms denoted by Q are all dissipative
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The stability of the pulse background involves linear loss,
thus the parameter � must be negative �3,7�. The parameters
� and � are associated, respectively, with cubic and quintic
gain-loss terms. The parabolic gain ���0� is taken with re-
spect to each transverse coordinate separately. A simulta-
neous balance of diffraction and dispersion with self-
focusing and gain with loss is the prerequisite for generation
of dissipative light bullets. As a consequence, for a given set
of parameters the continuous family of solutions reduces to a
fixed one representing an isolated attractor �3,5�.

In order to generalize the spherically symmetric varia-
tional approach established in Ref. �7�, we construct for the
system of Eqs. �1� and �2� the total Lagrangian L=Lc+LQ
containing not only a conservative part,
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but also a dissipative one �7�,

LQ = i��E�2 + i
��E�4

2
+ i

��E�6

3
− i�G , �4�

where G= ��E /�x�2+ ��E /�y�2+ ��E /�t�2. The independent
treatment of all three transverse coordinates involves an
asymmetric trial function
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E = A exp�i�Cx2 + Dy2 + Ft2 + �� −
x2
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2T2	
�5�

as a functional of amplitude A, temporal �T� and spatial �X
and Y� pulse widths, anisotropic wave front curvatures C and
D, chirp F, and phase �. Following Kantorovitch, the con-
stant parameters of the Rayleigh-Ritz approach are substi-
tuted by the functions �=A, X, Y, T, C, D, F, � of the
independent variable z �7�. Each of these functions is opti-
mized giving one of eight Euler-Lagrange equations aver-
aged over transverse coordinates x, y, and t,
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containing already the averaged conservative Lagrangian Lc
=���Lcdx dy dt. The real part is labeled Re. The differentia-
tion with respect to z is labeled by a prime.

Within the variational approximation, to the partial differ-
ential CQGLE corresponds a set of eight coupled first-order
differential equations �FODEs� resulting from the variations
in amplitude
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anisotropic wave front curvatures
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with W−2=X−2+Y−2+T−2 and S=C+D+F. For convenience
reasons, all dissipative parameters, considered as small, are
divided by �0= ���: �0=� /�0, �0=� /�0, and �0=� /�0. The

exact steady-state solutions are obtained from Eqs. �7�–�13�
for z derivatives of amplitude, widths, and curvatures equal
zero. The only possible steady-state solutions are symmetric
with equal widths X=Y =T and curvatures C=D=F. In the
dissipative case, the power P=A2XYT is no longer a constant
�6,7�. However, in steady state the power P=21.76A−1�1.38
−�A2�−3/2, the width X=2.79A−1�1.38−�A2�−1/2, and the
propagation constant ��=0.09A2 depend, up to �0, only on
the amplitude as in the conservative case �6,9�. Variationally
obtained families of conservative steady-state solutions re-
duces to a fixed double solution for a given set of dissipative
parameters. Indeed, the steady-state amplitude has two dis-
crete values A+ and A−,

A± = 1.17�	 ± �	2 + 98.53��0 + �0��
6��0 + �0��

�15�

where 	=3�0−4�0. A double solution �A−�A+� exists for a
cubic gain ��0�0� and a quintic loss ��0
0� in the ��0 ,�0�
domain between the dotted parabola 	2+98.53��0+�0��=0
and straight line A−=1.175 in Fig. 1. The striking difference
from conservative systems is the nonzero wave front curva-
ture C=0.032A2�1.38��0−�0�+A2��0+��0���0 �6,9�.

To be a soliton a steady-state solution must be stable. In
order to check the stability of solutions our stability criterion
based on the variational approach and the method of
Lyapunov exponents has to be generalized for non-
spherically-symmetric conditions �7�. A Jacobi matrix is built
from the derivatives of the right-hand sides of Eqs. �7�–�13�
with respect to amplitude, widths, and curvatures taken in a
symmetric steady state. The steady-state solutions of the
seven coupled FODEs are stable if and only if the real parts
of the solutions � of the equation

��3 + �1�2 + �2� + �3���2 + �4� + �5�2 = 0 �16�

are nonpositive �10�. That is fulfilled when the Hurwitz con-
ditions are satisfied. The stability criterion for steady-state
solutions of the CQGLE is explicitly expressed up to �0 as

�2 = 0.07A4�1.38 − �A2��4�A2 − 1.38� � 0, �17�

�3 = 0.02A4�1.38 − �A2�2��4�0 − 3�0�A2 − 22.63��0 � 0,

�18�

FIG. 1. Stability domain of A− solutions computed exactly �full
curves� and up to �0 �dashed curves�.
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�4 = �0.35��0 + 2�0�A2 + 0.29��0 − 2��0�A4��0 � 0,

�19�

�6=�1�2−�3�0, with

�1 = �0.06�0A2 − 0.77�0A4 − 2.67��0, �20�

and �5=O��2�. As a consequence, in the ��0 ,�0� domain in
Fig. 1 only the A− solution is stable in the shaded region
between the curves �2=0 and �6=0 �separated by a square�,
as well as �4=0. The dashed and dotted curves are obtained
from Eqs. �15�–�20� taken up to �0. The full curves corre-
spond to the exact solution of the same set of equations
solved parametrically. The input pulse chosen in the stable
domain of parameters is not yet a light bullet since the varia-
tionally obtained v curve in Fig. 2 corresponding to the
power P as a function of the parameter �0 is only a good
approximation of the exact n curve obtained by numerical
solution of Eq. �1�. Numerical simulations are performed us-
ing the Crank-Nicholson integration scheme with a Gauss-
Seidel iteration procedure. The integration step is 
z=0.01.
The number of sampling points is 201 following each trans-
verse dimension. Following Nicolis and Prigogin’s theory of
dissipative structures and self-organization, the curves in Fig.
2 correspond to bifurcations with the upper stable branch and
lower unstable branch controlled by the parameter �0 �10�.
The analytically predicted domain of stability is exhaustively
checked point by point using numerical simulations of Eq.
�1�; a stable soliton is generated from each point, so that each
point can be taken as representative. As a consistent illustra-
tion, throughout the paper we use the same representative set
of dissipative parameters �0=0.01, �0=23, �0=−40, �=1,
and �0=5; the triangle corresponding to A+ is on the lower
unstable branch of the v curve. The diamond associated with
the corresponding A− is on the upper branch, stable between
the squares. If this solution is taken as the input in numerical
simulations �inset �b� in Fig. 2�, it will evolve by shrinking
toward the stable dissipative soliton �inset �c�� represented
by the diamond on the exact n curve. However, the same
final soliton can be obtained starting from an asymmetric,
i.e., ellipsoidal input pulse �inset �a�� with the same set of
dissipative parameters belonging to the stable domain, as nu-

merical simulations demonstrate �see Figs. 3�a�–3�c��. An
initial pulse with strong asymmetry, having the ratio of spa-
tial and temporal widths X :Y :T=1.3:1 :0.7 in Fig. 3�a� �see
also inset �a� in Fig. 2�, will oscillate, evolving to a spherical
light bullet with identical widths �inset �c� in Fig. 2�. In the
beginning of the evolution, after a few oscillations �on a
larger scale in Fig. 3�b��, the amplitude slightly decreases in
order to adjust to the exact perfectly stable soliton solution
�on a compressed scale�. The power, after transient oscilla-
tions, increases, reaching light bullet power, which remains
constant �Fig. 3�c��. Conservation of power amplitude and
widths using extremely long simulations �more than z
=30 000� also confirms the stability of our code and the ac-
curacy of our results. Therefore, following our numerical
simulations of the CQGLE, an asymmetric input pulse with
dissipative parameters from the established stable domain
evolves always toward a stable dissipative light bullet �inset
�c� in Fig. 2� situated on the n curve. After a short evolution
�after z
260�, a stable dissipative structure is generated cor-
responding to a dissipative light bullet, which is permanently
self-maintained. We checked also the resistance of such soli-
tons to perturbations by increasing the amplitude by 5% for
each z from z=800 to 2800 �see Fig. 4�. The soliton as a
self-organized system adapts in order to resist big successive
perturbations. Once systematic increase of amplitude is
stopped, the solitonic system continues to compensate by
inertia so that a sharp decrease appears. Immediately after,
however, the stable light bullet is reestablished, demonstrat-
ing an astonishing robustness. Therefore, for fixed steady-
state solutions, the balance between diffraction, dispersion,
and saturating nonlinearity is not realized independently of
the gain-loss compensation. The curvature C=D=F is nega-
tive in the stable ��0 ,�0� domain considered. As a conse-
quence, the self-focusing dominates both diffraction and dis-
persion; hence, it would increase the amplitude in the

FIG. 2. Upper �between squares� stable �diamonds� and lower
unstable �triangles� branches of variational �v� and numerical �n�
curves with insets corresponding to asymmetric �a� and symmetric
�b� inputs as well as to the soliton �c�.

FIG. 3. Numerical evolution of an asymmetric input pulse to-
ward a stable dissipative soliton.
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absence of loss and gain terms. Detailed analysis of the nu-
merical contribution of each term in the CQGLE �Eq. �1��
confirms the cross compensation. Indeed, the self-focusing
excess resulting from the sum of all real terms on the left-
hand side of the CQGLE is exactly compensated by the real
part of the parabolic terms on the right-hand side �Eq. �2��.
The cross compensation is achieved by matching of all
imaginary terms from the right-hand side with the imaginary
parts of the diffraction and dispersion terms. Therefore, in
symmetric as well as asymmetric conditions, cross compen-
sation appears as a very efficient mechanism of stabilization
through synergy of self-focusing, loss, and gain.

In conclusion, the �3+1�-dimensional CQGLE is treated
for a non-spherically-symmetric input, using a joint numeri-
cal and analytical approach based on extension of the varia-
tional method. A stability criterion based on FODEs without
spherical symmetry is established in order to select stable
steady-state solutions from the domain of dissipative param-

eters obtained analytically through exact parametric resolu-
tion. The stability of the analytically predicted domain is
confirmed point by point using numerical simulations. Other
��0 ,�0� domains for different sets of parameters �0, �0, and
� are also tested and will be the subject of a forthcoming
paper, including different parameters �0 for each transverse
coordinate in the parabolic gain term. Following our numeri-
cal simulations, each asymmetric input pulse with dissipative
parameters chosen from the stability domain determined by
that criterion always evolves in such a way as to generate a
stable dissipative light bullet. The limitation of the variation
approach to a set of trial functions without the possibility of
reshaping does not affect the generality of the analytical sta-
bility criterion. For each set of dissipative parameters from
the proposed stability domain, a stable steady state corre-
sponding to the approximate solution of the CQGLE taken as
input will evolve, attracted by the fixed exact solution in
order to self-organize into a dissipative light bullet. It is
worthwhile to stress that even very asymmetric input pulses
�as in Fig. 3�, for the same dissipative parameters from our
domain, which are far from stable spherically symmetric
steady states, always self-organize into soliton. The analyti-
cally obtained stable steady states are in the domain of at-
traction of the exact solution. As a consequence, bullets are
very robust, resisting successive increase of amplitude dur-
ing evolution. The opportunity to treat analytically and nu-
merically asymmetrical input pulses propagating toward nec-
essarily stable and robust dissipative light bullets opens
possibilities for diverse practical applications, including ex-
periments.
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FIG. 4. Light bullet resisting 5% increase of the amplitude for
each z from z=800 to 2800.
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