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We have studied Laguerre-Gaussian spatial solitary waves in strongly nonlocal nonlinear media analytically
and numerically. An exact analytical solution of two-dimensional self-similar waves is obtained. Furthermore,
a family of different spatial solitary waves has been found. It is interesting that the spatial soliton profile and
its width remain unchanged with increasing propagation distance. The theoretical predictions may give new
insights into low-energetic spatial soliton transmission with high fidelity.
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The interest in properties of self-similar waves in complex
nonlinear optical systems has grown greatly during recent
years �1–6�. Although self-similar solutions have been exten-
sively studied in many fields such as plasma physics and
nuclear physics �7,8�, surprisingly, they have only lately at-
tracted the attention of the nonlinear optics community, and
relatively few optical self-similar phenomena have been in-
vestigated to date �1–6�. In particular, exact one-dimensional
self-similar solitary waves have been found in optical fibers,
whose dispersion, nonlinearity, and gain profile are allowed
to change with the propagation distance, but the functional
forms of these parameters cannot be chosen independently
�1–5�.

The nonlocal spatial solitons are modeled by the nonlocal
nonlinear Schrödinger equation �NNLSE� �9–11�. In general,
the nonlinear term has the nonlocal form associated with a
symmetric and real-valued response kernel. Moreover, the
NNLSE also describes several other physical situations in
the literature �12–15�. Snyder and Mitchell �9� simplified the
NNLSE to a linear model in the strongly nonlocal case, and
their work was highly appreciated by Shen �16�. So far, more
properties of solitons have been described by the NNLSE,
and the related phenomena have theoretically been clarified
�17–19�. The experimental observations �20,21� can be inter-
preted in the framework of nonlocal nonlinearity �22�. It has
been demonstrated that the localized wave packets in cubic
nonlinear materials with a symmetric nonlocal nonlinear re-
sponse of arbitrary shape and degree of nonlocality can be
described by a general NNLSE, and the nonlocality of the
nonlinearity prevents collapse in optical Kerr media in all
physical dimensions, resulting in stable solitary waves under
the proper conditions �13–15,18,19�.

In this Rapid Communication, we study the propagation
of a beam in two-dimensional nonlocal nonlinear media. We
show that there exists a class of LGnm�n ,m=0,1 ,2 , . . . � soli-
ton waves, propagating in a self-similar manner. It is found
that the predicted self-similar waves can be regarded as a
family of LGnm spatial solitons.

In the strongly nonlocal limit �9–11�, the wave equation
governing beam propagation in two-dimensional nonlocal
nonlinear media can be written as �13,17�
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where s is a normalized unit corresponding to the beam in
the transverse plane, and g�z� in the final term is the loss
coefficient, depending on the propagation distance z. The
second term of Eq. �1� represents diffraction, while the third
term accounts for nonlinear effects. ��

2 =�2 /�r2+ �1/r�� /�r
+ �1/r2��2 /��2 is the transverse Laplacian operator in polar
coordinates. Here, � is the azimuthal angle and we consider
only s�0.

Following Refs. �1–6�, the complex field is defined as
u�z ,r ,��=A�z ,r ,��eiB�z,r�, where A�z ,r ,�� and B�z ,r� are
real functions with r=�x2+y2. Substituting u�z ,r ,�� into Eq.
�1�, and requiring that the real and imaginary parts of each
term be separately equal to zero, we obtain the following
coupled equations:
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To search for a self-similar solution in Eqs. �2� and �3�, we
introduce a set of transformations �6�

A�z,r,�� =
kP�z�����

w�z�
F��� , �4a�

B�z,r� = a�z� + b�z�r + c�z�r2, �4b�

where w�z� is the beam width, P�z�= P0 exp�−
0
zg�z��dz�� is

the power of the beam, ��z ,r� is a self-similar variable, a�z�
is the phase offset, b�z� is the frequency shift, and c�z� rep-
resents the wave front curvature �6�. These variables are all
allowed to vary with propagation distance z. Inserting Eqs.
�4a� and �4b� into Eq. �3�, and making the coefficient of each
power of r equal to zero, we obtain ��z ,r�=r2 /w2, b�z�=0,
and c�z�= �1/2w�dw�z� /dz. By using Eqs. �4� a nonlinear
differential equation for F��� is readily derived from Eq. �2�,
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From Eq. �5�, we can obtain
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where �=cos�m��+ iq sin�m��. The integer m
�=0,1 ,2 , . . . � denotes the quantum number of � and the pa-
rameter q �0�q�1� is the modulation depth of the beam
intensity. We note that in the limit q→1, � becomes radially
symmetric. For q→0, � describes a multipole soliton �22�.
In order to simplify Eq. �7�, we further introduce another
transformation F���=�m/2e−�/2V���, we have
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The combination of Eqs. �8a� and �8b� with Eq. �7� results in

�
d2V

d�2 + �1 + m − ��
dV

d�
+ nV = 0, �9�

where n �=0,1 ,2 , . . . � is called the radial direction quantum
number. Equation �9� is the generalized Laguerre differential
equation and its solution Ln

�m���� is the generalized Laguerre
polynomial. The amplitude of self-similar waves is given by

Anm�z,r,�� =
kP�z�
w�z�

�cos�m�� + iq sin�m���

�� r

w
�m
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�m�� r2
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, �10�

where k= �n! /��n+m+1��1/2 and Ln
�m����= ���m+1

+n� /n!��m+1��F�−n ,m+1,��. Here F�−n ,m+1,�� is the
Kummer function. Now we solve Eq. �8a�. For simplicity,
Eq. �8a� is reexpressed as
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where y= w
w0

and �= 1
2sw0

4 . Taking �y�z��z=0=1 and
�dy�z� /dz�z=0=0, integrating Eq. �11� yields

w2 = w0
2�cos2�2�sw0

2z� + � sin2�2�sw0
2z�� . �12�

It can be seen from Eq. �12� that beam diffraction initially
overcomes beam-induced refraction when ��1, and the

beam initially expands, with w2

w0
2 vibrating between a maxi-

mum � and a minimum 1; whereas, when �	1, the reverse
happens and the beam initially contracts, with w2

w0
2 breathing

between a maximum 1 and a minimum �. When �=1, dif-
fraction is exactly balanced by nonlinearity. In this way, the
generalized Laguerre-Gaussian beam preserves its width as it
travels in a straight path along the z axis �9�. Furthermore, by
using �8b� and �12�, the phase offset and the wave front
curvature of the beam can be obtained readily:

a�z� = a0 −
�2n + m + 1�arctan��� tan�2�sw0

2z��

2�s�w0
4

, �13�

c�z� =
�sw0

2�� − 1�sin�4�sw0
2z�

1 + � − �� − 1�cos�4�sw0
2z�

. �14�

Using Eqs. �4a� and �4b�, we get the exact self-similar solu-
tion of Eq. �1�,

unm�z,r,�� =
kP�z�
w�z�

�cos�m�� + iq sin�m���

�� r

w
�m

Ln
�m�� r2

w2�e−r2/2w2+ia�z�+ic�z�r2
, �15�

where w�z�, a�z�, and c�z� are determined by Eqs. �12�–�14�.
It has been noted that the beam in Eq. �15� is influenced

by the degrees �n ,m� of the generalized Laguerre polynomi-
als s, the angle distribution, the beam width, and the loss. It
should be pointed out that the beam width is determined by s
and w0. The energy of the beam E=
−



 �u�z ,r ,���2dr d�
= p2�1+q2��2p2 is calculated according to the orthogonal
relation of Ln

�m����. As seen, the energy of the solitons in
general is less than that of the sec h soliton and has nothing
to do with the degrees �n ,m� of the generalized Laguerre
polynomials. Since Eq. �1� is a linear wave equation, the
highly nonlinear effect of collapse cannot occur
�13–15,18,19�. Hence, by constructing the appropriate sys-
tem parameters and initial values, the higher-order LGnm
beam can transmit in the same way as the lower one in the
media regardless of any other conditions.

Figure 1 shows a comparison of the analytical solution
with numerical simulation for the initial LG11 beam with
different � parameters �w0=1, p0=1, g=0, q=0�. Figure 1�a�
displays the self-similar evolution of an initial LG11 beam
u�0,r ,��= �P0r cos��� /�2w0

2��2−r2 /w0
2�exp�−r2 /2w0

2�
propagating in lossless media.

It is clearly seen that the beam changes from four speckles
at the initial position to two speckles at 2�sw0

2z= �
2 . That is,

the beam contracts as it propagates in such lossless media
when �	1. On the contrary, the beam expands when ��1;
the number of speckles remains unchanged at four.

Furthermore, we find that when �=1 it can be deduced
that w=w0, c=0, and a�z�=a0− �2n+m+1�z /w0

2. This is an
accessible LGnm soliton �9�. If g�z�=0, Eq. �15� is simplified
to the LGnm soliton expression
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A spatial soliton of this kind exists in strongly nonlocal
media and is often called a strongly nonlocal optical spatial
soliton �9,13�. It is interesting that this spatial soliton with
any width can propagate in the media as long as 2sw0

4 equals
exactly 1 �namely, �=1�. It should be noted that s is a pa-
rameter determined by the material properties and w0.

We find that the spatial solitons in Eq. �16� are determined
by two parameters n and m. For a fixed number n and dif-
ferent m �or a fixed number m and different n�, the LGnm
solitons form a family, having some common characteristics.

Now, we turn to discuss the distribution of the amplitude, the
intensity, and the positions of the zero point ��nm=0� and
extreme point �d�nm /dr=0� of LGnm solitons, where �nm

=��r /w0�mLn
�m��r2 /w0

2�e−r2/2w0
2
.

Figure 2�a� is a plot of the radial distribution of the low-
order LGn0 solitons for different n values, but m=0. Strik-
ingly, there exist n zero points and n+1 extreme points along
with the radial direction. Figures 2�b� and 2�c� show the
distribution of optical field and intensity of LGn0 �n
=0,1 ,2 ,3� solitons. Their maximum optical intensity is lo-
cated at the center of the propagation axis.

Physically, when m=0, it indicates that the nonlinear po-
larization of the medium has the symmetry of the electric
field due to an additional strongly nonlocal condition �13�;
the distribution of the optical field and intensity is obviously
irrelevant for the azimuthal angle distribution �15,18,19�.

Figure 3 shows some properties of the LGn2 soliton for
m�0 and q=0. We see that �n2 has n+1 zero points and n
+1 extreme points along the radial direction. Meanwhile,
there exist 2m zero points and 2m extreme points along the
azimuthal angle distribution. In contrast with the situation
when m=0, the optical intensity is zero at the center of the
propagation axis.

As seen from Figs. 2�a� and 3�a�, the LGnm soliton family
is an evanescent field on the decline. The physical origin of
the phenomenon can qualitatively be understood from the
“nonlocality.” Nonlinear nonlocality means that the nonlin-
ear polarization of a medium with a small volume of radius
r0 �r0
 any wavelength involved� depends not only on the
value of the electric field inside this volume �at the present
time and in the past�, but also on the electric field outside the
volume under consideration �13–15,18,19�. The stronger the
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FIG. 1. �Color online� Comparison of analytical solution with
numerical simulation for the initial LG11 beam in lossless media
with different parameters �. �a� Initial intensity distribution; �b�
analytical solution of Eq. �15� for �=0.6 �top� and 1.6 �bottom�, and
�c� numerical simulation of Eq. �1� for �=0.6 �top� and 1.6
�bottom�.
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FIG. 2. �Color online� �a� Amplitude comparison of radial dis-
tribution of LG0n soliton, corresponding to LG00, LG10, LG20, LG30

from top to bottom. �b� Optical field distribution of LG0n soliton
with w0=1 and P0=1. �c� Intensity distribution of LG0n soliton with
w0=1 and P0=1.
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nonlocality, the more fields are involved in contributing to
the polarization; hence a larger evanescent field is obtained.

We further study a multipole soliton �q=0� when n=0,3
with different m. For the LG00 soliton, the amplitude �nm has
no zero point along the radial direction �see Fig. 2�. Other
solitons have only one zero point located at r=�mw0. The
larger m, the larger r is. Figure 4 shows the intensity distri-
butions with different m when n=0,3. We see that the dis-
tributions change regularly with azimuthal angle distribution.
When m is large enough, the speckles form an optical ring
�necklace solitons� �22�.

These features can be understood simply and explained
easily. In a strongly nonlocal nonlinear medium, the refrac-
tive index is determined by the intensity distribution over the
entire transverse plane, and under proper conditions the non-
locality can lead to an increase of refractive index in the
overlap region r0 �r0
 any wavelength involved�, giving rise

to the formation of multipole solitons. Note that, when the
nonlocal response function is much wider than the beam it-
self �14,15,18,19�, so that the width of the refractive index
distribution greatly exceeds the width of an individual light
spot, it makes a very large range of nonlocality in this me-
dium �13�.

In summary, the self-similar waves of the Laguerre-
Gaussian spatial soliton family in strongly nonlocal nonlin-
ear media has been studied analytically and numerically. An
exact analytical solution of two-dimensional self-similar
waves has been obtained and an additional family of spatial
solitons has been found. It should be pointed out that the
nonlinear polarization of the medium has the symmetry of
the electric field due to additional strong nonlocality; the
distribution of optical field and intensity is obviously irrel-
evant to the azimuthal angle distribution. The stronger non-
locality, the more fields are involved in contributing to the
polarization; hence a larger light field on the decline can be
obtained. In a strongly nonlocal nonlinear medium and under
proper conditions, the nonlocality leads to an increase of
refractive index in the overlap region, giving rise to the for-
mation of multipole solitons. It is expected that the present
findings may give new insight into low-energetic spatial soli-
ton transmission with high fidelity.
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FIG. 3. �Color online� �a� Comparison of amplitude distribution
of LGn2 soliton, corresponding to LG12, LG22, LG32 from bottom to
top. �b�, �c�, �d� Optical field and intensity distribution of LG12,
LG22, and LG32 solitons with w0=1 and P0=1, respectively.
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=0,3� soliton family, where the quantum number is taken into ac-
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