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Hyperentangled Bell-state analysis
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It is known that it is impossible to unambiguously distinguish the four Bell states encoded in pairs of photon

polarizations using only linear optics. However, hyperentanglement, the simultaneous entanglement in more
than one degree of freedom, has been shown to assist the complete Bell analysis of the four Bell states (given
a fixed state of the other degrees of freedom). Yet introducing other degrees of freedom also enlarges the total
number of Bell-like states. We investigate the limits for unambiguously distinguishing these Bell-like states. In
particular, when the additional degree of freedom is qubitlike, we find that the optimal one-shot discrimination

schemes are to group the 16 states into seven distinguishable classes, and that an unambiguous discrimination

is possible with two identical copies.
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Just as the controlled-NOT gate [1] is one of the most
important two-qubit gates in quantum computation, Bell
measurement is one of the most important two-qubit mea-
surements, as it enables many applications in quantum-
information processing, such as superdense coding [2,3],
teleportation [4-6], quantum fingerprinting [7,8], and direct
characterization of quantum dynamics [9]. However, it was
shown that complete Bell-state analysis (BSA) using linear
optics is not possible [10,11], and that the optimal probability
of success is only 50% [11-13], for which the optimal BSA
schemes have been realized experimentally [3,14,15]. But
Kwiat and Weinfurter (KW) [16] showed that with additional
degrees of freedom, such as timing or momentum, it is in-
deed possible to achieve complete BSA for four Bell states,
given that the additional degrees are in a fixed entangled
state. Other similar BSA schemes have also been proposed
[17-19] and implemented [20,21]. In all of these schemes,
such states are called “hyperentangled” [22], and such mea-
surements are termed “embedded BSA” [16]. Hyperen-
tangled states with polarization and orbital angular momen-
tum of two photons have recently been created and
characterized [23]. Furthermore, the KW scheme for BSA
has recently been implemented by Schuck et al. [24]. Nev-
ertheless, adding additional degrees of freedom also enlarges
the Hilbert space, and hence the number of Bell-like states
(e.g., see Table I); all previous investigations on embedded
BSA have focused on a subset of these states (e.g., states
with fixed |¢*)). It is, therefore, important to set theoretical
limits on optimal BSA in the enlarged Hilbert space.

In this Rapid Communication, we investigate the optimal-
ity of hyperentanglement-assisted BSA, with both degrees of
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can be unambiguously distinguished [16]. Let us introduce
the 16 Bell-like states, constructed from two photons with
polarization and momentum (or spatial mode) or timing de-
grees of freedom: (1) {H,V}®{a,c} and (2) {H,V}®{b,d}
[25]. These states result from the different combinations of
the four polarization Bell states,

|©%) = (|H)y|H), = V)| V))IN2, (1a)
[W=) = (|H), [V, [V [H))A2, (1b)
and the four momentum Bell states,
6% = (|a)1|b)y £ |e)i|d))N2, (1c)
9% = (|la)|d), 2 [c)|b))N2. (1d)

The detection patterns for the KW scheme (Fig. 1) are shown
in Table I. The 16 states are divided into seven distinct
classes according to the measurement outcome [26]. Except
that one class contains four states, all others each have two
states. Thus, no single state can be unambiguously distin-

TABLE 1. Detection signature table. ®*=(H H,xV,V,),
V== (H,V,2VH,), ¢*=(a;byxcd,), and "= (a,d,xc,b,). The
subscript 45 indicates the port associated with transmission through
the polarizing beam splitter and 45 that with reflection. The final
row lists a unique detection signature, corresponding, however, to
states outside the Hilbert space spanned by the 16 hyperentangled
Bell states [26].

freedom being qubitlike, such as polarization (H and V), plus Class State Detector signature
either two momenta (spatial directions) or two orbital angu- 1 P @ ¢, P ® b ysys, Ag50T5, BasBas Bl
lar momenta or two time bins. The resulting Bell-hke' states V@ g, U o 1584, S1SO, VasVas ViSVAS
for two photons thus total 16. We show that an unambiguous ) -8 ¢, D@ ¢ P
state discrimination is impossible, but that the optimal IR 4505, PasPas 04505 VasVas
scheme divides the 16 Bell states into seven distinct groups. - Yoy, Ve WsBas, aasPs, OusVss, VIS
We also show by construction that an unambiguous discrimi- 4 V@ ¢t DTy assbis, az305s, Basvas B YEs
nation of any of the 16 states requires two copies of the same 5 Ve ¢, 0T Y 45073, az30s5, Pas¥is: BisYas
states. Finally, we discuss the implications for superdense 6 V- ® ¢*, P ¢t Q45Y45, OT5YVES BasOss, B0
coding, teleportation, and quantum fingerprinting. 7 V-0 ¢, Do Yt sV AT Yas: PasOr Basois
KW showed that when the momentum de.:gre.es of freedom * V= (a,cy—b1dy) Qs BE5, z5Bas O Vs O13Vas
are in a fixed entangled state, the four polarization Bell states
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FIG. 1. (Color online) Kwiat-Weinfurter scheme for the embed-
ded Bell-state analysis.

guished using this scheme. If the momentum state is ¢*, the
four states with distinct polarization Bell states belong to
four distinct classes, and hence can be distinguished. Simi-
larly, if the polarization state is ®*, the states with four dis-
tinct momentum Bell states can be distinguished. Therefore,
the same setup can perform BSA for either degree of free-
dom.

One may wonder what the optimal Bell-state analysis is.
Calsamiglia [13] showed that any element |u;){(u,| in a gen-
eralized measurement (i.e., positive operator-valued measure
SN uu;| =1, with Z\,=1) on two i-qudits (qudits com-
posed of identical particles) of linear optics can have a
Schmidt number at most of 2. As our hyperentangled Bell
states have Schmidt number 4, this means that no single state
can be distinguished from any other, and so unambiguous
and complete BSA for the 16 states is not possible. Thus, the
optimal scheme groups the states into classes; in our case, at
most eight distinguishable classes. However, our analysis of
the KW scheme (Table I) identifies only seven classes. Now
we shall prove that seven is in fact the upper limit.

We utilize the method of van Loock and Liitkenhaus to
test whether eight classes can be discriminated. They showed
that a necessary condition for the distinguishability of the
states ; and ¢; (i # j) is [27]

N
(lcledy) =0 with c;= > v, )
i=1

where c, is the annihilation operator, linearly composed of N
modes (both input and auxiliary) via some unitary transfor-
mation, and thus the »;’s cannot all be zero. The rationale
behind Eq. (2) is that in order for ¢; and #; to be distinguish-
able, the remaining states should maintain orthogonality after
a single-photon detection at mode s. In addition, ancillary
photons do not assist state discrimination if either input or
auxiliary states have a fixed number of photons. This means
that in Eq. (2), N can be set as the number of input modes.

For the setup shown in Fig. 1, we relabel the input modes
as |[D=[H)@la), [2)=|H)®|c), [3)=|V)ela), [4)=]V)
®c), [5y=|H)®[b), [6)=|H)®|d), [T)=|V)®|b), and [8)
=|V)®|d), where H and V denote the polarization degree of
freedom and a,b, ¢, and d denote the momentum or direction
(or angular-momentum) degree of freedom. Thus, the Bell
states can be written as

W= > wirclc]lo), (3)
8

ij=l....,

where the symmetric matrices W® are 8 X 8 invertible (i.e.,
with nonzero determinant) and characterize the 16

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 75, 060305(R) (2007)

T o

FIG. 2. (Color online) Modified KW scheme.

(u=1,...,16) Bell states. If the optimal BSA groups the 16
Bell states into eight classes, there must exist sets of eight
states for which the conditions set by Eq. (2) are satisfied. On
the other hand, if seven is the optimal number of classes, no
set of eight states satisfy Eq. (2). To see whether the former
or the latter is true, we have to check whether Eq. (2) can be
satisfied for all possible combinations of eight out of the 16
Bell states (Cé6= 12 870, though this number can be reduced
by considering the group structure of operations that trans-
form the 16 states onto themselves.)

First, as an example, take two states from class 1 and one
from each of the other six classes: ®*® ¢, P~ ® ¢~, O
¢, V"o, Vo', V'ed, V" ®¢', and V" ® ¢
Applying Eq. (2) to these states, we have, after simplifying
the equations,

|V1|=|V3’ |V2|=|V4’ |V5|=|V7, |V6|:|V8’ (4a)
|2 + [vs|* = ] + v, (4b)
V;VS = V§V4= VZVS = V;V] =0. (4¢)

These lead to the only solution v;=0, which is a contradic-
tion. This shows that one cannot discriminate any state from
the above eight states.

We checked all 12870 cases by programming
MATHEMATICA to examine the conditions derived from Eq.
(2), supplemented by the normalization condition 2;| v|>=1.
This is achieved by first enumerating and simplifying the
equations generated from Eq. (2), as well as the normaliza-
tion condition, and then by using the function FindInstance[ ]
to find an instance of solutions. One feature of
FindInstance[ ] is that it will always find a solution if there is
one. For all the 12870 cases, FindInstance[ ] returns an
empty set, showing no solution. Therefore, we conclude that
it is impossible to reliably distinguish among any set of eight
Bell-like hyperentangled states, and that seven is the optimal,
as is realized in the KW scheme.

Having seen that a one-shot measurement is unable to
perfectly discriminate any Bell state, it seems natural to ask
how many copies are necessary to enable such discrimina-
tion. We show here by construction that two copies are suf-
ficient. First, we introduce a slightly modified measurement
scheme from that of KW, shown in Fig. 2. The corresponding
detection patterns are shown in Table II. From Tables I and
II, we see that no two states share the same class of detector
signature. Therefore, we imagine letting one copy go through
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TABLE II. Detection signature for the scheme in Fig. 2.

Class State Detector signature
1’ PP, VR P aysys, 035035, PasPass PP
PRy, VT Yt 045045, 35035, VasVass ViSVE5

2’ O R, D"RY" 45035, PusBas, 045053 VasVis
3’ Ve ¢, W eyt y5PBys, @35875, Oss5Vas» 055V
4’ Ve ¢t O ¢ 45045, 35055, BasVas, P5VEs
5 DY, VY 45055, 035045, PasVas, Pi5Yss
6’ P ¢, VT Pt Q4545 OG5VESs PasOss, PEOE
7' P ¢t Ve Y 45V, 0q5Yass PasOrss Basous

the KW scheme and the other through the scheme in Fig. 2.
Suppose we obtain signatures in 1 and 2’. Combining both
outcomes enables us to uniquely determine which of the 16
states was analyzed, e.g., @~ ® ¢~ in the example given [28].

We have shown that, with one additional qubitlike degree
of freedom for each photon, there exist seven states (out of
16) that can be distinguished from one another. Next, we
consider for each photon n qubitlike degrees of freedom in
total. In this case there are 4" Bell-like states. What is the
maximum number of distinguishable subsets of these states?

Let us begin by noting that we can express the 4" Bell-
like states in the form of Eq. (3), where the upper limit in the
sum is now the number of input modes, 27+ The matrices
W are now (27+1) X (2"*1). If one makes a unitary transfor-
mation of the modes (using the fact that one can take the
number of modes equal to the number of input modes, ignor-
ing any auxiliary mode), a; =3;U, !, the necessary condition

ij“js
for discrimination between states P and O (w#v) is

(W Wlala W) =0 (g yf") =0, (5)

where we have deﬁned |1ﬂ(”“ Y=a,| v, Because of the uni-

to a 2"*1 component vector. The above orthogonality condi-
tion then implies that there can be at most 2™*! linearly in-
dependent vectors of wﬁ” ) for fixed i. Thus, we see that the
maximum number of Bell states that can be distinguished is
bounded above by 2"*!. This means that the ratio of the
maximal number of mutually distinguishable sets of Bell
states to the total number of Bell states decreases exponen-
tially with n: 2+1/47=27"+1,

We conjecture that 2"*'—1 is a good upper bound, as it is
true for n=1 (e.g., polarization only) and n=2 (e.g., polar-
ization plus two spatial modes). Generalizing to different di-
mensions of the degrees of freedom, the absolute upper
bound on distinguishable Bell states can be shown to be
2d,d»ds- -+ d,,.

(a) Superdense coding. Given that we can choose seven
Bell states such that they can be distinguished from one an-
other, we can then take one of them as a shared entanglement
and use seven operations, taking the state to itself or six
others, to encode seven messages. For example, Alice and
Bob share ¥~ ® ¢/~. She can locally transform the state into
six other states, ®*® ¢*, P ®@ ", VR H", V@ H*, O
® ¢, and P~® . As these seven states can be distin-
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guished using the KW scheme, Bob can uniquely determine
the message encoded by Alice, giving a superdense coding of
log,7~2.8 bits. For two photons entangled only in polariza-
tion, a superdense coding encodes only log,3 = 1.58 bits [3].
Even though its extension to two pairs encodes 2 log,3
~3.17 bits, the four-photon detection efficiency 7" is typi-
cally much smaller than the two-photon efficiency 772 where
7 is the single-photon detection efficiency (usually much
smaller than 70%). In fact, as long as the efficiency is less
than \7/9~88%, the single-pair hyperentangled scheme is
superior. Thus, hyperentanglement for superdense coding
seems more practical than multipair entanglement.

(b) Quantum fingerprinting. Fingerprinting is a communi-
cation protocol in which two parties, Alice and Bob, want to
test whether they receive the same message from a supplier,
but they cannot have direct communication with each other.
Therefore, they have to communicate through a third party to
test whether the two messages are the same. Instead of send-
ing the whole messages, they send the corresponding “fin-
gerprint” (a much shorter message) of their messages to the
third party. A quantum protocol is superior to its classical
counterpart because the former allows 100% fingerprinting
success. It was shown that shared two-qubit Bell states en-
able perfect fingerprinting of binary-encoded {0, 1} messages
[7,8]. Here, we propose using hyperentanglement of a pair of
photons to achieve perfect fingerprinting of {0,1,...,6} en-
coded messages. Analogously to dense coding with hyperen-
tanglement, Alice and Bob share the state ¥~ ® ¢, and both
parties can locally transform the shared state into the seven
states V¢, PTRPT,D @, VR P,V P, DO
® ¢, and ®~® ", Thus, they encode their fingerprints lo-
cally by applying the required operations, and a referee can
perform the BSA on the resulting two-photon state to deter-
mine whether the fingerprints are the same.

(c) Quantum teleportation. A shared Bell-like state en-
ables the teleportation of an unknown state. However, as
complete BSA of a two-photon polarization state alone is not
possible, schemes employing additional degrees of freedom
have been proposed [16,17]. The embedded Bell-analysis
schemes proposed in Refs. [17,19,20], however, cannot be
used for teleportation, as their measurements do not require
two photons to interfere, and can be performed locally. If
these schemes could enable teleportation, it would imply that
entanglement can be created locally by distant parties; but it
is well known that local operations and classical communi-
cation cannot generate entanglement. Our analysis shows
that the KW scheme enables the teleportation of an arbitrary
state encoded in either polarization or momentum (not both)
with a 50% probability of success, the same probability as
the two-photon polarization BSA. Suppose a photon in Al-
ice’s laboratory is in a state with known momentum but ar-
bitrary polarization |)=(a|H),+B|V),) ®|h),, where {h,v}
is used to indicate its momentum degree of freedom. Alice
and Bob share the Bell state (P ® ¢*),3 of photons 2 and 3.
If Alice performs the KW BSA on photons 1 and 2, there is
a 50% probability (and she knows whether it succeeds) that
Bob can transform his photon into the state (a|H),+8|V),),
by performing the corresponding local operation according
to Alice’s measurement outcome, and postselecting the pho-
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ton from his momentum modes b or d in ¢*=(a;b,+cd,).
Similarly, an arbitrary momentum state |H)® (a|h)+B|v))
can be teleported. The use of hyperentanglement of photons,
unfortunately, does not offer advantages for teleportation
over the conventional polarization-only teleportation [5,6],
both having only 50% probability of success.

We have investigated the optimal Bell-state analysis using
projective measurements in linear optics for hyperentangled
Bell states. The results are relevant, as there has been recent
experimental progress in realizing BSA of hyperentangled
states [20,21,24]. In particular, we have shown that when the
additional degrees of freedom are also qubitlike, the resulting
16 Bell-like states can be, at best, divided into seven distinct
classes. Moreover, we have provided a method to unambigu-
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ously discriminate any of the 16 Bell states, given two copies
of the state. We have also discussed the implications for su-
perdense coding, fingerprinting, and teleportation. We con-
clude with two open issues for future study: (1) how gener-
alized measurements might be used to help Bell analysis in
general; and (2) whether other methods such as that of Eisert
[29] may provide alternative approaches to understand the
results presented here.
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