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We present a one-step scheme for direct implementation of an N-qubit controlled-phase gate with atoms
trapped in a high-Q optical cavity without resorting to a sequence of single- and two-qubit gates. The inter-
action time that is required to implement the scheme does not rise with increasing number of qubits. This might
lead to more efficient construction of quantum circuits and quantum algorithms.
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The recent development of quantum-information process-
ing has shed new light on complexity and communication
theory. The existence of quantum algorithms for specific
problems shows that a quantum computer can in principle
provide a tremendous speedup compared to a classical com-
puter �1,2�. This fact has triggered in recent years a lot of
studies on the theoretical and practical aspects of quantum
computation. It is known that the two-qubit controlled-phase
gate and the one-qubit gate are universal in constructing a
quantum computer. In other words, any multiqubit gate can
be decomposed into these elementary gates �3�. On the other
hand, quantum algorithms �1,2� and quantum error-
correction protocols �4� require multiqubit gates, but the pro-
cedure of decomposing multiqubit gates into the elementary
gates becomes complicated as the number of qubits increases
�2,5,6�. Therefore, the direct implementation of multiqubit
phase gates is of importance for reducing the complexity of
the physical realization of practical quantum computation
and quantum algorithms.

During the past few years there have been tremendous
advances in experiments realizing cavity quantum electrody-
namics �QED�, which open new prospects in the implemen-
tation of large-scale quantum computation and generation of
nonclassical states with the atoms trapped in an optical cav-
ity. Experimentally, a sequence of single photons has been
observed on demand from a single atom strongly coupled to
a high-finesse optical cavity �7,8�, and single cesium atoms
have been cooled and trapped inside a small optical cavity in
the strong-coupling regime �9,10�. Theoretically, some
schemes have been proposed for realizing two-qubit gates
�11–14�, which cannot be directly extended to implement an
N-qubit gate. More recently, several cavity QED proposals
have been presented for implementation of multiqubit
controlled-phase gates �15–17�. In Refs. �15�, schemes were
proposed for implementing N-qubit phase gates which re-
quired a single-photon source and its injection into an optical
cavity. Based on a dispersive interaction, Gabris et al. pro-
posed a scheme for realizing a three-qubit phase gate, which
cannot be generalized to the N-qubit case �16�. Based on
resonant interaction, several schemes have been proposed for
implementing multiqubit phase gates �17�. However, these
schemes require that one can tune the atom-cavity coherent

coupling strength, and it is difficult to realize experimentally
since the atom-cavity coupling depends on the atomic posi-
tion.

In this paper, we propose a scheme to implement an
N-qubit phase gate with N three-level atoms trapped in a
high-Q optical cavity. Similar to other schemes for imple-
menting two- and multiqubit phase gates, the present scheme
also requires the individual addressing of the trapped atoms.
However, the motivation of our scheme is at least twofold.
First, the present scheme no longer needs to control the
atom-cavity coupling between different atoms and cavity
modes �17� nor the single-photon injection into an optical
cavity �15�, so that it is easier to realize in experiment. Sec-
ond, the present scheme realizes an N-qubit phase gate in a
one-step operation, and the interaction time required to
implement the scheme does not change with increasing num-
ber N of qubits.

To build the basic model, we consider that N identical
atoms are trapped in a high-finesse optical cavity as shown in
Fig. 1�a�. The atoms are separated by at least one optical
wavelength so that single laser pulses can address each atom
individually. This requirement has also been met by other
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FIG. 1. �Color online� �a� Schematics of N identical atoms in-
teracting with a single high-Q cavity mode. Single neutral atoms are
delivered into the optical cavity and controlled by using N corre-
sponding translating one-dimensional optical lattices �19�. �b� Rel-
evant energy level structure of the atoms. The atomic transition
�ei�↔ �gi� is nonresonantly coupled to the cavity mode a with the
coupling strength gic, while the atomic transition �e1�↔ �s1� is
driven by a classical laser field with Rabi frequency �1.
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schemes for implementing two- and multiqubit phase gates
�11–14,16,17�. The energy level configuration of the atoms is
depicted in Fig. 1�b�. It includes two stable ground states �g�,
�s�, and an excited state �e�. The atomic transition from the
ground state �g� to the excited state �e� is coupled to a single
cavity mode with frequency �c. To implement an N-qubit
phase gate, a classical laser pulse with the Rabi frequency �1
is used to individually drive the atomic transition �s1�↔ �e1�
of the atom 1. In the interaction picture, the Hamiltonian
describing the system is given by

H = �
j=1

N

Hj �1�

with H1=�1�e1��e1�+ �g1c�e1��g1�a+�1�e1��s1�+H.c.� and
Hj�1=� j�ej��ej�+ �gjc�ej��gj�a+H.c.�, where the subscript j
represents the jth atom, and a is the annihilation operator
associated with the quantized cavity mode; gic describes the
coherent coupling strength between the atom i and the cavity
mode; �i	�ei−�gi−�c represents the atom-field detuning
associated with the corresponding atomic transition
�e�i↔ �g�i, which can be controlled by introducing an auxil-
iary classical field to the individually addressed atom 1; H.c.
stands for the Hermitian conjugate.

In this paper, we consider the large-detuning limit of the
atom 1, i.e., ��1�� ��1� , ��2� , . . . , ��N� , �g1c� , . . . , �gNc�. In this
case, neglecting the effect of rapidly oscillating terms, we
can eliminate adiabatically the level �e1� and then obtain an
effective Hamiltonian �20�

Heff = −
g1c

2

�1
a†a�g1��g1� −

�1
2

�1
�s1��s1�

− 
g1c�1

�1
a�s1��g1� + H.c.� + �

j=2

N

�� j�ej��ej� + �gjca�ej�

��gj� + H.c.�� . �2�

Here the first two terms represent the dynamical energy
shifts of the atomic levels �g1� and �s1�. The third term de-
scribes the effective atomic transition between the states �s1�
and �g1�. The last term depicts the dynamics of the atom j
�j=2,3 , . . . ,N�.

Based on the effective Hamiltonian, we now turn to the
problem of implementation of the N-qubit conditional phase

gate Up of the form Up � � j=1
N ��� j =ei�� j=1

N �sj��sj�� j=1
N

� j=1
N �� j

where ��� j =	 j�sj�+
 j�gj� denotes the arbitrary initial state of
the atom j. It demonstrates that the phase changes by � if all
atoms are in the state �s� and does not change otherwise.

Initially, we assume that the cavity field is in the vacuum
state �0�c. It is obvious that, if the atom 1 is initially in the
state �g1� and all other atoms are in the states �gj� or �sj�, the
atom-cavity system does not experience any dynamical evo-
lution, i.e., the system state �g1�� j=2

N �ij��0�c does not evolve
with the time since Heff�g1�� j=2

N �ij��0�c=0 where ij =gj ,sj.
Therefore, we only need consider the temporal evolution of
the initial system state with the form of �s1�� j=2

N �ij��0�c.
First we consider the temporal evolution of the initial sys-

tem state with the form �a�= �s1��¯gi1
¯gi2

¯gim
¯ ��0�c,

where the qubits i1 , i2 , . . . , im �1�m�N−1� are initially in
the ground state �g�, and other states are in the ground state
�s�, i.e., at least one qubit initially occupies the ground state
�g�. For simplicity, we choose that the coupling strengths
satisfy the condition g2c=g3c= ¯ =gNc. Then, the system
state �a� interacts with a system state �b�
= �g1��¯gi1

¯gi2
¯gim

¯ ��1�c with an effective coupling
strength �eff=−g1c�1 /�1. Then the system state �b� can be
coupled to another system state �c� which has the form

�c� = �1/�m��g1��� ¯ ei1
¯ gi2

¯ gim
¯ �

+ � ¯ gi1
¯ ei2

¯ gim
¯ � + ¯

+ � ¯ gi1
¯ gi2

¯ eim
¯ ���0�c,

with a coupling strength �mg2c. In addition, we choose the
tunable parameters �1 and �2 , . . . ,�N to satisfy the follow-
ing conditions

�1 = g1c, �3a�

�2 = �3 = ¯ = �N = − g1c
2 /�1. �3b�

Equations �3a� and �3b� result in the resonant transitions
�a�↔ �b� and �b�↔ �c�, respectively. Therefore, the temporal
evolution of the system state is then obtained, within the
state subspace �a� , �b� , �c��,

���t��1 =
�eff

2 cos��t� + mg2c
2

�2 �a� − i
�eff

�
sin��t��b�

+
�eff

�mg2c�cos��t� − 1�
�2 �c� , �4�

where �=��eff
2 +mg2c

2 .
Second, as a special case, if the system is initially pre-

pared in the state � j=1
N �sj��0�c	�s1 ,s2 , . . . ,sN��0�c, i.e., all at-

oms are initially prepared in the ground state �s�, it interacts
only with the state �g1�� j=2

N �sj��1�c with the coupling rate
�eff. The temporal evolution of this state is then obtained as

���t��2 = cos��efft�� j=1
N �sj��0�c − i sin��efft��g1�� j=2

N �sj��1�c.

�5�

With the choice of the interaction time t==� / ��eff�, and
in the weak-excitation limit ��g2c�� ��eff��, �����1 can be
approximately reduced to the initial state �a�, and the system
does not acquire any phase shift, while the state �����2 ac-
quires a phase shift ei�. Thus we can implement the N-qubit
conditional z gate Up. In the present scheme, only the state
when all atoms are in the state �s� experiences a dynamic
evolution in the weak-excitation limit, and other states do not
evolve with time. This mechanics is different from that pro-
posed in �18�, in which a highly controlled and selective
atom-field interaction is realized by adjusting the photon-
number-dependent Stark shift. Although such selective inter-
action can be used to create nontrivial Dicke states, it is not
clear how to extend such scheme to realize a quantum phase
gate.

In order to validate the feasibility of the above theoretical
analysis, we perform a direct numerical simulation of the
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Schrödinger equation with the nonapproximate Hamiltonian
H in the absence of system decoherence mechanisms. For
this, without loss of generality we consider that there are
three atoms trapped in the cavity �N=3� and choose the pa-
rameters �1=g1c=g2c, �1=10g1c, �2=−g1c

2 /�1, so
�eff=−g1c /10�g2c. In the following simulation, we calcu-
late the temporal evolution of the system with two distinct
initial states �s1 ,g2 ,g3��0�c and �s1 ,s2 ,s3��0�c. As shown in
Fig. 2, the solid and dashed lines describe the real parts of
the coefficients of the basic states �s1 ,g2 ,g3��0�c and
�s1 ,s2 ,s3��0�c, respectively. It is obvious that the system re-
turns to its initial state but obtains a global phase shift � at
the time t==� / ��eff� when all atoms initially occupy the
ground state �s�, while it is almost unchanged for the initial
state �s1 ,g2 ,g3��0�c.

We now discuss the effect of decoherence and the mis-
match of the parameters on the scheme. The dissipation path
of the N-qubit operations includes the atomic spontaneous
emission �at the rate �s� and the cavity decay �at the rate ��.
First, the spontaneous decay of the atom 1 can be strongly
suppressed due to the large atom-field detuning ��1�
� ��1� , �g1c�, so that it does not play a remarkable role in the
dynamical evolution. Second, with the appropriate parameter
choice, the weak-excitation limit �g2c�� ��eff� is satisfied, and
the system is approximately restricted in its initial state �a�.
Thus, both the atomic spontaneous emission and the cavity
decay play negligible roles since neither the atoms nor the
cavity field can be excited effectively. Third, when the sys-
tem is initially prepared in the state � j=1

N �sj��0�c, it evolves in
a two-dimensional subspace � j=1

N �sj��0�c , �g1�� j=2
N �sj��1�c�

which can be simplified to �s1��0�c , �g1��1�c� since the atoms
2, . . . ,N do not take part in the dynamical evolution. With
this understanding, we easily know that the spontaneous
emission of the atoms still plays a minor role, but the cavity
decay should play a dominant role in the whole dissipation.
We confirm this point by numerically calculating the evolu-
tion of the system density matrix governed by the Hamil-
tonian H. The quality of an N-qubit controlled-phase gate
can be described by a fidelity F= ���0��Up

†�Up�t=����0��
where ��t� represents the temporal reduced density matrix
obtained by tracing out the cavity mode part, and ���0�� de-
notes the initial atomic state. Here, for simplicity, we choose

���0��= � j=1
N ��sj�+ �gj�� /�2. In Fig. 3�a�, we plot the fidelity

�F� of a three-qubit phase gate vs � and �. It can be seen that
the cavity decay rate � is the dominant noise source in the
gate operation, and the fidelity F rapidly decreases to 0.87
from 0.995 when � increases from 0.01g1 to 0.1g1, while
there is not much change when the atomic spontaneous emis-
sion is taken into an account for a given �. This is in excel-
lent agreement with the above-mentioned theoretical analy-
sis.

On the other hand, the effective interaction is difficult to
set precisely, since atom-cavity coupling �eff is dependent on
atomic position. If we take the deviation of the coupling into
account by the value ��eff, in Fig. 3�b�, we show the fidelity
vs the comparative deviation �. It can be seen that there is
not much change when the deviation is taken into account. It
should be noted that we need a very small cavity decay
�smaller than the atom-field coherent coupling strength by
approximately two orders of magnitude� for the sake of a
high gate fidelity, which still cannot fully match the current
experimental technique. As a possible implementation using
87Rb, the parameters �g ,� ,�s� /2�= �16,1.4,3� MHz have
been reported �21�. Further improvement of the cavity char-
acteristic for a bigger g /� can be accomplished, in principle,
by adjusting the cavity length L and finesse F since g
�L−3/4 and ���FL�−1.

Finally, technical difficulties with the present scheme
should be pointed out. Our scheme requires the
large-detuning limit to the atom 1 ���1�
� ��1� , ��2� , . . . , ��N� , �g1c� , . . . , �gNc�� and the weak-excitation
limit ��g2c�� ��eff�= �g1c�1� / ��1��. Both limits are relatively
easy to reach by adjusting the cavity mode and the classical
laser field. However, it is noted that we have assumed that
the atoms 2, . . . ,N have the same coherent coupling rate with
the single cavity mode in the above analysis. In fact, this
assumption is only chosen for a simple and clear deduction,
and our scheme can work robustly without the condition g2
=g3= ¯ =gN, but we also require �gjc�� ��eff� for j
=2, . . . ,N. The main difficulty of our scheme with respect to
an experimental demonstration consists in the requirement
for the regime of strong coupling, i.e., the frequency scale

FIG. 2. �Color online� Real parts of the coefficients of the sys-
tem states �a� �solid line� and � j=1

N �sj��0�c �dashed line�. The inset
shows the expanded drawing of a small part of the solid line. Other
parameters: N=3, m=2, �1=g1c=g2c, �1=10g1c, �2=−g1c

2 /�1,
=� / ��eff�, �eff=−g1c�1 /�1.

FIG. 3. �Color online� �a� Fidelity �F� of a three-qubit phase
gate vs the cavity decay rate � for the initial atomic state
���0��= � j=1

3 ��sj�+ �gj�� /�2. The solid, dashed, and dotted lines
describe the cases of the atomic spontaneous rates �s

=0.1g1c ,0.05g1c ,0.01g1c, respectively. �b� Fidelity vs � under �s

=�=0.01g1c. Other common parameters: N=3, �1=g1c=g2c, �1

=10g1c, �2=−g1c
2 /�1, =� / ��eff�, �eff=−g1c�1 /�1.
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�ef f associated with reversible evolution of the atom-cavity
system exceeds the dissipative rates, �ef f ��. This might be
achieved by integrating the techniques of laser cooling and
trapping with those of cavity quantum electrodynamics.
Single cesium atoms have been trapped within the mode of a
small, high-finesse optical cavity in the regime of strong cou-
pling �10�. Another difficulty is the technical capability to
individually address multiple atoms that are strongly coupled
to a cavity. Although significant experimental advances have
been reported in trapping single atoms in high-finesse cavi-
ties, no experiment has yet achieved a well-defined number
of atoms, each of which is strongly coupled to the cavity
mode and individually addressed. To satisfy the requirements
of the presented scheme will be experimentally challenging.

In summary, we have considered a simple cavity QED

scheme to directly implement an N-qubit controlled-phase
gate. The interaction time that is required to implement the
gate does not increase with increasing number of qubits. The
present scheme does not require a single-photon source or
single-photon injection into an optical cavity. Numerical
simulations show that the scheme is insensitive to atomic
spontaneous emission, and some experimental difficulties are
pointed out.
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