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A two-level system that is coupled to a high-finesse cavity in the Purcell regime exhibits a giant optical
nonlinearity due to the saturation of the two-level system at very low intensities, of the order of one photon per
lifetime. We perform a detailed analysis of this effect, taking into account the most important practical imper-
fections. Our conclusion is that an experimental demonstration of the giant nonlinearity is feasible using
semiconductor micropillar cavities containing a single quantum dot in resonance with the cavity mode.
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I. INTRODUCTION

The implementation of giant optical nonlinearities is of
interest both from the fundamental point of view of realizing
strong photon-photon interactions, and because it is hoped
that such an implementation would lead to applications in
classical and quantum information processing. One particu-
larly promising system for realizing large nonlinearities is a
single two-level system embedded in a high-finesse cavity,
which serves to enhance the interaction between the emitter
and the electromagnetic field. In the so-called strong cou-
pling regime, where the interaction between the emitter and
the light dominates over all other processes including cavity
decay, there are well-known dramatic nonlinear effects such
as normal-mode splitting �1�, vacuum Rabi oscillations �2�,
and photon blockade �3�.

State-of-the-art technology allows the realization of high-
quality semiconductor quantum dots and optical microcavi-
ties. A single quantum dot at low temperature can be consid-
ered to a large extent as an artificial atom, and can be
manipulated coherently as a two-level system under resonant
excitation of its fundamental optical transition. In particular,
Rabi oscillations have been observed between the first two
energy levels of a quantum dot �4�, and coherent operations
on these two levels have been realized �5�. Many quantum
optics experiments first realized with atoms become possible,
including cavity quantum electrodynamics experiments and
the generation of quantum states of light. While there have
been several pioneering experiments for semiconductor mi-
crocavities containing single quantum dots �6�, the condi-
tions for strong coupling are quite challenging. On the
contrary, the so-called Purcell regime �7,8�, where the inter-
action between the emitter and the cavity mode dominates
over that with all other modes, but where the cavity decay is
still faster than the emitter lifetime, is significantly easier to
attain. In particular, it has been reached for single-photon
sources based on micropillars containing quantum dots
�9–11�. It is therefore of interest to consider the potential for
large optical nonlinearities in the Purcell regime �12–15�.

A pioneering experiment on optical nonlinearities in the
Purcell regime was performed with atoms in a free-space
cavity in a slightly off-resonant configuration �12�. The the-
oretical study realized in Ref. �15�, based on the “one-
dimensional atom” model suggested in Ref. �16�, shows that
for the case of a one-sided cavity and for exact resonance
between the light and the emitter, the nonlinearity is en-
hanced. This is due to the very simplest nonlinear effect,
namely those related to the saturation of a single two-level
system by light that is in, or close to resonance with the
two-level transition. The coupling between the light and the
dipole is governed by the intensity of the light. When the
intensity is sufficiently high, the dipole becomes saturated
and thus effectively decouples from the light. Since the satu-
ration occurs at intensity levels of order one photon per life-
time of the emitter, this effectively realizes a strong interac-
tion between individual photons, that is to say, a giant optical
nonlinearity. This result has been the starting point of our
work.

In the present work we study the potential of a quantum
dot interacting in the Purcell regime with a semiconducting
microcavity to realize a giant optical nonlinearity. We have
two main motivations. First, we aim at deriving the quantum
coupled mode equations describing the dynamics of a two-
level system placed in a high-finesse cavity, based on input-
output theory developed in Ref. �17�. Coupled mode equa-
tions indeed are often used by semiconductor physicists and
it seemed interesting to us to derive them in the quantum
frame in a rigorous manner. This allowed us to generalize the
results of Ref. �15� to nonresonant situations and to double-
sided cavities. The generalization to multiports cavities is
interesting in the perspective to exploit the giant nonlinearity
in more complex architectures like add-drop filters �18�. Be-
sides, we have included leaks and excitonic dephasing in the
model, which was mandatory as we wanted to study the non-
linear effect using realistic experimental parameters. This pa-
per presents an extensive study of this optical system includ-
ing leaks and dephasing in the linear and nonlinear regime.

Our second motivation is to use the theoretical model to
study the feasibility of an experimental demonstration of the
nonlinearity with a semiconductor micropillar cavity con-
taining a single quantum dot. The results obtained in this*Electronic address: alexia.auffeves-garnier@ujf-grenoble.fr
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study are very promising, since striking optical features such
as dipole induced reflection or giant nonlinear behavior are
observable with uncharged quantum dots and state of the art
micropillars.

The paper is organized as follows. In Sec. II, we establish
the coupled-mode equations for the cavity mode and for the
input and output fields. In Sec. III the stationary solution of
these equations is derived in two regimes: first, we show that
in the linear case �low intensity excitation� the two-level sys-
tem induces a dip in the transmission of the optical medium.
Second, we treat the case of general intensities via a semi-
classical approximation, which allows to show the giant op-
tical nonlinearity. We devote Sec. IV to the generalization of
the study to the case of leaky atoms and cavities. In Sec. V
we discuss the relevance of the two-level model to the case
of a quantum dot and we use the model developed in Sec. IV
to give detailed quantitative estimates of the experimental
signals we aim at evidencing. In particular, we show that the
nonlinear effect is observable using state-of-the-art micro-
cavities.

II. QUANTUM COUPLED-MODE EQUATIONS

The situation considered is represented in Fig. 1. A single
mode of the electromagnetic field is coupled to the outside
world via two ports labelled 1 and 2. Each port supports a
one-dimensional continuum of modes, respectively, labelled
by the subscripts k and l. This may correspond to the case of
a high-finesse Fabry-Perot made of two partially reflecting
mirrors. Among the infinity of modes supported by the cav-
ity, we consider only one mode that interacts with two con-
tinua of plane waves through the left and the right mirror.
The cavity contains a single two-level system of frequency
�0 which is nearly on resonance with the mode of interest.
We note a, bk, cl the annihilation operator for the cavity
mode, the modes of port 1 and port 2, respectively, �0+�,
�k, and �l the corresponding frequencies. The atomic opera-
tors are Sz= 1

2 ��e��e�− �g��g�� and S−= �g��e�. The coupling
strengths between the cavity and the modes of ports 1 and 2
are taken constant, real and equal to g1 and g2, respectively.
The total Hamiltonian of the system is then

H = ��0Sz + ���0 + ��a†a + �
k

��kbk
†bk + �

l

��lcl
†cl

+ i���S+a − a†S−� + ��
k

�g1bk
†a − g1a†bk�

+ ��
l

�g2cl
†a − g2a†cl� . �1�

The first four terms represent the free evolution of the atom,
the cavity field, the modes in ports 1 and 2, respectively. The
last three terms represent the atom-cavity coupling, the cou-
pling of the cavity mode with the modes of port 1 and with
the modes of port 2. We can write the Heisenberg equations
for each operator,

Ṡ− = − i�0S− − 2�Sza ,

Ṡz = ��S+a + a†S−� ,

ȧ = − i��0 + ��a − �S− + g1�
k

bk + g2�
l

cl,

bk̇ = − i�kbk + ig1a ,

ċl = − i�lcl + ig2a . �2�

We find for t� t0, where t0 is a reference of time,

bk�t� = bk�t0�e−i�k�t−t0� + ig1	
t0

t

dua�u�e−i�k�t−u�,

cl�t� = cl�t0�e−i�l�t−t0� + ig2	
t0

t

dua�u�e−i�k�t−u�. �3�

Equations �3� are then injected in the evolution equation for
the cavity mode. For each mode bk and cl, the last term
describes the field radiated by the cavity �“sources field”�
and is responsible for the cavity damping. The first term
describes the free evolution and is responsible for the noise
in the quantum Langevin equation. Following Gardiner and
Collett �17�, we define the input field in each port

bin�t� =
1

�

�
k

bk�t0�e−i�k�t−t0�,

bin� �t� =
1

�

�
l

cl�t0�e−i�l�t−t0�, �4�

where � is defined by

�
k

e−i�kt = ��t�� . �5�

The quantity � has the dimension of a time and depends on
the mode density, which is supposed to be the same in each
port. The quantity bin

† bin�t� �respectively, bin�
†bin� �t�� scales like

a photon number per unit of time and represents the incom-
ing power in port 1 �respectively, 2�. Summing Eqs. �3� over
all modes in each port we have

FIG. 1. Scheme of the atom-cavity coupled system. The atomic
frequency is �0, the cavity mode frequency �0+�. The cavity mode
is coupled to the outside world via two ports labelled 1 and 2 modes
with coupling constants g1 and g2, the two-level system to the cav-
ity mode with coupling constant �. The situation can describe a
micropillar containing asingle quantum dot.
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�
k

bk�t� = 
�bin�t� + i
g1

2
�a�t� ,

�
l

cl�t� = 
�bin� �t� + i
g2

2
�a�t� . �6�

In the same way we define the reflected and transmitted
fields, for t� t0,

br�t� =
1

�

�
k

bk�t0�e−i�k�t−t0�,

bt�t� =
1

�

�
l

cl�t0�e−i�l�t−t0�, �7�

and in the same way we obtain

�
k

bk�t� = 
�br�t� − i
g1

2
�a�t� ,

�
l

cl�t� = 
�bt�t� − i
g2

2
�a�t� . �8�

We suppose for simplicity that the coupling to each port has
the same intensity, g1=g2 which corresponds to the case of a
symmetric Fabry-Perot cavity. From Eqs. �6� and �8� we can
easily derive the input-output equations for the two-ports
cavity,

br�t� = bin�t� + i
�a ,

bt�t� = bin� �t� + i
�a . �9�

where we have taken �= �g1�2�. The evolution equation for a
becomes

ȧ = − i��0 + ��a − �a − �S− + i
�bin + i
�bin� . �10�

Note that this choice of definition for the reflected and trans-
mitted field depends on the geometry of the problem. In the
situation depicted in Fig. 1, the incoming field in port 1 is
entirely reflected if the coupling with the cavity is switched
off. In the case of a cavity evanescently coupled to ports 1
and 2 �see Fig. 2� the incoming field in port 1 would be
entirely transmitted if the coupling with the cavity were
switched off. The definitions of br and bt should just be in-
verted to describe this new situation. The theory can also
easily be adapted to the case of multiport cavities like add-

drop filters �18�. The Heisenberg equations for the cavity
mode and the atomic operators are finally written in the
frame rotating at the drive frequency �,

Ṡ− = − i	�S− − 2�Sza ,

Ṡz = ��S+a + a†S−� ,

ȧ = − i�	� + ��a − �a − �S− + i
�bin + i
�bin� ,

br = bin + i
�a ,

bt = bin� + i
�a . �11�

Here 	�=�0−�. These equations are the quantum coupled-
mode equations for the evolution of the atom and the cavity,
driven by the external fields bin and bin� . At this stage we shall
suppose that the cavity exchanges energy much faster with
the input and output ports than with the atom, that is �
�.
This regime is often called the bad cavity regime and we will
from now on restrict ourselves to that case. Note that the
opposite case ��
�� corresponds to the strong coupling re-
gime in which the emission of a photon by the atom is co-
herent and reversible, giving rise to the well-known phenom-
enon of quantum Rabi oscillation �2�.

In the bad cavity regime, for a fixed frequency of the
driving field, the cavity mode can be adiabatically eliminated
from the equations, which means that we can take ȧ=0 at
each time of the system evolution. This implies for operator
a,

a =
− �S− + i
��bin + bin� �

i�	� + �� + �
. �12�

The set of equations �11� becomes then

Ṡ− = − i	�S− −
�

2
t0�	��S− + i
�

2
�− 2Sz��bin + bin� �t0�	�� ,

Ṡz = − � Re�t0�	����Sz +
1

2
�

+
�

2
�iS+�bin + bin� �t0�	�� + H.c.� ,

bt = bin� �1 − t0�	��� − bint0�	�� − i
�

2
S−t0�	�� ,

br = bin�1 − t0�	��� − bin� t0�	�� − i
�

2
S−t0�	�� . �13�

We have introduced the relaxation time of the dipole in the
cavity mode �=2�2 /�. We have denoted t0�	�� the quan-
tity 1 / �1+ i�	�+�� /��. It will be shown in the next section
that −t0�	�� corresponds to the transmission of an empty
cavity. Equations �13� hold between operators: they are
quantum equivalents for the well-known optical Bloch equa-
tions. They describe the effective interaction of a two-level

FIG. 2. Scheme of a cavity coupled quantum-dot system where
the cavity is evanescently coupled to ports 1 and 2. The incoming
field in port 1 in now entirely transmitted if the coupling with the
cavity is switched off. This situation can describe a microdisk cav-
ity evanescently coupled to a waveguide.
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system with a one-dimensional continuum, mediated by a
cavity: this situation is generally referred to as the “one-
dimensional atom” �16�. In Sec. III, we study this optical
medium in two regimes: the linear regime where the incom-
ing field is not strong enough to saturate the two-level sys-
tem, and the nonlinear regime which we will study within the
semiclassical frame.

III. OPTICAL FEATURES OF THE
ONE-DIMENSIONAL ATOM

In this part of the paper we focus on the optical behavior
of the one-dimensional atom. In particular, we define and
compute a transmission function for this medium, which
shows two striking features: first, in the linear regime, the
presence of the dipole induces a thin dip in the transmission
function, leading to the total reflection of the incident light
�dipole induced reflection�. Second, if the intensity of the
driving field increases, the transmission function shows a
nonlinear jump, the switch happening for very low intensities
of the driving field �giant nonlinear medium�.

A. Linear regime: dipole induced reflection

In this part of the work, we suppose that the incoming
field is very weak, so that the saturation of the two-level
system can be neglected: the atomic population remains in
the state �g�, and we can replace Sz by its mean value �Sz�

−1/2. Another way of introducing this approximation con-
sists in noting that the behavior of a two-level system in a
field containing very few excitations �zero or one photon�
cannot be distinghished from the behavior of the two lower
levels of a harmonic oscillator. S+ and S−, which are analo-
gous to creation and annihilation operators, should then have
bosonic commutation relation. Given that �S− ,S+�=−2Sz, this
condition is fulfilled if Sz
−1/2. It is shown in Appendix A
that br and bt are related to bin and bin� up to a global phase by
a unitary transformation, the scattering matrix S checking

�br

bt
� = S�bin

bin�
� =

1

1 + i�
� i� − 1

− 1 i�
��bin

bin�
� , �14�

with

� =
	� + �

�
−

�

2	�
. �15�

The system acts like a beamsplitter whose coefficients de-
pend on the frequency of the incoming fields. The statistics
are preserved by this transformation. If there is one photon of
frequency � in the input field, the output field will be a
coherent superposition of a transmitted and a reflected pho-
ton of frequency �, the amplitude of each part of the super-
position corresponding to the coefficients of the diffusion
matrix �14� as studied by Fan �19�. If the incoming field is
quasiclassical, the outcoming field will be quasiclassical too
and the reflection and transmission coefficients can be inter-
preted in the usual way. We consider the transmission coef-
ficient in amplitude t�	��=S12=S21 which reads

t�	�� =
− 1

1 + i�
. �16�

As mentioned previously, the transmission of the empty cav-
ity, corresponding to �=0, fulfills

t�	�� =
− 1

1 + i
	� + �

�

= − t0�	�� . �17�

The transmission coefficients in energy T�	��= �t�	���2 and
T0�	��= �t0�	���2 are represented in Fig. 3 as functions of
the normalized detuning between the cavity and the driving
field �	�+�� /�. We took �=� /500 which fills the bad cav-
ity regime condition. If there is no atom in the cavity,
T0�0�=1 and the field is entirely transmitted at resonance. If
there is one resonant atom in the cavity, T�0�=0 and the field
is totally reflected by the optical system which behaves as a
frequency selective perfect mirror as evidenced by Fan �19�.
This dipole induced reflection, reminiscent of dipole induced
transparency evidenced by Waks et al. �14�, cannot be attrib-
uted to a phase shift induced by the atom, putting the cavity
out of resonance. On the contrary, it is due to a totally de-
structive interference between the incoming field and the
field radiated by the dipole as it appears in Eq. �18�,

bt = − �bin + i
�

2
S−� , �18�

the stationary state of the atomic dipole being

S− = i
2

�
bin. �19�

The global minus sign in Eq. �18� is due to the cavity reso-
nance. The interference is destructive because the fluores-
cence field emitted by a two-level system is phase shifted by

 with respect to the driving field as pointed out by Kojima
�20�. If the dipole is not resonant with the cavity the trans-

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

(∆ω + δ) /κ

T

FIG. 3. Transmission of the optical system as a function of the
normalized detuning �	�+�� /� between the cavity and the driving
frequency. The curves are plotted with � /�=1/500. Dashed, trans-
mission of the empty cavity. Solid, transmission of the coupled
quantum dot-cavity system, total reflection is induced by the dipole.
Dots, transmission of the coupled quantum dot-cavity system with
�=−0.5�, the signal is typical for a Fano resonance.
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mission is a Fano resonance as underlined by Fan �19�. If
�=0, T reads

T�	�� =
1

1 + � �

2	�
−

	�

�
�2 . �20�

The dip linewidths can be easily computed from the solu-
tions of the equation T=1/2. Remembering that ���, we
find that the linewidth of the broadest transmission peak is
the cavity linewidth

	�1/2 = � , �21�

whereas the linewidth of the narrow dip corresponds to the
linewidth of the atom dressed by the cavity mode

��1/2 = � . �22�

It appears that in the linear regime, the one-dimensional
atom is a highly dispersive medium which can be used to
slow down light as it is realized using media showing elec-
tromagnetically induced transparency. This effect is studied
in Appendix C using a model including leaks.

B. Nonlinear regime: giant optical nonlinearity

We are now interested in the optical behavior of the one-
dimensional atom for arbitrary intensities of the incoming
field. Following Allen and Eberly �21�, we adopt the semi-
classical hypothesis where the quantum correlations between
atomic operators and field operators can be neglected. We
shall comment on the range of validity of this approximation
at the end of this section. We take the mean value of Eqs.
�13� to obtain relations between the quantities �bin�, �bt�, �br�
as they could be measured using a homodyne detection. In
the following of this paper we shall take �bin� �=0. Writing s
= �S−�, sz= �Sz�, and identifying bt �respectively, br and bin� to
�bt� �respectively, to �br� and �bin�� we obtain

ṡ = − i	�s −
�

2
t0�	��s + i
�

2
�− 2sz�bint0�	�� ,

ṡz = − � Re�t0�	����sz +
1

2
� +
�

2
�is*bint0�	�� + c.c.� ,

bt = − �bin + i
�

2
s�t0�	�� ,

br = bin + bt. �23�

Equations �23� are similar to the well-known Bloch optical
equations for a two-level system interacting with a classical
field with a coupling constant �. Nevertheless, in this case
the dipole relaxation rate is related to the coupling constant,
whereas usually the two parameters are independent. This is
due to the fact that the dipole is driven and relaxes via the
same ports 1 and 2. We obtain after some little algebra de-
tailed in Appendix B the stationary solution for the popula-
tion of the two-level system,

s =
2

�

1

1 + x

ibin

1 +
2i	�

�t0�	��

,

sz = −
1

2

1

1 + x
, �24�

where we have introduced the saturation parameter x,

x =
�bin�2

Pc�	��
. �25�

Pc�	�� is the critical power necessary to reach sz=−1/4,
satisfying

Pc�	�� =
�

4
���� ,

���� = �2	�

�
�2

+ �2	�

�

	� + �

�
− 1�2

. �26�

Pc scales like a number of photons per second. At resonance
it corresponds to one-fourth of the photon per lifetime. Out
of resonance it is increased by a factor ���� which can be
seen as the inverse of an adimensional cross section. We
define an adimensional susceptibility � for the two-level sys-
tem

s =
2

�
�bin, �27�

where � reads

� =
1

1 + x

i

1 +
2i	�

�t0�	��

. �28�

We have plotted in Fig. 4 the evolution of the real and imagi-
nary part of the susceptibility as a function of �−�0=−	�
for different values of the saturation parameter. As expected,
the sensitivity to the incoming field’s intensity, that is the
nonlinear effect, is maximal for 	�=0 and � checks

−0.2 −0.1 0 0.1 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

R
e(

α)

(a)

(ω−ω
0
)/κ

−0.2 −0.1 0 0.1 0.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Im
(α

)

(ω−ω
0
)/κ

(b)

FIG. 4. Susceptibility � of the atomic dipole as a function of
��−�0� /�=−	� /�, for different values of the saturation parameter
x. �a� Real part of �. �b� Imaginary part of �. Solid, x=0. Dashed,
x=1. Dots, x=10.

GIANT OPTICAL NONLINEARITY INDUCED BY A … PHYSICAL REVIEW A 75, 053823 �2007�

053823-5



� =
i

1 + x
. �29�

At resonance � is purely imaginary: the field is entirely ab-
sorbed by the dipole. The behavior of the two-level system
drastically changes from �bin�2�0 to �bin�2�10Pc which cor-
responds to a very low switching value. Any two-level sys-
tem is then a giant optical nonlinear medium. In the specific
case of the one-dimensional atom, the fluorescence field in-
terferes with the driving field, and a signature of the giant
nonlinearity can be observed in the output field. We have
represented in Fig. 5 the transmission coefficient T
= �t�	���2 for different values of the incoming power. For
low values the system is not saturated and the dipole blocks
the light. For �bin�2= Pin�10Pc the dipole is saturated and
cannot prevent light from crossing the cavity. This nonlinear
behavior is obvious if we restrict ourselves to the resonant
case. At resonance indeed the transmission and reflection co-
efficients in amplitude t and r are written as

t =
− x

1 + x
,

r =
1

1 + x
, �30�

which implies for the transmitted and reflected power Pt and
Pr,

Pt =
x2

�1 + x�2 Pin,

Pr =
1

�1 + x�2 Pin. �31�

R, T, Pr, and Pt are plotted in Fig. 6. As expected a nonlinear
jump in the transmission coefficient happens at a typical
power for the incoming field Pin� Pc /2. Note that this giant
optical nonlinearity has been pointed out in the case of a
two-level system in an asymmetric cavity �15�, the nonlinear
jump being observable in the phase of the reflected field.

It appears that Pr+ Pt� Pin even for an ideal nonleaky
system as considered in this section. To understand this, let
us remind that Pt+ Pr is the power of the coherently diffused
field, which is predominent if the driving field is weak. On
the contrary, when the dipole is saturated, the fluorescence
field is emitted with a random phase and cannot interfere
with the driving field anymore �15,24�. This incoherent dif-
fusion process is responsible for a noise whose power Pnoise
allows to preserve energy conservation,

Pnoise = Pin − Pr − Pt �
2x

�1 + x�2 Pin. �32�

Let us mention that Pnoise could be detected with direct pho-
ton counting and would be split between the two output
ports. We have plotted in Fig. 7 the relative contribution of
the noise power Pnoise and of the coherently diffused fields
Pr+ Pt over the incoming power Pin, as a function of the
logarithm of the saturation parameter. The noise contribution
is maximal for x=1. This also gives us a glimpse of the range
of validity for the semiclassical assumption, which correctly
describes the problem only out of the nonlinear jump.

C. Quantifying the giant nonlinearity

As underlined before, the nonlinearity is giant because of
two main effects, which are characteristics of the one-
dimensional atom geometry: first, any photon that is sent in
the input field reaches the single two-level system; second,
the fluorescence field is entirely directed in the output ports,
so that there are no leaks and we can operate at resonance. To
quantify the nonlinearity it is convenient to observe that the
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FIG. 5. Transmission of the optical system as a function of the
normalized detuning �	�+�� /� between the quantum dot and the
driving frequency for different values of saturation parameter at
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transmission and reflection jumps could be obtained using an
optical medium inducing a nonlinear phase jump of 
 with-
out absorption, the jump happening for a typical intensity
I
�10Pc /� where � is the surface on which light is focused
and the factor of 10 is evaluated from Fig. 13. Let us com-
pute the typical intensity in our case. The critical power Pc is
one-fourth photon per lifetime, that is, with a wavelength �
�1 �m and a lifetime ��100 ps which correspond to real-
istic experimental parameters as it will appear in Sec. V, Pc
�1 nW. We shall take ��10−8 cm2 which corresponds to
the typical surface of a semiconducting microcavity. We ob-
tain I
�1 W/cm2. Let us consider a nonlinear Kerr medium
with a refractive index given by n=n0+n2I where I is the
intensity of the light beam crossing the medium. The nonlin-
ear phase shift acquired by the beam is

�nl =
2


�
Ln2I . �33�

Given that the nonlinear index of the bulk semiconductor
�like GaAs� at half-gap excitation is typically n2
=10−13 cm2/W �25�, the length of medium should be 5
�103 km to reach a 
 phase shift with the same intensity.
Resonant experiment using an atomic vapor in low-finesse
cavity have reached values of n2�10−7 cm2/W while pre-
serving a quantum noise limited operation �26�: a 
 phase
shift could be obtained after 5 m of vapor. More recently
there has been work on slow light using electromagnetically
induced transparency exhibiting giant resonant nonlinear re-
fractive index n2=0.18 cm2/W �27�, leading to a length of a
few mm to reach the same effect.

IV. INFLUENCE OF THE LEAKS

In Sec. III we have seen that a one-dimensional atom
driven by a low intensity field is a highly dispersive medium
that could be used to slow down light as it is shown in
Appendix C. Moreover, if this medium is driven by a reso-

nant field, its transmission shows a nonlinear jump at a very
low switching intensity. We aim at observing these two ef-
fects using solid state two-level systems and cavities. In or-
der to prepare the feasibility study which will be held in the
next section, we focus in this part of the paper on the quan-
titative influence of the leaks on the transmission function of
the system. We note �at and �cav the leaks from the atom and
from the cavity, respectively. Given that we will deal with
artificial atoms such as quantum dots, we shall also consider
the excitonic dephasing �*. The set of equations �11� be-
comes

Ṡ− = − i	�S− − 2�Sza −
�at

2
S− − �*S− + G ,

Ṡz = ��S+a + a†S−� − �at�Sz + 1/2� + K ,

ȧ = − i�	� + ��a − �a − �S− + i
�bin + i
�bin� −
�cav

2
a + H ,

bt = bin� + i
�a ,

br = bin + i
�a . �34�

G K, G, and H are noise operators due to the interaction of
the atom and the cavity with their respective reservoirs, re-
specting �G�= �H�= �K�=0. The noise prevents us from ob-
taining relations between incoming and outcoming field op-
erators. As a consequence, even in the linear case, we will
deal with expectation values of the fields as they could be
obtained in a homodyne detection experiment.

A. Linear regime

First we consider the linear case, so that �Sz�
− 1
2 . Using

the same notations as in the preceding section, we obtain
after adiabatic elimination of the cavity mode

ṡ = − i	�s −
�

2

Q

Q0
�t0� +

Q0

Q

�at + 2�*

�
�s + i

Q

Q0

�

2
bint0�,

bt = −
Q

Q0
t0�bin − i

Q

Q0

�

2
t0�s ,

br = bin + bt. �35�

We have introduced the adimensional quantity t0� such as

t0��	�� =
1

1 + i
Q

Q0

	� + �

�

. �36�

The parameter Q0 is the quality factor of the cavity mode due
to the coupling with the one-dimensional continua of modes.
The parameter Q is the total quality factor and includes the
coupling to leaky ones. Q0 and Q fulfill

Q0/Q = 1 + �cav/2� . �37�

If the dipole is nonleaky, that is if �at=0, its relaxation rate in
the cavity mode is equal to �Q /Q0. It is lower than in the
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case of a cavity perfectly matched to the input and output
modes, because the cavity being enlarged, the density of
modes on resonance with the dipole is lower. It is convenient
to define the ratio f ,

f =
Q

Q0

�

�at + 2�* . �38�

Note that the ratio f is different from the Purcell factor FP �7�
of the two-level system, defined indeed as the spontaneous
emission rate in the cavity mode over the emission rate in the
vacuum space, which we shall denote �free. The quantities f
and FP are related by the following equation:

f =
�free

�at + 2�*FP. �39�

In the very simple case where �*=0 and �at=�free, we have
f =FP. Note that the excitonic dephasing �* reduces the ratio
f and may lead to the reduction of the contrast of the experi-
mental signal. The transmission coefficient of the empty cav-
ity can be written −Q /Q0t0��	��, the reflection coefficient
being r=1+ t. If the cavity contains one atom, the transmis-
sion coefficient of the system has the following expression:

t�	�� =
Q

Q0
t0��− 1 +

f

f + � i	�

�at + 2�* + 1��i
Q

Q0

	� + �

�
+ 1�� .

�40�

It appears that the one-dimensional atom case requires
Q /Q0�1, �f ,FP�→�, which justifies the so-called “Purcell
regime” we have referred to until now. At resonance, the
transmission and reflection coefficients in energy for an
empty cavity can be written as

Tmax = � Q

Q0
�2

,

Rmin = �1 −
Q

Q0
�2

, �41�

whereas if the cavity contains one resonant two-level system,
the expression become

Tmin = � Q

Q0
�2� 1

1 + f
�2

,

Rmax = �1 −
Q

Q0

1

1 + f
�2

. �42�

We have plotted in Fig. 8 the evolution of T and R as func-
tions of the atom-cavity detuning for different values of Q,
Q0, and f . The plots �a� and �b� correspond to the case of a
cavity perfectly connected to the input and output mode �Q
=Q0� interacting with a leaky two-level system. On the plots
�c� and �d�, we consider the case of an atom perfectly con-
nected to a leaky cavity mode �f →� and Q /Q0�1�. Note
that the limit f →� can be taken without reaching the strong
coupling regime, provided the coupling to leaky modes and
the excitonic dephasing vanish ��at ,�

*→0�.

Let us stress that the reflection can be total even if the
cavity is leaky. This apparently striking result is due to a
totally constructive interference between the driving field
and the field radiated by the optical system, which cannot be
split into a cavity and an atom, but must be considered as a
whole. This feature also appears on the normalized leaks on
resonance L given by R+T=1−L, which fulfills

L = 2
R
T =
2Q

Q0

1

1 + f
�1 −

Q

Q0

1

1 + f
� . �43�

The leaks can be approximated for f 
1 by the following
expression:

L �
2Q

Q0f
=

2�at

�
, �44�

which has a clear physical meaning, the leaks can be inter-
preted as the rate of photons lost by the atom over the rate of
photons funneled in the output mode. This quantity decreases
down to 0 when the atomic leaks become vanishingly small,
even if the atom is placed in a leaky cavity.

B. Nonlinear regime

We consider now the case of a leaky optical system de-
scribed by Eqs. �34�. We shall restrict ourselves to the reso-
nant case and to the semiclassical hypothesis. For sake of
simplicity we shall also take �*=0, which is a realistic hy-
pothesis as it will be shown in the next section. As before we
can adiabatically eliminate the cavity from the equations.
Using the same definitions for �, f , Q, and Q0, we establish
the optical Bloch equations for the leaky system,
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FIG. 8. Evolution of T and R as functions of the atom-cavity
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to 0 for convenience. Dots, ideal case with Q=Q0 and f →�. �a� T
with Q=Q0 and f =2. �b� R with the same parameters. �c� T with
Q /Q0=1/2 and f = →�. �d� R with the same parameters.

AUFFÈVES-GARNIER et al. PHYSICAL REVIEW A 75, 053823 �2007�

053823-8



ṡ = −
�

2

Q

Q0
�1 +

1

f
�s +
�

2

Q

Q0
�− 2sz�ibin,

ṡz = − �
Q

Q0
�1 +

1

f
��sz +

1

2
� +
�

2

Q

Q0
�ibins

* + c.c.� ,

bt = − bin
Q

Q0
− i
�

2

Q

Q0
s ,

br = bin�1 −
Q

Q0
� − i
�

2

Q

Q0
s . �45�

As it is shown in Appendix B, the stationary solutions can be
written as

sz = −
1

2

1

1 + x�
,

s =
�

2

ibin

1 + x�

1

1 +
1

f

, �46�

with modified values for the saturation parameter x� and the
critical power Pc�,

x� = �bin�2/Pc�,

Pc� =
�

4�2 . �47�

We have introduced the parameter �= f
1+f . The quantity �2

can be seen as the probability for a resonant photon sent in
the input mode to be absorbed by the optical system. The
power necessary to saturate the two-level system, that is to
reach sz=− 1

4 , is higher than in the ideal case which is a
natural consequence of the leaks. The transmission coeffi-
cient in energy can be written as

T = � Q

Q0
�2� �

1 + �2x
− 1�2

. �48�

We have plotted in Fig. 9 the transmission coefficient T as a
function of the saturation parameter in the nonleaky case x
=4Pin /�. The limit of the signal for x→0 is Tmin because the
two-level system is not saturated. If x→� the signal tends to
Tmax: when the two-level system is saturated, the optical sys-
tem behaves like an empty cavity. On the left-hand side, we
fixed �=1 which may be realized with high values of the
ratio f , and we considered different leaky cavities. In this
case, the transmission coefficient simply corresponds to the
ideal transmission coefficient multiplied by �Q /Q0�2. On the
right-hand side, we have considered a nonleaky cavity
�Q /Q0=1� and different values of the ratio f . The jump hap-
pens for higher values of the saturation parameter, which was
expected.

V. FEASIBILITY STUDY

In the two preceding sections, we have seen that a one-
dimensional atom, even leaky, induces the reflection of a low

intensity driving field, giving rise to a highly dispersive
transmission pattern, and behaves like a giant nonlinear me-
dium, with typical switching intensities of one photon per
lifetime. This section aims at showing that these striking fea-
tures can be observed using solid state two-level systems and
cavities. As a first step, we shall comment on the validity of
the two-level system model in the case of a single exciton
embedded in a quantum dot. As a second step, we will focus
on a well-known semiconducting microcavity whose charac-
teristics depend on a small set of easily adjustable param-
eters: the micropillar. Micropillars are very good candidates
for this application because the light they emit is directional.
As a consequence they have already been used with success
as single-photon sources �9,10� and indistinguishable photon
sources �11�. We shall optimize these parameters in view of
observing the dipole induced reflection or the nonlinear ef-
fect. As a third step we will draw a comparison between the
performances of the device when it is operated as a single-
photon source or as a giant nonlinear medium.

A. How good is a two-level system as
a semiconductor quantum dot?

Semiconductor quantum dots displaying a very high
structural and optical quality can be obtained using self-
assembly in molecular beam epitaxy �28�. Such nanostruc-
tures confine both electrons and holes on the few-nanometer
scale, and support therefore a discrete set of confined elec-
tronic states. In its ground state �g�, the quantum dot is
empty, whereas the lowest bright energy level �e� corre-
sponds to the situation where it contains one electron-hole
pair called exciton. Sharp atomiclike fluorescence �29� and
absorption �30� lines, associated to optical transitions be-
tween �e� and �g� can be observed experimentally.

As far as the spin structure is concerned, the projection of
the electronic spin on the growth axis of the dot is either 1 /2
or −1/2, whereas the projection of the hole’s spin is either
3 /2 or −3/2 �“heavy holes”�. This corresponds to four dis-
tinct spin values for the exciton. However, only two excitons
are coupled to the ground state by the electromagnetic field,
namely �−1/2 ,3 /2� and �1/2 ,−3/2� �“bright” excitons�. The
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FIG. 9. Transmission of the optical system on resonance as a
function of the logarithm of the saturation parameter log�x�
=log�4Pin /��. �a� We fixed �=1 which corresponds to high values
of f . Dots, Q=Q0=1000 �ideal case�. Solid, Q=800. Dashed, Q
=500. The obtained signals are the ideal signal multiplied by
�Q /Q0�2. �b� We took Q=Q0=1000. Dots, ideal case. Dashed, f
=1. Solid, f =10. The nonlinear jump happens for higher values of
the saturation parameter.
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two other excitons have a total spin projection of 2 or −2.
They remain optically uncoupled or “dark” because of the
selection rules governing the dipolar electrical Hamiltonian,
and they do not have to be taken into account.

For a quantum dot showing perfect cylindrical symmetry
around its growth axis, the two excitonic states are degener-
ate. In practice the symmetry is not perfect and the exchange
interaction splits the doublet in two eigenstates, which are
coupled to the ground state by two orthogonally linearly po-
larized fields �31�. At this point, a quantum dot appears as a
“V-type” system rather than as a two-level system. However,
recent experiments have shown that in a cryogenic environ-
ment and under resonant pumping, which will correspond to
our experimental conditions, electrons’ and holes’ spins are
frozen at the exciton lifetime scale �32�. As a consequence, it
is possible to work at a given linear polarization and to ig-
nore the other excitonic spin state, allowing an effective
treatment of the quantum dot as a two-level system.

One could fear that pumping the quantum dot beyond its
saturation intensity may lead to the creation of two electron-
hole pairs �biexcitonic states, denoted XX�. However, be-
cause of the interaction between two excitons, the transition
between XX and �e� is energetically different �a few meV
typically� from the transition between �e� and the fundamen-
tal state �g�. This effect allows to address spectrally the ex-
citonic state under interest: if the driving field is resonant
with the excitonic transition �which is the case in the dem-
onstration of the giant nonlinearity� or slightly detuned from
the excitonic transition �which is the case in the experiments
aiming at showing the dipole induced reflection, where the
detuning is less than 1 meV, corresponding to the spectral
width of a micropillar�, XX does not have to be taken into
account.

The interaction of the exciton with the phonons of the
surrounding matrix is responsible for a dephasing time of the
excitonic dipole which may be much faster than the radiative
recombination of the exciton �33�. Furthermore, fluctuating
charges in the quantum dot environment can also induce sig-
nificant dephasing under nonresonant optical excitation �34�.
We have taken this effect into account by introducing the
parameter �* in Eqs. �34� and we have shown that it could
lead to a drastic reduction of the contrast of the dipole in-
duced reflection signal. However, excitonic dephasing times
limited by radiative recombination have already been ob-
served for a resonant excitation of the fundamental optical
transition of InAs quantum dots at low temperature �35�.
Experiments aiming at the demonstration of the giant nonlin-
earity will in fact be performed under similar conditions.
This justifies taking �*=0 in the nonlinear study including
leaks.

To conclude this part, let us stress the fact that quantum
Rabi oscillations �4� have been observed by resonantly
pumping a single quantum dot of InAs at low temperature.
This observation, as well as the successful demonstration of
the coherent control of the excitonic transition �5�, show that
quantum dots can be considered as two-level systems and
used to realize atomic-physics-like experiments, provided
these are properly implemented.

B. Optimization of the cavity

We aim at optimizing the parameters of a micropillar in
order to have a maximally contrasted signal. We can experi-
mentally control two parameters: the intrinsic quality factor
Q0 and the diameter d of the micropillar. Q0 corresponds to
the quality factor of the planar cavity and is tunable by
changing the reflectivity of each Bragg mirror. The diameter
d is adjusted during the lithography and etching step. The
total quality factor Q of the micropillar reads

1

Q
=

1

Q0
+

1

Qleak
, �49�

where the leaks are mainly due to the etching step and can be
written as �36�

1

Qleak
=

2�E�d��2�

d
. �50�

�E�d�� is the electrical field of the fundamental mode at the
sidewalls of the micropillar, whose profile is given by the
Bessel function of the first kind J0 �36�. The parameter � is a
parameter quantifying the etching quality. The leaks increase
as the diameter of the etched micropillar decreases. In the
following we will take ��0.007 which corresponds to real-
istic experimental parameters �37�.

The experimental signal to maximize is defined as C
=Tmax−Tmin, where Tmax and Tmin are given by Eqs. �41� and
�42�, Tmax= �Q /Q0�2 and Tmin= �Q /Q0�2�1/ �1+ f��2. We have
chosen to optimize an amplitude rather than a visibility V
= �Tmax−Tmin� / �Tmax+Tmin� because we should be then less
sensitive to the optical background. A first strategy to opti-
mize the contrast C is to reach small Tmin, that is high Purcell
factor FP, whose expression is �8�

FP =
3Q

4
2V
��

n
�3

. �51�

The quantity � is the dipole wavelength in the vacuum, n is
the refractive index of the medium, and V is the effective
volume of the mode,

V � ��

n
�
d2

8
. �52�

Figure 10 represents the evolution of Q and FP as functions
of the micropillar diameter for three different values of the
intrinsic quality factor Q0, 1000, 5300, and 10 000. If the
diameter is too small, the leaks degrade Q and as a conse-
quence FP. If the diameter is too large, FP decreases because
of the large modal volume. The diameters maximizing the
Purcell factor vary between 1 and 2 �m. As it can be seen in
the figure, a higher initial Q0 allows to reach higher values of
FP, and corresponds to higher optimal diameters.

At the same time we need high Tmax, which corresponds
to small cavity leaks and to large diameters. We have repre-
sented in Fig. 11 the evolution of Tmax−Tmin as a function of
the micropillar diameter for different Q0. As expected, the
optimal diameters are higher than the ones obtained by opti-
mization of the Purcell factor, and vary now between 2 and
6 �m. For each Q0, the amplitude of the optimized signal is
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higher than 0.8 which is quite convenient. We shall prefer the
set of parameters corresponding to the smallest diameter, so
that it is easier to isolate a single quantum dot, that is Q0
=1000, d=2.4 �m, Q=960, and FP=2.6. The expected am-
plitude of the experimental signal should then be 0.85.

We shall mention here another strategy to enhance f , that
consists in reducing the leaks �at. Recent experiments involv-
ing the metallization of the micropillars have shown a reduc-
tion of �at by a factor of 10 �38�. The expected Tmin obtained
with such a metallized cavity should be under 10−3, and the
signal amplitude near 0.9.

To have a glimpse of the expected signal we have plotted
in Fig. 12 the transmission of the system as a function of the
detuning between the atom and the field for Q0=1000, Q
=500, and FP=3 �dotted curve� which corresponds to realis-
tic parameters for single photon sources before optimization
�10�. The contrast of the signal is 0.21. On the same figure
we have also plotted the expected signal after optimization of
the micropillar, with and without metallization of its side-
walls.

We have finally plotted in Fig. 13 the transmission coef-
ficient on resonance as a function of the logarithm of the
saturation parameter log10�x� for these three different sets of

parameters. We shall be able to observe the nonlinear trans-
mission jump with state-of-the-art micropillar cavities.

C. Single-photon source versus giant nonlinear medium

We have seen that the “one-dimensional atom” case re-
quires f →� and Q /Q0→1. Such an optical system would
also provide a high efficiency single-photon source. The ex-
pression of the raw quantum efficiency � �39� of theses de-
vices is indeed

� =
f

1 + f

Q

Q0
. �53�

The prefactor �= f / �1+ f� has been introduced in Sec. IV, it
represents the fraction of photons spontaneously emitted by
the excited atom into the cavity mode, whereas Q /Q0 is the
fraction of photons initially in the cavity mode finally fun-
neled into the mode�s� of interest. Note that usually for
single-photon sources, the photons are collected in only one
output mode. In the present case, transmitted and reflected
photons must be collected to measure the quantum efficiency

FIG. 10. Quality factor of a micropillar cavity �a� and Purcell
factor of a single quantum dot in the cavity mode �b� as a function
of the diameter of the micropillar, for different Q0 factors of the
intrinsic cavity. Squares, Q0=5300. Dots, Q0=10 000. Triangles,

Q0=1000. We took 1
Q = 1

Q0
+ 1

Qleak
with 1

Qleak
=

2�E�d��2�

d . The quantity
�E�d�� is the electrical field at the sidewalls of the micropillar. The
parameter � quantifies the leaks due to the etching. We took here
�=0.007.

FIG. 11. Amplitude of the signal Tmax−Tmin. Squares Q0

=5300. Dots, Q0=10 000. Triangles, Q0=1000. Amplitudes as high
as 0.9 can be obtained using state-of-the-art microcavities.
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of the corresponding source. One may ask if optimizing the
system as a single-photon source is equivalent to optimizing
it as a medium providing dipole induced transparency �one
should then maximize the visibility C of the signal� or as a
giant nonlinear medium �this would require a low critical
power, that is a high absorption probability �2 as it has been
introduced in Sec. IV�. We have plotted in Fig. 14 the pa-
rameters C, �2, and � as functions of the diameter of the
micropillar for an initial quality factor Q0=1000. As it can be
seen in the figure, optimal diameters are different. The opti-
mization of C leads to the highest diameter. As it is explained
in paragraph Sec. V B, this is because nonleaky cavities �and
as a consequence high diameters� are needed to reach high
Tmax. It is striking to observe that �2 and � have different
evolutions. Indeed one could have thought that a good
single-photon source, that is an optical system that emits
photons with high efficiency in a particular mode, is also
able, when it is driven by a resonant field, to absorb and
reemit photons with high efficiency. Yet �2 is optimized for
smaller diameters than �: the absorption probability is more
sensitive to the atomic leaks than the single-photon source
efficiency. Even if the cavity is leaky, an atom perfectly con-
nected to the cavity mode can absorb one photon in the input
field with a maximal probability. The major difference be-
tween these two behaviors is that they are observed in two
quite different regimes. The quantity � is the probability of
detecting a photon in the mode of interest conditioned on the
excitation of the atom, and can be computed by supposing
that in a first step, the atom has emitted a photon in the
cavity mode, and that in a second step, this photon has been
funneled into the mode of interest. On the contrary, �2 is
estimated in a permanent regime where the driving field can
interfere with the fluorescence field as it was pointed out in
Sec. III. A signature of this effect has been observed in Sec.
IV, where total reflection was induced by an atom perfectly
connected to a leaky cavity. Because of this interference phe-
nomenon, it is impossible to describe the evolution of the
photon by successive interactions with the cavity mode and
with the atom: the atom-cavity coupled system must be con-
sidered as a whole.

VI. PERSPECTIVES

There has been a considerable number of proposals, e.g.,
�40–42�, and experiments, e.g., �23,43�, concerning the use
of single emitters in high-finesse cavities for quantum infor-
mation processing. Most of these papers are based on achiev-
ing the strong coupling regime. A recent proposal relying on
the Purcell regime �14� requires the coherent control of ad-
ditional levels in the emitter. It is natural to ask whether the
most basic nonlinearity considered in the present paper could
be used directly for quantum information applications, for
example, for implementing a controlled phase gate between
two photons, as suggested in Refs. �12,15�. Unfortunately
recent results suggest that this may not be possible. A nu-
merical study �20� found fidelities of quantum gates employ-
ing the present nonlinearity of order 80%, which is quite far
from what would be desirable for quantum computing or
even quantum communication. Higher fidelities are elusive
because the interaction with the single two-level system in-
troduces temporal correlations between the two input pho-
tons. An analogous difficulty is discussed in detail in a recent
theoretical paper on the use of Kerr nonlinearities for quan-
tum computing �44�. From a quantum information perspec-
tive the relatively simple situation considered in the present
paper may thus best be seen as an important step towards the
realization of more complex configurations.

Another perspective opened by the implementation of this
device concerns the photonic computation at low threshold.
As it is shown in Appendixes D and E, the nonlinearity stud-
ied in this paper is not intense enough to provide bistability,
but could be used to reshape low intensity signals which may
propagate in a photonic computer. The expected perfor-
mances of the device are orders of magnitude higher than for
usual saturable absorbers. Besides, if it is fed with single
photons rather than with classical fields, this device could be
operated as an all-optical switch at the single-photon level,
which is a fundamental component of a photonic computer.
The theory developed in the frame of this paper could be
adapted to model such a gate and optimize its performances.
This work is under progress.

VII. CONCLUSION

We have shown that a single two-level system in the Pur-
cell regime is a medium with appealing nonlinear optical
properties. In the linear case the two-level system prevents
light from entering the cavity: this is dipole induced reflec-
tance. This property vanishes as soon as the two-level system
is saturated, which happens for very low power, of the order
of one photon per lifetime �typically 1 nW�. As a conse-
quence, such a medium shows a sensitivity at the single-
photon level. We have established the optical Bloch equa-
tions describing this behavior in the semiclassical context,
and shown that signatures of the nonlinearity should be ob-
servable using quantum dots and state-of-the-art semicon-
ducting micropillars as two-level systems and cavities, re-
spectively. We have explored possible applications of the
nonlinearity in the context of photonic information process-
ing.

FIG. 14. Characteristics of the quantum dot-cavity system as a
function of the diameter of the micropillar. We took Q0=1000.
Squares, raw quantum efficiency �. Stars, expected amplitude C of
the experimental signal. Dots, probability of photon absorption �2.
The contrast C is more sensitive than � to the leaks of the cavity,
leading to higher optimal diameters.
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APPENDIX A: DERIVATION OF EQUATION (14)

We show in this section that �br ,bt� and �bin ,bin� � are re-
lated by a unitary transformation. For sake of completeness
we keep the general form for �1 and �2. Equations �13� can
be written in the stationary linear case

S− =
2

�

ibin + ibin�

1 +
2i	�

�t0�	��

. �A1�

As a consequence, bt reads

bt = t0�	���− 1 +
1

1 +
2i	�

�t0�	��
�bin

+ �1 − t0�	�� +
t0�	��

1 +
2i	�

�t0�	��
�bin� . �A2�

It can be rewritten in the following way:

bt = −
1

1 + i�
bin +

i�

1 + i�
bin� , �A3�

with

� =
	� + �

�
−

�

2	�
. �A4�

We easily compute br by switching bin and bin� . We finally
obtain

�br

bt
� =�

i�

1 + i�

− 1

1 + i�

− 1

1 + i�

i�

1 + i�
��bin

bin�
� . �A5�

The scattering matrix can be written in the following form:

S =
ei�


1 + �2�� i

i �
� , �A6�

with

� = arctan�1

�
� . �A7�

The S matrix is a unitary transformation up to a global phase.
As a consequence energy is conserved by this transforma-
tion. Keeping in mind this property we shall rather use the
form �A5� whose coefficients have a more direct physical
interpretation.

APPENDIX B: DERIVATION OF THE CRITICAL
INTENSITY INCLUDING LEAKS

In this section we derive the expression for the critical
intensity in the nonresonant case in presence of leaks. We use
the notations introduced in Sec. IV. To recover the results
exploited in Sec. III we shall impose Q=Q0 and 1/ f →0. As
it is justified in Sec. V, we suppose �*=0. The stationary
cavity population is

a = t0�
Q

Q0

− �S− + 
��ibin + bin� � + H

�
, �B1�

where t0� has the following expression:

t0� =
1

1 + i
Q

Q0

	� + �

�

. �B2�

The semiclassical equations describing the evolution of sz
and s are

ṡ = − i	�s −
�

2

Q

Q0
�t0� +

1

f
�s − i

Q

Q0

�

2
�2sz�bint0�,

ṡz = − �
Q

Q0
�Re�t0�� +

1

f
��sz +

1

2
� +
�

2

Q

Q0
�is*bint0� + c.c.� ,

�B3�

where f , Q, and Q0 have been defined in Sec. III. By sake of
completeness we also give the expressions for bt and br after
adiabatic elimination of the cavity mode,

bt = −
Q

Q0
t0�bin − i

Q

Q0

�

2
t0�s ,

br = �1 −
Q

Q0
t0��bin − i

Q

Q0

�

2
t0�s . �B4�

We obtain the stationary solution for s,

s = − i
2

�

2szbint0�

t0� +
1

f
+

2i	�

�

Q0

Q

. �B5�

Injecting this solution in the evolution equation for sz, we
find

ṡz = 0 =
1

2
+ sz�1 +

�bin�2

Pc�
� , �B6�

with

1

Pc�
=

2�t0��
2

��Re�t0�� + 1/f�� 1

1/f + 2i
Q0

Q

	�

�
+ t0�

+ c.c.� .

�B7�

Noting that 2 Re�t0��+1/ f =2/ f − t0�− t0�
* we have
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Pc� =
�

4�t0��
2� 1

f2 +
1

f
�t0� + t0�

*� +
2i	�

�

Q0

Q
�− t0� + t0�

*�

+ �Q0

Q

2	�

�
�2

+ �t0��
2� . �B8�

Let us remind the reader of the following expressions:

1

�t0��
2 = � Q

Q0
�2

+ �	� + �

�
�2

,

t0� + t0�
*

�t0��
2 = 2,

− t0� + t0�
*

�t0��
2 =

2iQ

Q0

	� + �

�
. �B9�

We finally obtain

Pc� =
�

4
���	�� , �B10�

with

����� = �1 +
1

f
�2

+ � Q

Q0f

	� + �

�
�2

+ �2	�

�

Q0

Q
�2

+ �2	�

�

	� + �

�
�2

− �4	�

�

	� + �

�
� . �B11�

If the system has no leaks, we have

���	�� = ��	�� = �2	�

�
�2

+ �2	�

�

	� + �

�
− 1�2

.

�B12�

Whatever the driving frequency may be, the absorption cross
section remains positive. This expression is mainly used in
Sec. III. At resonance, we find

���0� =
1

�
= �1 +

1

f
�2

, �B13�

which was also exploited in Sec. III.

APPENDIX C: SLOW LIGHT

We have evidenced in Sec. III and IV that a one-
dimensional atom is a highly dispersive medium. In particu-
lar, a quantum-dot cavity system evanescently coupled to a
waveguide has a behavior similar to a medium showing di-
pole induced transparency. As a consequence, this optical
system could be used to slow down photons. Let us consider
the case of a cavity perfectly connected to a waveguide
�Q /Q0=1� containing a leaky quantum dot. The transmission
coefficient in amplitude can be written t= �t �e−i�t���, where
�t�	�� varies near �0 on a scale �. We send in the optical
system a wave packet �in��� of width W centered around �0.
Denoting � the temporal coordinate, we obtain the shape of
the output pulse

�out��� �	 d��in���ei��ei�t���. �C1�

If the width of the wave packet fulfills W��, we can de-
velop �t around �0. We finally obtain �out���=�in��

−� ��t

�� �
�0

�. The wave packet will then be transmitted by the

optical system after a delay TD which reads

TD = � ��t

��
�

�0

. �C2�

During the transmission the wave packet will also be damped
by a factor T= �t�2. Remembering that �
�, we neglect the
variations due to the cavity mode. We shall then take
t0��	���1 and

t �
f

1 + f

1

1 +
2i

�
	�

Q

Q0

f

1 + f

. �C3�

With this hypothesis, �t�arctan� f
1+f

2	�
�

�. As a consequence,

TD �
2

�
arctan� �x�0 �

2

�

f

1 + f
. �C4�

The wave packet is delayed by the lifetime of the dipole,
which was expected. The damping factor has the following
form:

T = � f

1 + f
�2

. �C5�

This process could be repeated using a series of N optical
devices. We note N1/2 the number of devices such that the
outcoming power is one-half of the incoming one. N1/2
checks

N1/2 =
1

2

log 2

log10�1 + 1/f�
. �C6�

Supposing f sufficiently high, we have log�1+1/ f��1/ f and
N1/2 scales like f . We could finally obtain a delay TD,

TD = N1/2
2

�

f

1 + f
�

�

2
f . �C7�

In particular, we could use a series of microdisks each eva-
nescently coupled to the same waveguide. This generalizes
the study of Heebner et al. �22� who have shown that the
group velocity of a signal passing through a series of empty
microdisks scales like the inverse of the finesse of the reso-
nators.

APPENDIX D: ABOUT OPTICAL SWITCHES

Looking at the transmission coefficient, we could be
tempted to use the giant nonlinearity to realize an all-optical
switch. Bistability regime is expected to be quite useful with
this aim �45,46�. As it is represented in Fig. 15, we could, for
example, reinject part of the transmitted intensity in the input
port to realize a bistable device. Unfortunately the slope of
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the signal is too low. Calling P0 the signal coming in the
loop, Pe the signal entering the device, Pt the power trans-
mitted by the device, and A the fraction of Pt used to create
the bistability, we have

Pe = P0 + APt�Pe� . �D1�

Bistability happens for values of the parameter B for
which equation P0�Pe�=B has more than one solution. At
low intensity Pt�0 and Pe� P0. At high intensity Pt� P0
and Pe��1−A�P0. The system will exhibit bistability if P0

decreases as Pe increases. This can only be done if
�Pt /�Pe�1. Nevertheless, it can easily be shown that the
slope of the signal Pt�Pe� is bounded by �2/3�3�1, prevent-
ing the system from reaching the bistability regime.

APPENDIX E: RESHAPING STEP

A possible application is to use the nonlinearity to en-
hance the contrast ratio between two pulses of different in-
tensities. This can be used to regenerate optical signals trav-
elling in an optical fiber. The major advantage of this system
compared to other devices is the very low switching energy,
defined as the energy necessary to saturate the system and
make it switch from a linear to a nonlinear behavior. As
already seen, the typical switching energy is 0.25h� where
h� is the energy of a resonant photon. We have h�
�1 eV–4�10−20 J which is eight orders of magnitude
lower than for traditional saturable absorbers �47�. The figure
of merit for this kind of device is the contrast enhancement
ratio, defined as

C = � PL

PH
�

in
�PH

PL
�

t
, �E1�

where PH �respectively, PL� is the high-power pulse �resp
ectively, the low one�. The subscript “in” �resp ectively t�
describes the incoming field �resp ectively, transmitted�. We
introduce the extinction ration of the pulse

d = �PH

PL
�

in
. �E2�

For a perfect nonlinear device, C writes

C =
1

d

T�x�
T�x/d�

, �E3�

where T is the transmittance at resonance of the device. We
have

C = d� 1 + x

1 + x/d
�2

, �E4�

where C is maximum for x→0 and tends to d. With an ideal
device we could theoretically reach any value of C. Taking
into account the leaks, and denoting Tleak as the transmission
of the device on resonance, and Cleak as the new contrast
enhancement factor, we obtain

Cleak =
1

d

Tleak�x�
Tleak�x/d�

. �E5�

We have represented Fig. 16 as the contrast enhancement
factor for different values of the factor f which has been
defined in Eq. �39�. Let us recall that f is related to the
Purcell factor by the simple expression f = ��free /�at�Fp if
there is no excitonic dephasing. The intrinsic quality factor
�respectively, the quality factor� of the cavity has been taken
equal to 1000 �respectively, 950�. The extinction ratio is
doubled for f �30, which corresponds to a typical Purcell
factor of 3, and �at /�free�0.1 which could be obtained by
metallizing the sidewalls of a micropillar cavity as it has
been underlined in Sec. V. The ratio increases with f , a 6 dB
enhancement is reached for f �100 which is within reach of
the micropillar or photonic crystal technology.

FIG. 15. Scheme of a possible use of the optical system to
generate bistability. Part of the transmitted power in reinjected at
the entrance of the device. The weak slope of the function T�Pin�
does not allow to reach the bistability regime.

−1 0 1 2
0

1

2

3

4

x

C

FIG. 16. Contrast enhancement ratio as a function of the satu-
ration parameter x=4Pin /� for different values of f . Q0=1000, Q
=960. Dot, f =2.6. Dashed, f =50. Solid, f =100.
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