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Correlations of light in the deep Fresnel region: An extended Van Cittert and Zernike theorem
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We derive an extension of the Van Cittert and Zernike theorem (VCZT), which holds very near to planar
quasihomogeneous radiation sources. This derivation is based on paraxial propagation of the Wigner distribu-
tion function of the scalar field. We identify a critical distance from the source. Below this distance (deep
Fresnel region) the field autocorrelation function is invariant upon propagation and the propagated field con-
tains information about the correlation properties of the radiation source. Beyond the critical distance, the
classical VCZT theorem is found to hold and no information about the source correlation can be recovered. The
transition between the two regimes is described analytically for a simple case.
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The Van Cittert and Zernike theorem (VCZT) [1] is a
milestone of modern optics. It describes the spatial coher-
ence properties of radiation emitted from a planar incoherent
source in terms of the two-dimensional (2D) Fourier trans-
form (FT) of the source intensity distribution. In a classical
formulation it can be stated as follows [2]. Given an ex-
tended incoherent light source at z=0 with intensity distribu-
tion Iy(x,y)=|Uy(x,y)[?, the two-point field correlation func-
tion J_(xy,y13%,2) =(U(x1,y ) U *(x,y5)) (also called
mutual intensity) at z# 0 is given by
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where 1o(u,v)=[Io(x,y)e 2@+ dxdy indicates the 2D FT
of Iy(x,y), « is a constant with dimensions of squared length
and, x=(x;+x2)/2, y=(y;+y2)/2, Ax=x;—x,, Ay=y,—y,.
One of the important consequences of the VCZT is that a
fully incoherent field can improve its coherence properties
by free propagation in space.

This effect has been repeatedly used to measure the size
of radiation sources of a different kind. In a very famous
experiment performed in 1956, Hanbury-Brown and Twiss
used a stellar intensity interferometer [3] and measured the
diameter of Sirius by means of the VCZT. More recently the
spatial coherence properties of synchrotron radiation have
been deeply investigated by making use of the VCZT [4] and
similar studies have been also performed on soft x-ray radia-
tion obtained from noble gases by high order harmonic gen-
eration [5]. The VCZT has been also extensively used, both
in reflection and transmission geometries, to describe the
properties of the speckled intensity patterns caused by the
interaction of light with rough surfaces [6]. Several instru-
ments are based on this speckle effect, striking examples
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being the Electronic Speckle Pattern Interferometer (ESPI)
and the Synthetic Aperture Radar (SAR).

The validity of the VCZT relies on some important as-
sumptions. The paraxial or Fresnel approximation must hold
i.e., the angles involved must be small. The source must be
fully incoherent i.e., coherence cannot extend over more than
a wavelength. From a mathematical point of view this last
property is obtained by requiring that Jy(x;,y;;x5,y2)
=kly(x,y)8(Ax,Ay) where &(-,-) is the two dimensional &
function.

In 1965, a generalized Van Cittert and Zernike theorem
(GVCZT) was provided by Goodman (see Ref. [2] for de-
tails) for the specific case of partially coherent sources de-
scribed by a field correlation function of the form
Jo(xy,y13%0,¥2)=1)(X,y) o(Ax, Ay). Here the intensity ) is a
slowly varying function with respect to the complex coher-
ence factor u, (an equivalent statement is that the source
linear size D is large compared with the width d of the com-
plex coherence factor ). Following Carter and Wolf [7], we
will refer to such kind of sources as planar quasihomoge-
neous sources, to stress that their second order correlation
properties do not change across the illuminated region.

The GVCZT states that
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which is formally identical to the VCZT provided that the
constant « is replaced with the slowly varying function
k(X,y)=fo(X/\z,y/\z). The width of «(x,y) is of the order
Nz/d, much larger than the width of the function
Io(Ax/Nz,Ay/\z) which is of the order Az/D. Consequently,
the effect of k(X,y) on the correlation function is only a large
scale modulation. It is worth pointing out that the GVCZT is
derived in the paraxial approximation with the additional re-
quirement that

K(f,y‘)exp{

J (X1, y15%0,y2) =
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and very recently [8] Gori showed that if condition (3) is
fulfilled a generic source exhibits a VCZ-like behavior.
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What happens to the correlation function in the region z
<dD/N\ is still unknown.

In this paper we answer this question at least for quasiho-
mogeneous sources. By using Wigner function propagation
we derive a general expression for the propagated field cor-
relation function. We also show that below the critical dis-
tance z.=dD/N\ the propagated field correlation function co-
incides with the field correlation function on the source
plane. For larger distances the classical predictions of the
VCZ theorem are recovered. These results provide a full the-
oretical description of the findings of Giglio et al[9] who
demonstrated experimentally, for the case of speckle fields,
the invariance of the intensity correlation function upon
propagation.

The Wigner distribution function of a 2D signal U,(x)
=U,(x,y) is defined [10] as

W, (x,f) :f Uz(x+ X;)U*(x— X;)e"'z”f""dx’ (4)

where f=(f,,f,). This distribution function represents the
signal simultaneously in space and spatial frequencies and
may therefore be seen as an intermediate representation of
the true physical signal between the space U(x) and the fre-

quency ﬁ(f) representations. In the last 30 yrs the concept of
intermediate representations has been repeatedly used in op-
tics and in this paper we will use it to describe the propaga-
tion of correlation functions of optical signals. As a starting
point we can relate the Wigner distribution function to the
signal correlation function with the Fourier transform rela-
tionship

x’ x’
x-=

(Wz(x,f)>:sz(x+ 5 5 )e‘izw{'x’dx’ (5)

which also implies

A

J(x:x") =Jz<x+ XE;X - X;) = f <WZ(X’f)>e+i27Tf~x’df.

(6)

Therefore a knowledge of the Wigner distribution function of
the signal U gives, by inverse Fourier transform, the signal
correlation function. In the paraxial approximation, the
Wigner distribution function changes by propagation accord-
ing to the simple rule

W.(x,f) = Wy(x — \zf,f). (7)

Thus, with some calculation it is possible to derive an evo-
lution equation for the correlation function

J(x;x') = f df f dx"Jo(x = Nzf;x")e 2D (g)

which is valid within the paraxial approximation for an arbi-
trary source.

By performing the identification x=X and X' =Ax we can
now specify Eq. (8) to quasihomogeneous sources. After
some manipulation we obtain the simple result
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J(X;Ax) = po(Ax) ® J;/CZ(?(;AX) 9)

i.e., the propagated field correlation function can be written
as a convolution product between the complex coherence
factor u, and the field correlation function predicted by the
classical VCZT. It is worth noting that Eq. (9) could also be
obtained with a direct calculation from the Huygens-Fresnel
principle but the Wigner distribution function derivation fol-
lowed here is very compact and elegant.

Equation (9) is the main result of this paper and its con-
volution form gives a very immediate feeling with the phys-
ics behind this problem. The width of the correlation func-
tion u, is approximately equal to d and the width of J;’CZ is
approximately Nz/D (where D is the source size). For z
=dD/\ =z, the two functions have approximately the same
width and we can identify two regimes:

(1) if z>z, the source act as a collection of S-correlated
emitters i.e., ug(Ax)=kS(Ax). Therefore the VCZT predic-
tion of formula (1) is a good approximation for the propa-
gated field correlation function.

(2) if z<z, the approximation fo(i—;) 210(32)5(?—:)
=\2z%1,(X) 5(Ax) holds and we obtain

J(X;Ax) = Io(X) o(Ax) = Jo(X; AX) (10)

i.e., the propagated field correlation function is approxi-
mately equal to that on the source plane (z=0).

It is worth noting that in classical diffraction theory the
transition from the Fresnel to the Fraunhofer regime (near to
far field) for an aperture of size D occurs at zyp=D?/\.
Therefore the validity condition for Eq. (10) is much more
stringent than the usual near field condition because d<<D.
An equivalent statement is that Eq. (10) is valid for Np
<d/D<1 where Np=D?/\z is the Fresnel number of the
illuminated aperture. According to Ref. [11] we will call this
regime deep Fresnel region.

Due to the close analogy between classical coherence
theory and speckle theory, all the above results are valid also
for speckle fields provided that the concept of “planar quasi-
homogeneous source” is replaced by that of “rough object,”
i.e., a collection of independently-phased scatterers which,
illuminated by a plane wave, act as a secondary source. This
can be a rough surface illuminated in reflection geometry or
a rough transmitting object such as a ground glass. As sug-
gested in Ref. [9], a model object for this rough object is a
random screen i.e., an opaque screen covered with randomly
placed circular pinholes of size d>\. This random screen
has been used by the authors to show for the first time that,
in the deep Fresnel regime, the size of the speckles (the
width of the intensity autocorrelation function) does not
change with distance. This property is a consequence of Eq.
(9) if we take into account that the Siegert relation

(L(X)L(%y)) = {L.)* + KU.(x)) U, (x,))* (11)

is valid [3]. This experimental regime, where speckle size
does not change with distance has been also recently de-
scribed by Goodman in a recent book [12].
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FIG. 1. The continuous line represents the normalized width of
the field correlation function plotted as a function of the normalized
distance from the source. For light sources this is the linear size of
the correlation area. For speckle fields this is the linear size of a
speckle. The dashed line is the far-field prediction obtained with the
Van Cittert and Zernike theorem.

The last part of this paper is devoted to an analytical
calculation for a simple model case. Let us start by consid-
ering a radiation source described by a Gaussian intensity
profile of the form

2.2
X“+y
Iy(x,y) =1,(0,0)exp| — 12
o(x,y) 0()P< 202) (12)
and let us assume that the field on the source is described by
a Gaussian correlation function

2 2
w) 13)

Ax,Ay) = exp| -
to(Ax,Ay) eXP( T2

By performing the convolution product in formula (9) we
obtain

2+ 2
|<Uz(X1)U:(X2)>| * exp(— 21; ) (14)

i.e., the propagated field correlation function is again Gauss-
ian with width given by

Az P
A(z)zl“\/1+<2mrr) . (15)

Equation (15) can be also rewritten in the following form

2
A(z):l"\/1+; (16)

c

where we have defined the critical distance as z,=27T'a/\
=mdD/4N, and where d and D are respectively the 1/e
widths of wg(Ax,Ay) and Iy(x,y). This result has a formal
analogy with the formula describing the beam diameter of a
Gaussian beam as a function of the distance from its beam
waist, provided that the quantity z. is identified with the
beam Rayleigh range [13].

In Fig. 1 we plot (continuous line) the width A of the
propagated field correlation function normalized with the
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width T" of the source field correlation function as a function
of the ratio z/z.. It appears clear that within the Rayleigh
range one has A=I" but for larger distances one recovers
exactly the VCZ like asymptotic behavior A=Iz/z,
=N\z/27o=(\2/m)\z/D (dashed line), with the correlation
size increasing with distance z.

An easy extension which represents a case of special in-
terest for synchrotron people is that of a radiation source
with an elliptical Gaussian intensity profile of the form

[-32-32)

Iy(x,y) =1,(0,0)exp| — — - — 17
()( y) 0( ) p 2 0_)2( 2 0_\2 (17)
but still described by a symmetric Gaussian correlation func-
tion such as in formula (13). An intensity distribution of this
kind is a model for a source elongated along one direction
such as for example a synchrotron x-ray insertion device
(bending magnet or undulator). In this case we obtain

* ( x2 yZ )
U.x)U.(X5)| xexpl ——— -~ 18
i.e., the propagated field correlation function is again an el-
liptical Gaussian but its size will be different along the ver-

tical and horizontal directions according to

Az 2
A (2)=T1/1 (—) . 1
W=\ (19)

If 0,> 0, (i.e., source elongated horizontally such as a bend-
ing magnet x-ray source) the Rayleigh range along the hori-
zontal direction will be larger than the vertical one. This
leads to a very peculiar situation: for very small distances the
field correlation function will be circularly symmetric due to
the circular symmetry of the correlation function of the field
on the source plane. By moving at larger distances from the
source, the correlation function will first deform in the ver-
tical direction, still keeping the same horizontal size. To ob-
serve also a change in the horizontal direction one should
measure the field correlation function at distances larger than
the horizontal Rayleigh range.

In conclusion we have derived a generalization of a clas-
sical theorem in optics, i.e., the Van Cittert and Zernike theo-
rem. In the deep Fresnel region of a quasihomogenous
source, the field correlation function is found to be invariant
upon propagation in striking agreement with recent experi-
mental results. For larger distances the classical VCZ-like
behavior is recovered and the correlation width becomes dis-
tance dependent. Some analytical results are also obtained.

The author is indebted to M. Giglio for many illuminating
discussions. Fruitful discussions with D. Brogioli, M.
Carpineti, A. Dogariu, D. Di Roberto, M.A.C. Potenza, and
A. Vailati are also acknowledged.
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